#version 300 es precision highp float; uniform samplerCube cubemap; in vec3 dir_l; out vec4 color; struct GRVec { float r; float t; vec3 n; }; uniform Context { GRVec pos; GRVec spd; GRVec tri[3]; } ctx; const float pi = 3.14159265; // Real solutions of 4z^3 - 3z + q = 0 // For 0 ≤ q ≤ 1, the roots v.xyz are: // 0 ≤ v.x ≤ 1/2, // v.y ≥ 1/2, // v.z ≤ 0 vec3 cubic_real(float q) { float a = asin(q) / 3.0; return vec3(sin(a), sin(a + pi * 2.0 / 3.0), sin(a - pi * 2.0 / 3.0)); } // Complex solutions of the same cubic, packed in three reals // Applicable for q > 1 // The roots are: v.x < 0, v.y ± i v.z vec3 cubic_complex(float q) { float a = pow(q + sqrt(q * q - 1.0), 1.0 / 3.0); float b = 1.0 / a; return vec3(-(a + b), (a + b) / 2.0, (a - b) * 0.8660254) / 2.0; } // Square root vec2 cx_sqrt(vec2 a) { float d = length(a); float s = a.y < 0.0 ? -1.0 : 1.0; return vec2(s * sqrt((d + a.x) / 2.0), sqrt((d - a.x) / 2.0)); } vec2 cx_inv(vec2 a) { return vec2(a.x, -a.y) / dot(a, a); } // Geometric mean vec2 cx_gm(vec2 a, vec2 b) { float d = sqrt(dot(a, a) * dot(b, b)); float r = a.x * b.x - a.y * b.y; float s = a.x * b.y + a.y * b.x < 0.0 ? -1.0 : 1.0; return vec2(s * sqrt(max(d + r, 0.0) / 2.0), sqrt(max(d - r, 0.0) / 2.0)); } // The symmetric integral of the first kind R_F, after Carlson, arXiv:math/9409227v1 [math.CA] // Arguments are 1 negative and 2 positive, so we need complex numbers. vec2 rf_3r(vec2 x, vec2 y, vec2 z) { int n; for(n = 0; n < 10; n++) { vec2 l = cx_gm(x, y) + cx_gm(x, z) + cx_gm(y, z); x = (x + l) / 4.0; y = (y + l) / 4.0; z = (z + l) / 4.0; } return cx_inv(cx_sqrt((x + y + z) / 3.0)); } // The same function R_F but evaluated in (x, y + i z, y - i z). // Here the evaluation stays within real numbers. float rf_rcc(float x, float y, float z) { float mu, lambda; int n; for(n = 0; n < 10; n++) { mu = (x + 2.0 * y) / 3.0; lambda = sqrt(2.0 * x * (y + sqrt(y * y + z * z))) + sqrt(y * y + z * z); x = (x + lambda) / 4.0; y = (y + lambda) / 4.0; z = z / 4.0; } return 1.0 / sqrt(mu); } float angle_3r(vec3 roots, float inv_r) { return 2.0 * rf_3r( vec2((roots.x * inv_r - 1.0) * roots.y * roots.z, 0.0), vec2((roots.y * inv_r - 1.0) * roots.x * roots.z, 0.0), vec2((roots.z * inv_r - 1.0) * roots.x * roots.y, 0.0) ).y; } float angle_rcc(vec3 roots, float inv_r) { return 2.0 * rf_rcc( (1.0 - roots.x * inv_r) * (roots.y * roots.y + roots.z * roots.z), roots.x * roots.y - roots.x * (roots.y * roots.y + roots.z * roots.z) * inv_r, roots.x * roots.z ); } float angle(float p, float r, float ur) { float l_e = sqrt(27.0 / 4.0) / p; float v_r, v_inv, v_inf; if(p <= 1.0) { vec3 roots = cubic_real(p) / p * 3.0; float v_r = angle_3r(roots, 1.0 / r); float v_inf = angle_3r(roots, 0.0); if(ur < 0.0) { float v_inv = angle_3r(roots, 1.0 / roots.y); return l_e * (2.0 * v_inv - v_inf - v_r); } else { return l_e * (v_r - v_inf); } } else { vec3 roots = cubic_complex(p) / p * 3.0; float v_r = angle_rcc(roots, 1.0 / r); float v_inf = angle_rcc(roots, 0.0); // No inversion point. For u.r < 0 the trajectory is singular so this function is not called. return l_e * (v_r - v_inf); } } void main() { vec3 dir_ln = normalize(dir_l); float r = ctx.pos.r; float q = 1.0 - 1.0 / r; GRVec u; u.r = dot(dir_ln, vec3(ctx.tri[0].r, ctx.tri[1].r, ctx.tri[2].r)) - ctx.spd.r; u.t = dot(dir_ln, vec3(ctx.tri[0].t, ctx.tri[1].t, ctx.tri[2].t)) - ctx.spd.t; u.n.x = dot(dir_ln, vec3(ctx.tri[0].n.x, ctx.tri[1].n.x, ctx.tri[2].n.x)) - ctx.spd.n.x; u.n.y = dot(dir_ln, vec3(ctx.tri[0].n.y, ctx.tri[1].n.y, ctx.tri[2].n.y)) - ctx.spd.n.y; u.n.z = dot(dir_ln, vec3(ctx.tri[0].n.z, ctx.tri[1].n.z, ctx.tri[2].n.z)) - ctx.spd.n.z; float e2 = pow(u.t, 2.0); float l2 = pow(ctx.pos.r, 4.0) * dot(u.n, u.n); float p = sqrt(27.0 * e2 / 4.0 / l2); bool fall = p > 1.0 ? u.r < 0.0 : r < 1.5; if(fall || u.t > 0.0) { color = vec4(0.0, 0.0, 0.0, 1.0); } else { float phi = angle(p, r, u.r); vec3 v = cos(phi) * ctx.pos.n + sin(phi) * normalize(u.n); float shift = 1.0 / (-u.t); color = pow(texture(cubemap, v), vec4(0.65)); if(shift > 1.0) color.b += log(shift); else color.r += -log(shift); } }