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1 Introduction

In this contribution, we discuss parallelization of the problem of curve dynamics in plane.
Related PDEs are based on the levelset method introduced in [5], and on the phase-field
method described in [1]. Numerical schemes use a finite-difference discretization in space
and explicit time solvers. Parallel algorithms are designed for systems with distributed
memory, and are based on the domain splitting. The achieved results indicate strength
and efficiency of the described approach in case of such highly nonlinear problems.

2 Mean-curvature flow

We study the following motion law for closed planar curves denoted as Γ :

vΓ = −g(θ)κΓ + F, (1)

in the direction of the Euclidean normal vector to Γ . Here, nΓ denotes the normal vector
to Γ , vΓ the normal velocity, κΓ the mean curvature, F a forcing term, and g is a
suitable positive 2π-periodic function of curve anisotropy, θ is the angle between nΓ and
a prescribed direction. We take g(θ) = ψ(θ) + ψ′′(θ), where ψ(θ) = 1 + ζ cos(Nfold θ), ζ
is the anisotropy strength and Nfold a type of symmetry. The equation (1) in the form
of the Gibbs-Thompson law is contained in the modified Stefan problem. For details, we
refer the reader to [1]. In [4], we may find an application in noise filtering, edge detection
and morphing of computer-processed image data.
Hamilton-Jacobi equation. Assume that the curve Γ (t) is represented by a levelset
of a function P = P (t, x):

Γ (t) = {x ∈ R
2 | P (t, x) = const.}.

We can express the quantities appearing in (1) by means of P :

nΓ = − ∇P
|∇P | , vΓ =

∂tP

|∇P | , κΓ = div(nΓ ).

Then, we can introduce the Hamilton-Jacobi equation (see [5, 3])

∂P

∂t
= g(θ)|∇P |∇ · ( ∇P

|∇P | ) + |∇P |F . (2)

Allen-Cahn equation. An extensive experience with non-linear reaction-diffusion equa-
tions led to the development of a phase-field approximation of (1) by the Allen-Cahn
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equation [2], or by a modified Allen-Cahn equation [1]. The evolution of the levelset 1

2
of

its solution approximates the evolution of the manifold Γ (t), as discussed in [1].
First, we denote a rectangular domain Ω = (0, L1)×(0, L2) ⊂ R

2, [x, y] ∈ Ω, the time
variable t ∈ (0, T ). The problem for an unknown function p = p(t, x, y) reads as follows

ξ
∂p

∂t
= g(θ)

(

ξ∆p+
1

ξ
f0(p)

)

+ F (u)ξ|∇p|, in (0, T )×Ω,

p|∂Ω = 0 on (0, T ) × ∂Ω, p|t=0
= pini(x) in Ω.

Here, ξ > 0 is a parameter related to the thickness of the interface layer (it is usually set
to a value << 1). The polynomial f0(p) = ap(1 − p)(p − 1

2
) with a > 0 is derived from

the double-well potential w0 as w′

0 = −f0. The function F = F (x, y) is bounded. The
function pini is an initial condition. We refer the reader to [1], for details concerning the
equation and physical background of it.
Numerical schemes. We treat the PDE problems (2) and (3), both closely related
to (1), by several numerical schemes implemented by means of parallelization tools for
the systems with distributed memory. The problems are solved in a spatial domain Ω =
(0, L1)×(0, L2), which is discretized by a rectangular uniform grid with mesh sizes h1, h2

in directions x and y.
We introduce the following notations for a given function u:

h1 =
L1

N1

, h2 =
L2

N2

, uij = u(ih1, jh2),

ωh = {[ih1, jh2] | i = 1, . . . , N1 − 1; j = 1, . . . , N2 − 1},
ω̄h = {[ih1, jh2] | i = 0, . . . , N1; j = 0, . . . , N2}, γh = ω̄h − ωh,

ux̄,ij =
uij − ui−1,j

h1

, ux,ij =
ui+1,j − uij

h1

, uo

x,ij
=
ui+1,j − ui−1,j

2h1

,

uȳ,ij =
uij − ui,j−1

h2

, uy,ij =
ui,j+1 − uij

h2

, uo

y,ij
=
ui,j+1 − ui,j−1

2h2

,

ux̄x,ij =
1

h2
1

(ui+1,j − 2uij + ui−1,j) , uȳy,ij =
1

h2
2

(ui,j+1 − 2uij + ui,j−1) ,

∇̄hu = [ux̄, uȳ],
o

∇h u = [uo

x, uo

y], ∆hu = ux̄x + uȳy.

Direct discretization of the levelset equation. The curvature expressed in terms of
second-order derivatives

κΓ = −
∂2

xxP (∂yP )2 − 2 ∂2
xyP ∂xP ∂yP + ∂2

yyP (∂xP )2

((∂xP )2 + (∂yP )2)3/2
,

allows us to use central differences to approximate both first- and second-order deriva-
tives. We then propose an explicit scheme in the following form (n is the time-level index,
τ is the time step):

Pn+1

ij = Pn
ij + τ g(θ)

Px̄x (Po

y)2 − 2Po

x
o

y Po

x Po

y + Pȳy (Po

x)2

(Po

x)2 + (Po

y)2
+ τ
√

(Po

x)2 + (Po

y)2F,

which is subject of a regularization when (Po

x)2 + (Po

y)2 = 0. The relationship of τ and h
is given by a stability condition.
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The equation (1) defines the motion law on Γ (t) only. On the other hand, the function
P is obtained from the equation (2) valid in Ω. In our work, we extend the forcing term
F from (1) to (2) as it is. Other extensions (construction of extension velocities) are
discussed, e.g. in [6].
Discretization of the regularized levelset equation. Let ε > 0 be a small regular-
ization parameter. Instead of (2), we solve the following problem:

∂P

∂t
=
√

ε2 + |∇P |2 div

(

∇P
√

ε2 + |∇P |2

)

+ F
√

ε2 + |∇P |2, in (0, T )×Ω,

∂P

∂n

∣

∣

∣

∣

∂Ω

= 0 on (0, T )× ∂Ω, P |t=0
= Pini(x) in Ω.

It can be approximated using the following explicit nine-point-stencil finite-difference
scheme:

P k+1

i,j = P k
i,j + τQ(

o

∇h P
k
i,j)
(

F k
i,j

+

(

P k
x̄,i+1,j

h1Q(∇P k
i+ 1

2
,j
)
−

P k
x̄,ij

h1Q(∇P k
i− 1

2
,j
)

+
P k

ȳ,i,j+1

h2Q(∇P k
i,j+ 1

2

)
−

P k
ȳ,ij

h2Q(∇P k
i,j− 1

2

)

))

,

where Q(u, v) =
√
ε2 + u2 + v2, ∇P k

i+ 1

2
,j

= [P k
x,i,j ,

1

2
(P k

o

y,i+1,j
+ P k

o

y,i,j
)], ∇P k

i− 1

2
,j

=

[P k
x̄,i,j ,

1

2
(P k

o

y,i,j
+ P k

o

y,i−1,j
)], ∇P k

i,j+ 1

2

and ∇P k
i,j− 1

2

evaluated analogically. The scheme

is only conditionally stable.
Discretization for the Allen-Cahn equation is derived by spatial finite differences.
Nodal values then remain functions of time, for which we obtain a system of ODEs (the
semi-discrete scheme) in the following form:

ξ2
dph

dt
= ξ2g(θ)

(

∆hp
h + f0(p

h)
)

+ ξ2|∇hp
h|F on ωh,

ph |γh
= 0, ph(0) = pini.

The equations are numerically solved by the Runge-Kutta-Mersn 4-th order method with
adaptive time step. The scheme has been analyzed in [1] from the convergence viewpoint.

3 Parallelization techniques

The above described algorithms are parallelized by means of the Message Passing Library
MPI both using Fortran 77/90 and C programming languages. Computations using MPI,
version 1.1 were performed on the supercomputing systems IBM SP3 and Cray T3E
at CINECA1, IBM SP, IBM SP2 at the Czech Technical University in Prague, and
computations using LAM MPI library2 were performed on a local network of Linux PC
workstations at the Czech Technical University in Prague. In both approaches described
below, the computational task is performed by one or more processes, each of them
running either on a separate processor (a hardware unit, or virtual unit in the emulated
mode).

1 Supercomputing Center of Italian Universities, Bologna
2 LAM MPI, Local Area Multicomputer is an open source implementation of MPI standard,
http://www.lam-mpi.org
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Cartesian domain splitting is an approach where a rectangular domain Ω is decom-
posed into rectangular subdomains, each of them treated by one process. Boundaries of
subdomains overlap by one grid line, on which they exchange data. The amount of com-
munication between processes depends on the blocking strategy. We tested the row-wise

blocking strategy, where the domain is decomposed row-wise. Each block interacts with
neighbouring blocks during a timestep. The other tested strategy was the chequerboard

blocking. In this case, each block communicates with maximum eight neighbours during
a timestep.

Fig. 1. Cartesian domain splitting (left), and narrow-band splitting (right).

Narrow-band technique introduced in [6] explores the fact that we are interested
only in the evolution of the curve Γ (t). It is therefore enough to follow the evolution
of P = P (t, x) in the vicinity of the levelset Γ (t). The presented approach provides a
significant speedup. On the other hand, it is less accurate and more difficult to implement,
because it requires a reconstruction of the narrow band when Γ approaches its edge
(the operation is called reinitialization). In our implementation, we cover the curve by
overlapping squares of a constant width which are assigned to processes in an intuitive
way (Fig. 1). For example, in case of 64 covering squares and 16 processes, the first four
squares are computed by the first process, the second four squares by the second process
etc. Consequently, the narrow band created by such squares is not of constant width.
The processes exchange data for all nodes, where the squares overlap. The approach is
easy to implement including processing of the grid by parts small enough to fit them in
the fast cache memory of processors. For the purpose of algorithm evaluation, we define
the following quantities:

Speedup =
run time in a single process

run time in n processes
, Eff. =

Speedup

number of processes
.

Speedup and efficiency of parallelization for the direct algorithm of the lev-
elset equation - Study 1 (IBM SP). In this study, we consider a circle of the initial
radius R0 = 1.35 placed in a domain (0, 4) × (0, 4), which shrinks according to the law
vΓ = −κΓ (see Figure 2a). The domain is discretized with the mesh size 0.02 in both
directions, the time step is τ = 4 · 10−5. Number of time steps is 22500, the computation
stops right before the shrinking time T = 0.9 (see [1], ). The code is parallelized by means
of the domain splitting. The results achieved on the IBM SP system are shown in Table
1.
Study 2 (IBM SP). The above given problem (see Figure 2a) was recomputed using
several choices of the mesh size and the time step. As it can be seen from Table 2,
efficiency of parallelization depends on the size of data exchanged between processes
(e.g., it is faster to send 200kB of data than twice 100kB, due to an initiation).
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(a) (b)

Fig. 2. (a) A circle in (0, 4) × (0, 4) shrinking from the initial radius R0 = 1.35 to the radius
RT = 0.15 according to the isotropy law vΓ = −κΓ . (b) An initial circle of the radius R0 = 3.0
deforming itself according to the 5-folded anisotropy law described by Eq.(3), where Nfold = 5
and ζ = 0.025.

Number Mesh nodes CPU time Mesh Communication
of per per nodes mesh Eff.

processes process process total nodes

1 40000 908 40000 0 -
4 10000 258 40000 400 (1.0%) 88%
8 5000 149 40000 800 (2.0%) 76%

12 3333 113 40000 1000 (2.5%) 67%
16 2500 94 40000 1200 (3.0%) 60%

Table 1. The results of parallelization efficiency on IBM SP.

Mesh size 200 x 200 267 x 267 400 x 400 667 x 667

Time step 4.0 · 10−5 2.3 · 10−5 1.0 · 10−5 3.6 · 10−6

Iterations 22500 40000 90000 250000

Mesh size \ Processes 1 4 8 12 16

200 x 200 908 258 (88%) 149 (76%) 113 (67%) 94 (67%)
267 x 267 2585 697 (93%) 392 (83%) 277 (78%) 231 (70%)
400 x 400 14171 3657 (97%) 1915 (93%) 1343 (88%) 1058 (84%)
667 x 667 98904 25574 (97%) 12889 (96%) 8740 (94%) 6775 (91%)

Table 2. Efficiency depends on the mesh size. Computation performed on the IBM SP system
(CPU time per process and efficiency).

Study 3 (IBM SP and Linux network). In this case, the initial condition (a circle
with the initial radius R0 = 1.35) evolves according to (1) with F = 0, Nfold = 5
and ζ = 0.025 as indicated in Figure 2b). With numerical parameters h1 = h2 = 0.01,
τ = 1.1 · 10−5 and 64286 time levels, it terminates at t = 0.72. The curve is covered
by squares 35 points wide. Due to the curve shrinking, number of active nodes in the
narrow band decreases from ∼ 33000 to 16000 as shown in Table 3. Compared to the
domain splitting, efficiency is lower. This is caused by the fact, that the overlapping
areas between processes are larger, and even the number of active nodes increases with
the number of processes. On the other hand, the computation is faster, as only a part of
the grid is active, and the absolute amount of exchanged data is smaller.
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Number Min. no. Avg. no. Max. no. Communication CPU time CPU time
of of active of active of active mesh nodes per process per process

processes nodes nodes nodes (% of Avg) (IBM SP) (linux cluster)

1 16226 26390 33268 0 15219 2608
4 16366 26407 33252 560 (2.1206%) 5009 (76%) 884 (74%)
8 16383 26497 33368 1120 (4.2269%) 3260 (58%) 576 (57%)

12 16435 26517 33409 1680 (6.3356%) 2613 (49%) 456 (48%)
16 16581 26620 33536 2240 (8.4147%) 2365 (40%) -

Table 3. Narrow-band approach on IBM SP and Linux network applied to an anisotropic circle
shrinking.

Speedup and efficiency of parallelization for the regularized levelset equation
- Study 4 (IBM SP3). We considered the test problem shown in Figure 3. For a given
number of processes, it is possible to split the domain either into NPROC rows, or into
NPROCX columns and NPROCY rows in the checquerboard blocking (NPROCX ×
NPROCY = NPROC). Unless NPROC is a prime, there are several possibilities for
selecting NPROCX and NPROCY . Tables 4 and 5 present the runtimes, numbers of
communication nodes, and efficiencies for both of the above mentioned blocking strategies
attained on an IBM SP3 machine. It is clear from Table 5 that the checquerboard blocking
is superior to the row-wise blocking for higher numbers of processes, which is due to a
lower number of communicating nodes.

Number Mesh nodes CPU time Mesh Communication
of per per nodes mesh Eff.

processes process process (s) total nodes

1 360000 2656 360000 0 -
4 90000 778 360000 1800(0.5000%) 85%
9 40000 307 360000 4800(1.3333%) 96%

16 22500 180 360000 9000(2.5000%) 92%
25 14400 145 360000 14400(4.0000%) 73%
36 10000 125 360000 21000(5.8333%) 57%

Table 4. Results of parallelization for the row-wise blocking.

Number Mesh nodes CPU time Mesh Communication
of per per nodes mesh Eff.

processes process process (s) total nodes

1 360000 2656 360000 0 -
4 90000 684 360000 1201(0.3336%) 97%
9 40000 320 360000 2404(0.6677%) 92%

16 22500 171 360000 3609(1.0025%) 94%
25 14400 122 360000 4816(1.3377%) 87%
36 10000 85 360000 6025(1.6736%) 87%

Table 5. Results of parallelization for the chequerboard blocking.
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Fig. 3. Evolution of the cardioida curve is driven by the regularized levelset equation, solved
in the unit square with ε = 10−8, grid 600 × 600, τ = 10−6 and 20000 time levels.

Speedup and efficiency of parallelization for the Allen-Cahn equation - Study
5 (IBM SP3). In this computation, we studied the isotropic curve evolution starting
at a four-folded pattern in a spatial domain (0, 2) × (0, 2). The curve approaches the
circle of radius R = 0.6 according to the law vΓ = −κΓ + F (x) where the forcing
F is a suitable radially symmetric and linear function. Other parameters are ξ = 0.01,
h1 = h2 = 0.00995. The curve evolution is in Figure 4(a). The domain was divided into 1,
4, and 16 rectangular subdomains, and the computation was repeated with corresponding
number of processes. The mesh size and the total number of mesh points remained the
same, the number of mesh points per process decreased, the number of communication
mesh points increased, both with increasing number of processes. Measurement results
are in Table 6.

(a) (b)

Fig. 4. (a) 4-folded initial curves in (0, 2)× (0, 2) approaches circle of radius R = 0.6 according
to vΓ = −κΓ + F (x) for radially symmetric linear F ; ξ = 0.01, h1 = h2 = 0.00995. (b) 4-folded
initial curve in (0, 2) × (0, 2) shrinks inside and expands outside of the circle of radius R = 0.6
according to vΓ = −g(θ)κΓ +F (x) for radially symmetric linear F , g(θ) = 1.0−0.8cos(4θ−π/4);
ξ = 0.02, h1 = h2 = 0.00995.

Study 6 (CRAY T3E). The computation, performed on CRAY T3E, studies the
anisotropic curve evolution starting at a four-folded leaf-like curve placed in a spatial
domain (0, 0.4)×(0, 0.4). The curve shrinks inside a circle of radius R0 = 0.1, and expands
outside of it thanks to a spatially dependent choice of F in the law vΓ = −g(θ)κΓ + F
g(θ) = 1.0 − 0.8cos(4θ − π/4); ξ = 0.02, h1 = h2 = 0.00995. The curve evolution is in
Figure 4(b). The domain was divided into 1, 4, 16, 25 and 64 rectangular subdomains,
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Number Mesh elements CPU time Mesh Communication
of per per elements mesh Eff.

processes process process total elements

1 40401 118.11 40401 0 -
4 10201 29.89 40401 401(0.9925%) 99%

16 2601 10.01 40401 1197(2.9628%) 74%

Table 6. Table of parameters for the use of IBM SP3 - Study 5.

and the computation was repeated with corresponding number of processes. Mesh size
and total number of mesh points remained the same, number of mesh points per processes
decreased, number of communication mesh points increased, both with increasing number
of processes. Measurement results are in Table 7.

Number Mesh elements CPU time Mesh Communication
of per per elements mesh Eff.

processes process process total elements

1 40401 37.55 40401 0 -
4 10201 9.65 40401 401(0.99%) 97%

16 2601 3.23 40401 1197(2.96%) 73%
25 1681 2.48 40401 1592(3.94%) 61%
64 625 2.20 40401 2765(6.84%) 27%

Table 7. Table of parameters for the use of CRAY T3E - Study 6.
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