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Significance of Dynamic Effect
in Capillarity during Drainage
Experiments in Layered
Porous Media

We developed one-dimensional, fully implicit numerical scheme to investigate the dynamic
effect in the capillary pressure—saturation relationship used in the modeling of two-phase
flow in porous media. Its validity was investigated by means of semianalytical solutions devel-
oped by McWhorter and Sunada (1990) and the authors. The numerical scheme was used to
simulate a drainage experiment where the sand and fluid properties were known. Then the
numerical scheme was used to simulate a laboratory experiment in a homogeneous column,
including three major models of the dynamic effect coefficient T. This numerical scheme can
handle porous medium heterogeneity and was used to simulate a fictitious experimental
setup with two different sands. As a result, the penetration time of the air phase through a
layered porous medium for models including dynamic effects varied between 50 and 150%
compared with static models of the capillary pressure—saturation relationship. Additionally,
the accumulation time of air at a material interface (i.e., the delay of the air at the interface
due to the capillary barrier effect) was investigated as a function of the ratio between the
air-entry pressure values of the adjacent sands, emphasizing the differences between the
dynamic and static capillary pressure models.

The prediction of flow of immiscible and incompressible fluids in porous media
requires reliable models of capillary pressure—saturation relationships. In most past
modeling efforts, various capillary pressure—saturation models were developed based on
laboratory experiments where capillary pressure and saturation were measured under equi-
librium conditions. Among these, the most commonly used are the models by Brooks
and Corey (1964, p. 27) or van Genuchten (1980). The question has been raised, however,
whether these static models accurately capture the dynamic behavior when the fluid phases
are in motion. Alternative models based on both empirical and theoretical approaches have
been proposed to deal with the dynamic effects associated with fluid flow. A method for
these dynamic effects was proposed by Gray and Hassanizadeh (1991a,b), Hassanizadeh
and Gray (1993), and Hassanizadch et al. (2002). Our study analyzed the implications of
the use of dynamic effects in the capillary pressure—saturation relationship in the modeling
of water and air flow in homogeneous and heterogeneous porous media. We developed
a numerical scheme to model these cases of dynamic flow. Subsequently, this numerical
scheme was verified by comparing it with the semianalytical solutions for the static capil-
lary pressure developed earlier for homogeneous cases (McWhorter and Sunada, 1990;
Fu¢ik etal., 2007) and for a layered system (Fuéik et al., 2008). By means of experimental
order of convergence criteria (eoc), we show that the developed numerical scheme is conver-
gent and can be reliably used for simulating flow in both homogeneous and heterogeneous
porous media systems.

The use of various models of dynamic effects in capillary pressure defined through an empiri-
cal coefficient (defined later as T) was investigated and compared with the static model of
capillary pressure. In unsaturated flow modeling, the two-phase flow system is simplified
using the Richards equation, where the pressure of the nonwetting phase (air) is assumed
to be constant throughout the flow domain. Using this simplification, as shown in Ippisch
etal. (2006), the dynamic effect was not found to be of importance for the heterogeneous
system that was studied. Other numerical studies on the dynamic effect in capillary pressure
models have been reported (Manthey et al., 2005; Manthey, 2006; Peszyriska and Yi, 2008);
however, the implications of using the dynamic capillary pressure models in two-phase

models (without the assumption of constant nonwetting phase pressure) have not been fully
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investigated. Helmigetal. (2007) presented a semi-implicit numeri-
cal scheme based on the upwind finite volume method, where the
material interfaces in a heterogeneous system are handled using the
Lagrange multiplier method. In a subsequent study (Helmig et al.,
2009), the idea was further developed. In those studies, only a con-
stant dynamic effect coefficient was considered. Another interesting
tool for studying dynamic effects in capillarity was presented in van
Duijn etal. (2007), where traveling wave solutions were considered
for two-phase flow involving a simplified model for dynamic effects
in capillarity. This method is not applicable, however, when the
constitutive models are nonlinear, as in the case of two-phase flow.

In past studies, the dynamic effect coeflicient was assumed to
depend on water saturation (Sakaki et al., 2010; O’Carroll et al.,
2005; Nieber et al., 2005), which was also supported by experi-
mental data generated in our group. We believe that this is critical,
especially in heterogeneous porous media. The fully implicit
numerical scheme that we developed can be used for a detailed
investigation of the saturation and capillary pressure behavior
when a dynamic effect in capillary pressure is used in modeling
two-phase flow. De Neef and Molenaar (1997) presented a method
to describe the nonwetting phase flow behavior at material inter-
faces using static capillary pressures and we extended this approach
for the dynamic effect. The developed numerical scheme was used
to investigate the behavior of different functional models of the
dynamic capillary pressure coeflicient in drainage flow regimes.

¢ Mathematical Model

In this study, two phases—a wetting phase (indexed w) and a non-
wetting phase (indexed 7)) —were considered to be present within
the pores of a porous medium and both fluids were assumed to
be incompressible and immiscible. Under these assumptions, the
following one-dimensional p , — S formulation (Bastian, 1999)

in a domain Q = [0,L] is given by

oS, Ou
Q (o9 — O 1
ot + Ox ]
k 0
o, = M“)‘ K|— (pw F0anpe ) —Pag 2]

where S+ 8 =150
the saturation, p | the pressure, p , the volumetric density, i, the

an 18 the Kronecker symbol; ov = w, 7; S is

dynamic viscosity, and &, the relative permeability of the o phase;
the Darcy velocities are denoted by # o and @, K, and g stand for
the porosity, the permeability of the soil matrix, and the gravita-
tional acceleration, respectively. A summary of the symbols used
here, including units, is given in the Appendix.

The governing Eq. [1] and [2] are subjected to an initial condition

$,.=8 inQ (3]

Q

and boundary conditions
u&~n=u§, on FuN
(e}
D
on FS [4]
D D
Po = Po> ON Fpu

S, =8P,

where n denotes the outer normal vector to the boundary.
Generally, F , 9, and F denote subsets of the boundary I' of
the domain .Q here, I' = {0, L} with I'P denoting a Dirichlet-type
boundary subset and I'N a Neumann-type boundary subset.

Following the standard definitions in the literature (Bear and
Verruijt, 1990; Helmig, 1997), the capillary pressure p_at the pore
scale is defined as the difference between the nonwetting-phase
pressure p_ and the wetting-phase pressure p_ :

Pc=Pn— Pw [5]

At the macro scale, the capillary pressure has been commonly consid-
ered to be a function of the wetting-phase saturation only (Helmig,
1997; Bear and Verruijt, 1990; Mikyska et al., 2009; Fu¢ik etal.,, 2004,
2005, 2007). In this study, this assumption was justified because we
considered only drainage flow regimes without hysteresis. We used
the following Brooks and Corey (1964, p. 27) model of the capillary
pressure—saturation relationship in the two-phase flow model:

-1\

2= pa(S3) [6]

where p 4 is the entry pressure, X is the pore size distribution index,
and S, is the effective saturation of the wetting phase, defined as

Sa =S
SE! - e} roL 7
Y o1- Srw - Srn 7l
where S, is the a-phase irreducible saturation. A superscript eq is used
in Eq. [6] with respect to p_and it indicates the model of the capillary

pressure for the system in a state of thermodynamic equilibrium.

The Brooks and Corey relationship (Eq. [6]) is suitable for modeling
flow in heterogeneous porous media because the difference in the
entry pressure coefficients p in different porous materials captures
the barrier effect that has been observed in various experiments
(Illangasckare et al., 1995). The permeability model according to
Burdine (1953) and Brooks and Corey (1964, p. 27) is given as
. (S ; >3+2/ N

™w

b - (1—va )2 [1_(va )1+2/x (8]

The dynamic capillary pressure—saturation relationship has been

proposed in the following form (Gray and Hassanizadeh, 1991b)
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Table 1. Properties of porous media and fluids used in the numerical simulation and experimentally determined models of the dynamic effect
coefficient T (Eq. [9]) for Sand A and fictitious calculated values of T for Sands B and C.

Sand property Sand A
CESEPt labels Obhyji sand (field sand)
Porosity (P) 0.448
Intrinsic permeability (K), m? 1.63 x 10711
Residual water saturation (S,,) 0.265
Entry pressure (py), Pa 3450
Pore size distribution index (\) 4.66
Models of T, Pa's
Stauffer model ¢ Tga=33x 10°
Constant model T Teonse. A = L1 X 106

Linear model 7, |

Loglinear model 7 3

TinalSy) =32 x 105(1 - S, )
Tloga(Sy) = 10%exp(=775,)

Sand B
Sand no. 70 (silica sand)
0.418

1.44 x 10711
0.089

4042

5.32

g p = 4.85x 103

Teonst,B = (TS,B/TS,A)Tconst,A
Thing = (T5,8/T5,4) Tlin.A
Tlog,B = % Ts,A)Tlog,A
Air

1.205

Sand C

Sand no. 110 (silica sand)
0.343

5.168 x 10712

0.040

8028

5.41

— 6
s =425%10
Teonst,C = (TS,C/TS,A)Tconst,A
Thin.C = (Ts,c/Ts.A) Thin.A

Tlog.C = (rsc/ Ts,A)Tlog,A

Fluid property Water
Density (p), kgm ™ 997.8
Dynamic viscosity (), kg m™! 571 9.77 x 1074

1.82 x 1075

t Labels used by the Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, Golden.

oS
YOow 9
ot o)

€

Pei=Pn— P = cq_T

where pcis the capillary pressure—saturation relationship in ther-
modynamic equilibrium of the system and T, the dynamic effect
coeficient, is a material property of the system.

In 1978, before the thermodynamic definition of capillary pres-
sure (Eq. [9]) in Gray and Hassanizadeh (1991b), Stauffer (1978)
observed the dynamic effect in laboratory experiments and pro-
posed the following empirical expression for T

2
Pwg

where ag=0.1 denotes a scaling parameter. Both X and p 4 are the
Brooks and Corey parameters that can be experimentally determined.

The Stauffer model for the dynamic effect coefficient T was obtained
by correlating experimental data. The values of T¢ vary between
24 x 10%and 7.7 x 104 Pas (Manthey, 2006, p. 27). In the case of the
sands used in this study (see Table 1), Eq. [10] gives higher values of T
than for the sands used by Stauffer (1978). Other researchers have sug-

gested that the magnitude of T should be smaller, i.c., on the order of
10% to 103 Pas (Dahle et al., 2005), or, on the other hand, it should be
higher, i.c., on the order of 1040 108 Pas (Hassanizadeh et al., 2002).
Furthermore, the dynamic coefficient may depend on averaging scales
aswell as saturation (Nordbotten et al., 2007, 2008). As the influence

of the averaging scales was not found to be important in Camps-Roach
etal. (2010), we did not consider that dependence in this study.

In this study, we considered T as a function of Sy and we used
experimentally determined functional models of T(S,)) in the
numerical simulations to investigate their influence on two-phase
flow simulations. The laboratory experiment is described briefly
below and in detail in Sakaki et al. (2010).

é Material Interface

In this section, we extend the approach of de Neef and Molenaar
(1997) to the case of dynamic capillary pressure conditions.

Let us consider an initially fully water-saturated column with two
sands separated by a sharp interface. The situation at the interface is
illustrated in Fig, 1. The Brooks and Corey capillary pressure curves
(Eq. [6]) for the sands used in this study are shown in Fig, 2. As the
nonwetting phase reaches the material interface from the coarse sand
(denoted by the superscript I), the interfacial capillary pressure
increases. When p! is lower than the entry pressure pclil of the finer
medium, the nonwetting phase cannot penetrate the interface (i.e.,
its flux through the interface is zero) and starts to accumulate at the
interface. Once the capillary pressure p! exceeds the entry pressure
threshold pél , the nonwetting phase enters the finer sand.

Altogether, the condition at the material interface is established

in the following form:

.org | 699




Domain 2

Subdomain ' /
Subdomain Q//:

K! g i
k‘f’.w 'lc'ﬂ,u, p{ ! K!! P!

! Bl g1
'l"l'.H.' 'L'.",H. P

1
P

material
interface

Fig. 1. Illustration of the situation at the interface between two porous
subdomains, Q! and QL where the material properties of intrinsic per-
meability (K), porosity (®), relative permeability of the wetting and
nonwetting phases (k,, and £, respectively), and capillary pressure (p,)

LN’
can be discontinuous.

Sy =0and ' = p if pe<py 1]
o=t otherwise

Equation [11] is referred to as the extended capillary pressure condi-
tion (van Duijn et al., 1995; de Neef and Molenaar, 1997). In the
case of static capillary pressure, a unique value of the wetting phase
saturation S:V’I can be associated with the threshold value of the
capillary pressure such that

st = () (o4) [12]

as shown in Fig. 2.

We assumed that the condition in Eq. [11] also holds for the
dynamic capillary pressure in the form

5[111 =0 and pH = p(lil ifpi < p(lil

C

11
_ eq,II —’TH 8Sw

1
eq,l 1 8Sw
C _T . C
ot ot

otherwise

(a) Sand A (I) - Sand B (II) (b) Sand A (I) - Sand C (II)
T T T T T T E T ¥ T T T T

ol T 1 WS |
W Pl =p ()

1x10°
Lax10° |\

x

< §x10° 2
§ 6x 107
Z

1x10°
8x10°

= ax0® 6 10°

1% 10° 1 '

F Py

2x10° -_:S"'
Yo 1 1

1 0 0.2 0.4 0.6 0.8 1

Effective saturation S, (-]

Capillary pressure p, [Pa

0 '
0 02 0.4 06 08
Effective saturation Sj, (]

’ ————pl conse sand — — — — p!' fine sand \

Fig. 2. Curves of the static capillary pressure models for coarse over fine
sand configurations: (a) Sand A over Sand B and (b) Sand A over Sand

C. The threshold value S;’I is the value where the capillary pressure pi

. 11
of the coarser sand is equal to the entry pressure p of the finer sand.

In contrast to the static capillary pressure model, the threshold
saturation cannot be uniquely associated with the entry pressure
of the finer sand as in Eq. [12] because the value of the dynamic
capillary pressure depends on the dynamics of the system through
the time derivative of the saturation. Consequently, the required
entry pressure threshold p 4 can be reached for higher values of st
than in the static case.

¢ Numerical Model

We used a standard, finite-volume, discretization technique to
determine the approximate discrete solutions Sf, ; =8 (kAiAx)
and p_(kAz,iAx) of the problem (Eq. [1]), where i =0, 1, ..., M,
MAx=L,k=0,1,..,N,and NAz = T, where L denotes the length
of the domain and 7 is the final time of the simulation. Within
this standard numerical scheme, we propose a new scheme to treat

the material interfaces.

The fully implicit numerical scheme is given as

k+1 k k41 k+1
S . S : u. ; — U,
d [o% i o,i+1/2 o,i—1/2 [1 j]

At Ax

where o= w, . The discrete Darcy velocities #  introduced by Eq.
[2] are given by

K
k k
uuj}rI/Z = __kl'OL (Sai—l;w )
0%
k+1 k+1 k+1 k+1
Pwit = Pui | ¢ Pein~Pei [15]
Ax *+04n Ax —Paf
(6\P/ax)i+l/2
and the discrete capillary pressure by
e st S
[16]

= p(1=Se ) (181 )—Sﬁ; S

k41

where S is the saturation taken in the upstream direction with
aupw

respect to the gradient of the phase potential ¥, i.e.,

S if(awjax) T 20
S&,upw = i+1/2 [17]

St if(0T/ox) T <0

The fully implicit numerical scheme is solved using the Newton-
Raphson iteration method in which the Jacobi matrix is block
tridiagonal. In each iteration, a new guess of discrete saturation
Sf;l is given (in the current time step # + 1) and the upstream

saturations in Eq. [15] are recomputed.
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At the material interface, the extended capillary pressure condition
(Eq. [13]) implies a jump in saturation (see Fig. 2). Such discontinu-

. . 1
ous saturation is represented by S, ;

and S[IIIZ. (see Fig. 3), where 7 is

the index of the node located at the material interface. At this node,

the discrete saturation in the Newton-Raphson iteration process

Sf;l corresponds to the saturation of the porous medium with

lower entry pressure, i.c., here Sfjl = Si’)f“ . The other interfa-

SII,k+1
n,i

cial saturation is determined using the extended capillary

pressure condition Eq. [11]:

0 if gt < plt 18]

C,i
LA+1 ILk+1

1LA+1
Sni * = )
i = Do otherwise

solution of p

where the discrete capillary pressures are given by Eq. [16].

An analysis of the second option in Eq. [18] reveals that Sﬂ;kﬂ
is the solution of

SI)k+1 _Sl,k
eq,l 1k+1 1 1k+1 n,i ni
Y (I_Sn,i )+T (I_Sn,i =

Ar
SH,/@+1 _SH,/c‘ [ ]
eq Il (1 _ olLk+1 (7 olLk+1) ni n,i 19
pc (1 Sn,i )+T (1 Sn,i ) At
Equation [19] is a nonlinear equation that couples S};)f“ and

Sﬂ;kﬂ .In Eq. [19], the interfacial saturations from the previous

time step Si’f and Srlj;k are also required. Therefore, using only
one interfacial saturation to store values from the previous time
steps would give rise to a numerically expensive recursion. Hence,
an extra variable is added into each interfacial node to store both

interfacial saturations Sil- and SSZ- from the previous time step.

éVerification of the

Numerical Scheme

The numerical scheme (Eq. [14-19]) was benchmarked by semi-
analytical solutions that were available only for the static capillary
pressure model and no gravity, i.e., T = 0 and ¢ = 0. The reliabil-
ity of the numerical scheme was determined for a homogencous
and a heterogeneous porous medium. The experimental order of
convergence eoc,, estimates the theoretical order of convergence
of a numerical scheme and is computed using the L, norm of the
difference between the numerical S;"™ and the semianalytical
Si" solutions at the final time of the simulation, where we used
k =1,2. The L, norm of an integrable function fraised to the

power £ is given as

I 1k
L1, =( ) 17 o 20)

For numerical solutions on two meshes with mesh sizes Ax; and

num num . H
Ax,, denoted as A and Sn!sz , respectively, we expect their

errors in the form

Sand I [ Sand II
- |
y i & y
Sy k-2 —-—M""k—' ; L. S Sw k41 S k2
1 1 1

1
k=2 k=32 k-1 k—1p k k+yz  k+l k432 k+2

Fig. 3. Discretization of the saturation S by the vertex-centered finite
volume method. The saturation jump at material discontinuity (in

node £) is handled using two discrete values, S‘fv K and S‘fvlk .

=8| -claxy
num an € [21]
n,sz _Sn ; =C (A‘XZ )

where C is some positive constant and € is the order of convergence

of the numerical scheme. Using Eq. [21], € is approximated by eoc;, as

e~eoc, (Ax,Ax, )=

—In (22]

num an
In =S

num an
n,Ax1 - Sn

n,sz

k
InAx; —InAx,

k

First, we investigated two-phase flow of air and water in a horizontal
one-dimensional column filled with a homogeneous sand. Water
was displaced by air due to the imposed flux of air at the boundary.
In this case, the flow is governed by both capillarity and advection.
As the domain is placed horizontally, i.c., g = 0, the generalized
McWhorter problem formulation in Fu¢ik et al. (2007) can be used
to obtain a semianalytical solution. The description of the model
parameters and initial and boundary conditions are given in Table 2.
The resulting air saturation S, and capillary pressure p compared
with the McWhorter and Sunada (1990) semianalytical solution
are shown in Fig. 4a and the values of coc show the convergence
rate of the numerical solution toward the exact solution in Table 3.
These values of eoc in Table 3 are typical for a first-order numerical
scheme with upwind technique (LeVeque, 2002).

In the case of a porous medium with a single material discontinu-

ity, we verified the implementation of the interfacial condition

Table 2. Parameters of the McW horter and Sunada (1990) benchmark
problem in a homogeneous porous medium.

Parameter Value

S, (x,0) = 0 forxin (0,L)

$ (0,2 =0.73 for #in [0,7]]

S (L,2)=0forzin [0,T]

1,(0,6) = uo(£) = 1.63 x 107372 for £in [0,7]
u (L,2) = 0.92() for £in [0,7]
7=1000s,L=1m,g=0

Initial condition

Boundary conditions

Problem setup

Capillary pressure Static model (Eq. [6]), p. =p%, 7=0
Material Sand A, Table 1
Fluids Air and water, Table 1
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Table 3. Experimental orders of convergence (eoc) of the numerical
scheme for homogeneous and layered (heterogeneous) porous media
measured in L, and Z, norms (Eq. [20]), respectively. The convergence
of the numerical scheme toward the analytical solution for both homo-
gencous and heterogeneous cases is illustrated in Fig. 4.

Mesh size eoc; eoc,
cm

Homogeneous medium

42 083 0.64
251 0.73 0.64
1—-1/2 0.75 0.65
1/2 — 1/4 0.77 0.67
1/4—1/8 0.79 0.68
1/8 — 1/16 0.81 0.70
Heterogeneous medium

1—1/2 0.71 0.45
1/2 — 1/4 0.84 0.52
1/4—1/8 0.96 0.58
1/8 — 1/16 1.03 0.65
1/16 — 1/32 1.03 0.75
1/32 — 1/64 1.07 0.96

(Eq. [19]) using the semianalytical solution developed in Fu¢ik
etal. (2008). We considered a porous medium consisting of two
homogeneous blocks separated by a sharp interface. The system
of Eq. [1] can be reformulated into the problem published in van
Duijn and de Neef (1996), where the material discontinuity is
located in the middle of the domain at 2/2. In Fuéik et al. (2008),
we generalized the van Duijn and de Neef problem formulation
to include both advection and capillarity. The resulting problem
formulation requires that the initial saturation distribution and
the boundary fluxes are prescribed as shown in Table 4. In Fig.
4b, the numerical solutions are compared with the semianalyti-
cal solution and the experimental order of convergence is shown
in Table 3. As in the previous case, the values of the eoc show a
convergence rate of the numerical solution toward the semiana-

lytical solution.

As shown in Fig. 4b, the jump in saturations across the inter-
face in the case of the heterogencous porous medium was
determined correctly. The estimated experimental orders of
convergence (eocs) indicate that the numerical solution con-
verges to the analytical solution in both homogeneous and
heterogeneous benchmarks. In the following discussion, this
is used as a referential solution for further investigation of the
interfacial condition Eq. [13] in heterogencous porous media.

A more detailed numerical analysis of the scheme can be found
in Fu¢ik et al. (2009).

(a) Homogeneous medium (b) Heterogeneous medinm

t=1000 s 07" " +=1000's]

L L L 1 L 1 L Il
0.2 0.4 0.6 0.8 1 0.4 0.5 0.6 0.7 08 0.9
Distance = [m)] Distance = [m)]

analytical
— — — — numerical, Az = /2 em

-+ numerical, Az = 1/4 cm

Fig. 4. Numerical solution of the McWhorter and Sunada problem in
(a) homogeneous and (b) heterogeneous porous media placed hori-
zontally; time £ = 1000 s, and Az/ (Ax)?2=4scm™2is kept constant.
Illustration of the convergence of the numerical solutions toward the
semianalytical solution (drawn as a solid line). The corresponding
experimental orders of convergence are given in Table 3.

¢ Numerical Experiments

We used the numerical scheme (Eq. [14-19]) to simulate two prob-
lems of two-phase flow in a homogeneous and a heterogeneous
porous medium. In both situations, immiscible and incompressible
displacement of water by air was considered.

Simulation 1: Numerical Simulation of a
Laboratory Experiment

The first problem simulated a laboratory experiment that was
performed in the Center for Experimental Study of Subsurface
Environmental Processes, Colorado School of Mines. As a result

of this experiment, three functional models of the dynamic effect
coefficient T = 7(S, ) were correlated (Sakaki et al., 2010).

The experiment in Fig. 5 consisted of a single, vertically placed,
10-cm-long Tempe cell uniformly filled with a homogencous field
sand from the Ohji site sampled in Tokyo, Japan. This sand is
denoted as Sand A (see Table 1). Initially, the column was flushed
with water such that no air phase was present inside, as shown in
Fig. 6, Case 1. A series of slow drainage steps was performed to deter-
mine the capillary pressure—saturation relationship in equilibrium
<3 The measured Brooks and Corey model parameters are shown
in Table 1. Then, a series of fast primary drainage experiments was
performed and values of the capillary pressure and the air saturation
were measured every 15 s by sensors in the middle of the column. The
values of T were directly calculated using Eq. [9] and the model of
the static capillary pressure pc? that was measured separately using
the same soil sample. In the primary drainage cycle, the measured
exhibited a dependency on saturation as in Fig. 7; thus, three models
were fitted and evaluated. These are given in Table 1.
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Table 4. Parameters of the advection and capillary diffusion benchmark
problem in a heterogeneous porous medium.

Parameter Value

S (%,0) = 0.73 for x in (0,L/2)
8. (%,0) = 0 forxin (L/2,L)
§.(0,£) = 0.73 for #in [0,7]

S (L,t)=0for¢in [0,7]

n

Initial condition
Boundary conditions

2,(0,2) = constant = 0 for #in [0,¢]
u (L,2) +u (L) =159 x 107312 for £in [0,T]

Problem setup T=1000s,L=2m,g=0

Capillary pressure
Static model (Eq. [6]),p. = p<,7=0
Materials Sand A (coarse), Table 1 in (0,2/2)
Sand B (fine), Table 1 in (Z/2,0)
Fluids Air and water, Table 1

We simulated the experiment as a one-dimensional problem with
different models of 7(S, ). The parameters of the discrete problem
(Eq. [14-16]) are summarized in Table 5.

In these numerical simulations, the measured outflow of water

(denoted as « and shown as the solid line in Fig. 8) was used

water
as a Neumann boundary condition at the bottom of the column
(x = L). The resulting temporal profiles of the air saturation S and

the capillary pressure p_are shown in Fig. 9a.

The nonsmooth shapes of the numerical solutions in Fig. 9a were

caused solely by the nonsmoothness of the prescribed flux of water.

Because the temporal derivative of the air saturation is directly
influenced by the given flux, the nonsmoothness is magnified in the
values of the dynamic capillary pressure given by Eq. [9]. That is why

the bumps do not appear in the case of the static capillary pressure.

Air Air Air Air
I A A § JRARR AUMICE A ) e cills AR
0
o
Sand A
Sand A Sand B/C Pd = Pd,A
i =1
5em Sand A ] T Sl
Sand A"
Sand B/C Sand A Pd = KPd.A
K =k2K,4
T s e wl T
x Water Water Water Water
Case 1 Case 2 Case 3 Case 4

Fig. 6. Sketch of homogeneous (Case 1) and layered (Cases 2—4) con-
figurations of the porous medium. In each case, the porous medium was
placed vertically and fully water saturated, S = 1, at time # = 0 5. The
gravitational acceleration vector ¢ points in the positive x direction. Sands
A and A" differ only in the ratio between the entry pressures. The entry
pressure and the intrinsic permeability of Sand A® is py = Kpy 5 and K =
k2K 0 respectively, where p qA LS the entry pressure and K A LS the intrin-
sic permeability of Sand A.
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S . : ==
water

Fig. 5. Schematic view of the experimental setup. The upper part was
exposed to the atmosphere through a small hole in the top cap. The
lower part was connected to a constant-head water reservoir. The water
pressure was measured with two tensiometers and averaged (from

Sakaki et al.,, 2010).

To assure that the differences among the numerical solutions with
respect to different models of (S ) were not caused by the non-
smoothness of the prescribed flux, we used a smooth functional
approximation of the boundary flux that preserves the total mass
of the efluent water in the form

*

(£)=3.7x10"° exp(—1.7x10" %)
+7.4x10 "m s !

uwater

(23]

108 T T
experimental
—_— constant T
— linear 7
E, 10° =~ i — — loglinear 7
L i
=1
EE w 106 F —
8 — by ——
| T~
< ~
g 100} L ]
E = = \_
2 &
A 10t}
10° : ] .
0 0.25 0.5 0.75 1

Water saturation S, [—]

Fig. 7. Fitted models of the dynamic coefficient T (logarithmic scale)
to the observed laboratory data (from Sakaki et al., 2010).
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Table 5. Parameters of the simulation of the laboratory experiment
(Simulation 1). The profiles of the measured and smoothly approxi-

mated flux of water, « and #, ., , respectively, are shown in Fig. 8.

water
Parameter Value
S (%,0) =0 forxin (0,L)
Boundary conditions  #_(0,7) =0 for#in [0,77]

Initial condition

2,(0,) = constant = 0 for #in [0,7']

u (Lo)=u, Doru  *) forrin[0,7]

u, (L,2)=0forrin[0,7]

Problem setup T=5000s,L=10cm,g=9.81m 572

Capillary pressure Dynamic capillary pressure p , various
models for (S, ), Table 1

Material Sand A, Table 1

Fluids Air and water, Table 1

In Fig. 8, the measured flux of water is compared with its
© . Asshown in Fig. 9b,

are smooth alter-

smooth functional approximation #,,

the numerical solutions using the flux u,,,,
nates to the bumpy-shaped solutions in Fig. 9a. Consequently,
the bumpiness of the capillary pressure was not caused by the
numerical scheme, and the nonsmoothness of the prescribed
flux did not significantly affect the overall temporal profiles

of the solutions.

The influence of different models of the dynamic effect coefficient
T on the numerical solution of the air saturation S was negligible
(sce Fig. 9a). On the other hand, their influence on the capillary
pressure p_is important in cases where there is a temporal change
in the saturation S because the temporal derivative of S is mul-
tiplied by the dynamic effect coeflicient T in Eq. [9]. The constant
model for T does not seem to be a good model for the appropriate
approximation because it overestimated the laboratory-measured
dynamic coefficient for high wetting-phase saturation (see Fig. 7)
and its numerical solution of p_differed substantially from the
measured capillary pressure (see Fig. 9a).

Simulation 2: Numerical Simulation

in a Heterogeneous Porous Medium

We investigated the effects of different dynamic capillary pressure
models on the behavior of the nonwetting phase at heterogeneity
interfaces. Because no laboratory experiment involving dynamic
capillary pressure was available for the case of a heterogencous
porous medium, only a numerical simulation is provided here.
Similar to the setup of the laboratory experiment in Simulation 1,
we considered a vertically placed column filled with two differ-
ent sands, where we combined Sand A and a finer Sand B or C.
These sands were separated by a sharp interface in the middle of
the column, as shown in Fig. 6, Cases 2 and 3. Initially, the column
was fully water saturated. At # = 0, the water started to flow out of
the column at x = L with a flow rate given by Eq. [23]. The model

parameters are summarized in Table 6.

Unfortunately, there is no known laboratory-measured model
for the dynamic coefficient T for Sand B or C and the air—water
system; however, the Stauffer model T4 g and 7¢ (-, respectively,
can be computed for these sands. Based on the ratio between
the Stauffer model TSA for Sand A and Tg.g OF Tg.Cs the three
functional relationships T = 7(S, ) were estimated from the labo-
ratory-determined Sand A models as shown in Table 1.

In Fig. 10, we show the position of the air front with time for dif-
ferent models of the dynamic coeflicient T = 7(S ). First, the air
flowed from the coarse to the fine sand (Fig. 10a and 10b), where
the barrier effect was simulated. The barrier effect, modeled by the
Brooks and Corey model (Eq. [6]) and the extended capillary pres-
sure condition (Eq. [11]) for the capillary pressure p_, implies that the
nonwetting fluid (air) cannot enter the finer sand unless its capillary
pressure at the interface is higher than the entry pressure p of the
finer sand (Helmig, 1997; Brooks and Corey, 1964, p. 27). We then
considered the opposite configuration (Fig. 10c and 10d), where the
barrier effect did not occur. In all cases, the use of the linear model of
T = 7(8,,) caused faster propagation of the air front in the homoge-
neous layers of the porous medium, whereas the log-linear model did
not influence the speed substantially with respect to the use of the

4x1075 T T T T T T T

3x107°

2x107%

Water outflow [ms~!]

1x1078

measured
outflow

Uwater

smooth flux

Uysater

0 . . . ! Y
0 10 20 30 40

Time t [rnin]

50 GO 70 80

Fig. 8. Measured (solid line) and smoothly approximated (dashed line) water outflow from the bottom of the column (at x = 10 cm). We used the
smooth approximation to demonstrate that the numerical scheme works for both non-smooth and smooth boundary conditions.
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(a) Experimentally measured flux
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Fig. 9. Numerical solutions obtained with (a) laboratory-measured flux #, . (solid line in Fig. 8) and (b) smooth flux #_, .. (dashed line in Fig. 8)
for Case 1 in Fig. 6 compared with the measured laboratory values of air saturation S, and capillary pressure p_ in the middle of the column for various
models of the dynamic coefficient T = T(S ), where S__ is the wetting-phase saturation. The temporal profiles of the capillary pressure in (a) obtained

with measured flux #_,__resemble those in (b) obtained with smooth flux # (Simulation 1).

‘water water

0 0 T
static capillary pressure. The constant model of T = 7(S, ) exhibited , 1 _
0.02 0.02 -
a different behavior in different situations. In Fig. 10a and 10c, for B 1 |
~ oo H4 Somt .
instance, the solution obtained with constant T has a substantially I —— Sand A’} g | ___ Sand A7
slower front propagation than other solutions. We believe that this 1 ot 1 2% v Sand Cf
N
0.08 0.08 -
| N
0.1 0.1 (®) . '\ N
] 0 10 20
Table 6. Parameters of the simulation of a fictitious laboratory experi- ; ) . 1I‘m.u tl [mn:] |
ment with a heterogencous porous medium (Simulations 2 and 3). .
0.02 a0z iy g
Parameter Value = = . |
Initial condition S, (%,0) = 0 forxin (0,L) 3 8 N e ) \\_ __________ Sand C']
iti (0,2) =0 for #in [0,7] £ 006 2 o6 s Sand A
Boundary conditions  #,(0,2) = 0 for in [0, 2 2| N " J
2,(0,7) = constant = 0 for #in [0,7] 0.08 0.08 \\ g -
— * g (d)
u (L) = () for £in [0,7] 01 : 01 . ﬁ ; . L .
un(L,[) =0forzin [O’T] Time ¢ [min) Time { [rnin|
Problem setup T'=1500s,L = 10 cm, g= 9.81 m 5_2 — - — - statie(r =0) ——— constant 7
Capillary pressure Dynamic capillary pressure p_, various — —linearr e ORI T
models for 7(S,), Table 1
Materials Sand A (coarse), Table 1 Fig. 10. Position of the air front in time for various models of the
b (e e L), T | dynamic coefficient T for the layered configurations of porous media
shown in Fig. 6: (a and b) Case 2 and (c and d) Case 3. Note that both
Sand C (finer than Sand A), Table 1 Sands B and C are finer than Sand A and, therefore, (a) and (b) show
Etatieks Air and water, Table 1 situations where the barrier effect is simulated (Simulation 2).
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Time when the air phase
reaches bottom ¢ [min]

—_ - =0
constant 7
—— —linear 7

— — =— = loglinear 7

Pd. A Pd, A
Pa,c Pd,B

Fig. 11. The time at which the air phase reaches the lower boundary for various models of the dynamic coefficient T for the case of the layered configura-
tion of porous media shown in Fig. 6 (Case 4) for multiple choices of the ratio k = py A / Pa.n where py A and py 5 are the entry pressures of Sand

A%and Sand A, respectively (Simulation 3).

is because the constant model overestimates the dynamic coefhicient
for high wetting-phase saturation S (see Fig. 7).

The delay of the nonwetting phase at the interface due to the bar-
rier effect differed when various configurations of sands were used.
In the case of Sand B with a lower entry pressure than Sand C
(Fig. 10a), the time required to penetrate the finer medium was
generally smaller when using the dynamic models of capillarity
than in the case of static capillary pressure. In the case of the finer
Sand C, however, these penetration times were comparable or even
larger than in the static case (Fig. 10b).

Simulation 3: Influence of Entry

Pressure on Penetration Time

of Air under Dynamic Conditions

We used a layered medium configuration, sketched in Fig, 6 (Case 4),
to investigate the sensitivity of the propagation speed to the ratio
between the entry pressures of layers consisting of Sand A overlying
Sand A¥. The value of the entry pressure in Sand A" is defined as
Pa.a =Kpg > wherepy 4 denotes the entry pressure of Sand A. The

intrinsic permeability X 4 was evaluated using the Leverett scaling
P < V(®/K) (Leverett, 1941) as K, = k2K , where K, is the
intrinsic permeability of Sand A. We assumed that the porosities of
both sands were the same. Unlike in the previous case, we prescribed
a constant flow rate # W(L,t) =104 m s! at the lower boundary of
the column. Figure 11 shows the times when the air phase reached
the bottom boundary (at x = 10 cm) using the dynamic or static
models of capillary pressure. As shown by the long-dashed line in Fig.
11, the propagation speed of the linear model of T was almost two
times faster than in the case of static capillary pressure (dash-dotted
line, T = 0) when the medium was homogeneous ( = 1). Then, by
increasing x (i.c., coarse top, fine bottom), the traveling time of the
air front for the linear model of T = 7(§ ) increased, and approxi-
mately at & ~ 1.7, it crosses the curve corresponding to the static
capillary pressure. In the case of the log-linear model, the traveling
times were similar to the static case when Kk was near 1 and they
became larger for k > 1.3. The constant model had a substantially
slower propagation speed with respect to the static case for all con-
sidered values of k > 1. These results agree with the findings shown
in Fig. 10, where the ratio between the entry pressuresisk 5 jp = 1.17

Accumulation time at
material interface ¢ [min)
=
T

PaC 993

Pd,A

w e gl
constant T
—— — linear 7

— — — — loglinear 7

0 ‘
100 PdB _ g 97
Pd, A

Entry pressures ratio k [—|

10!

Fig. 12. Accumulation time of the air phase at the material interface (i.c., delay of the air at the interface due to the capillary barrier effect) for various
models of the dynamic coefficient T for the case of the layered configuration of porous media shown in Fig. 6 (Case 4) for multiple choices of the ratio
K= pqa, / Pans where Pd 4, andp 4.4 aT€ the entry pressures of Sand A" and Sand A, respectively. The interface was placed atx = 5 cm (Simulation 3).
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andk , c=2.33 for the Sand A over Sand B and Sand A over Sand
C configurations, respectively.

To explain different delays at the interface observed in Simulation 2

(Fig. 10a and 10b), we focused on the situations where the barrier
effect was simulated, i.e., k > 1. In Fig. 12, we plotted accumulation

times as a function of k. Here, the accumulation time is defined as

the delay between the times when the nonwetting phase reached

and when it penetrated the material interface. In Fig. 12, the results

approximately correspond to the already observed behavior of dif-
ferent simulated delays due to the barrier effect in Fig. 10a and

10b (see the points py p/py 4 and py /py 4 in Fig. 12). In general,
the accumulation times for K < 2 are notably lower and for k > 3

substantially higher when using the dynamic effect in capillarity
compared with the referential curve with static capillary pressure

(drawn as a dash-dotted line). Additionally, for higher differences

in entry pressures, the curves tended to steady and when using

the model of capillarity with dynamic effect, the accumulation

times were more than three times higher than in the case of static

capillary pressure. Hence, in the case of a heterogeneous medium,
the inclusion of the dynamic effect in the capillary pressure may
substantially change the simulated evolution of the flow because

the entry pressure of the finer porous medium can be achieved

sooner or later than in the static case (see Fig. 10 and 11).

Conclusions

A one-dimensional numerical scheme of two-phase incompressible
and immiscible flow is presented that enables simulation of two-
phase flow in both homogeneous and heterogeneous media under
dynamic capillary pressure conditions where the treatment of the
conditions at the material interfaces is not numerically trivial. The
numerical scheme was verified and its order of convergence was
estimated using semianalytical solutions for homogeneous and

heterogeneous porous media, respectively.

Laboratory-measured parameters were used in the numerical simula-
tion of the dynamic capillary pressure including three models of the
dynamic effect coefficient T = 7(S,). The numerical solutions for the
dynamic effect in the capillary pressure showed that the dynamic
effect has a significant impact on the magnitude of the capillary pres-
sure, while the change in the saturation profiles may be considered
negligible in some cases. The constant model of T showed a rather
unrealistic profile of the numerical approximation of the capillary

pressure when compared with the laboratory-measured data.

The results of the simulation indicate that the dynamic effect may
not be so important in drainage problems in a homogeneous porous
medium, but it is of great importance in heterogeneous media
where the capillarity governs flow across the material interfaces.
The linear model of T accelerated the flow of air across the inter-
face for both configurations of the coarse and fine porous media

when the ratio between entry pressures of the media was close to 1.

In all other cases, the use of the dynamic effect seemed to increase
the time needed for the nonwetting fluid to accumulate at a finer
sand interface (a delay due to the barrier effect). This suggests that
without dynamic effects, the travel time of the nonwetting phase
can possibly be estimated to be smaller or larger than the actual
time. The conclusion can be settled by laboratory experiment only.

The methodology used in this study is currently being developed
for the two-dimensional case. Two-dimensional laboratory experi-

ments are also in preparation.

Appendix
List of Symbols

o index of wetting (w) or nonwetting (n) fluid
scaling parameter in Stauffer model T¢
order of convergence of a numerical scheme
ratio between entry pressures
Brooks—Corey pore size distribution index
dynamic viscosity, kg m~1 571

outer normal unit vector

porosity

density, kgm =3

dynamic effect coefficient, kgm™''s
Stauffer model of dynamic effect coefficient, kgm™ s

Qo
[

~1

AT BB TE »F O

~-1

_]
%)

e}

Computational domain
I"  Boundaryof Q
I'P Dirichlet-type boundary subset of T

I'N Neumann-type boundary subset of T
¢ gravitational acceleration, m s72

K intrinsic permeability, m?

k_  relative permeability

L length of the domain, m

p  pressure, kgm™! 57

p. capillary pressure, kgm™! 572

<Y static capillary pressure, kgm™ s72

pq Brooks—Corey entry pressure, kgm™1 s72
S saturation

S residual saturation

8¢ effective saturation

T  final time of the simulation, s

fluid velocity, m s™!

X
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