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Signifi cance of Dynamic Eff ect 
in Capillarity during Drainage 
Experiments in Layered 
Porous Media
We developed one-dimensional, fully implicit numerical scheme to invesƟ gate the dynamic 
eff ect in the capillary pressure–saturaƟ on relaƟ onship used in the modeling of two-phase 
fl ow in porous media. Its validity was invesƟ gated by means of semianalyƟ cal soluƟ ons devel-
oped by McWhorter and Sunada (1990) and the authors. The numerical scheme was used to 
simulate a drainage experiment where the sand and fl uid properƟ es were known. Then the 
numerical scheme was used to simulate a laboratory experiment in a homogeneous column, 
including three major models of the dynamic eff ect coeffi  cient τ. This numerical scheme can 
handle porous medium heterogeneity and was used to simulate a fi cƟ Ɵ ous experimental 
setup with two diff erent sands. As a result, the penetraƟ on Ɵ me of the air phase through a 
layered porous medium for models including dynamic eff ects varied between 50 and 150% 
compared with staƟ c models of the capillary pressure–saturaƟ on relaƟ onship. AddiƟ onally, 
the accumulaƟ on Ɵ me of air at a material interface (i.e., the delay of the air at the interface 
due to the capillary barrier eff ect) was invesƟ gated as a funcƟ on of the raƟ o between the 
air-entry pressure values of the adjacent sands, emphasizing the diff erences between the 
dynamic and staƟ c capillary pressure models.

The predicƟ on of fl ow of immiscible and incompressible fl uids in porous media 
requires reliable models of capillary pressure–saturation relationships. In most past 
modeling eff orts, various capillary pressure–saturation models were developed based on 
laboratory experiments where capillary pressure and saturation were measured under equi-
librium conditions. Among these, the most commonly used are the models by Brooks 
and Corey (1964, p. 27) or van Genuchten (1980). Th e question has been raised, however, 
whether these static models accurately capture the dynamic behavior when the fl uid phases 
are in motion. Alternative models based on both empirical and theoretical approaches have 
been proposed to deal with the dynamic eff ects associated with fl uid fl ow. A method for 
these dynamic eff ects was proposed by Gray and Hassanizadeh (1991a,b), Hassanizadeh 
and Gray (1993), and Hassanizadeh et al. (2002). Our study analyzed the implications of 
the use of dynamic eff ects in the capillary pressure–saturation relationship in the modeling 
of water and air fl ow in homogeneous and heterogeneous porous media. We developed 
a numerical scheme to model these cases of dynamic fl ow. Subsequently, this numerical 
scheme was verifi ed by comparing it with the semianalytical solutions for the static capil-
lary pressure developed earlier for homogeneous cases (McWhorter and Sunada, 1990; 
Fučík et al., 2007) and for a layered system (Fučík et al., 2008). By means of experimental 
order of convergence criteria (eoc), we show that the developed numerical scheme is conver-
gent and can be reliably used for simulating fl ow in both homogeneous and heterogeneous 
porous media systems.

Th e use of various models of dynamic eff ects in capillary pressure defi ned through an empiri-
cal coeffi  cient (defi ned later as τ) was investigated and compared with the static model of 
capillary pressure. In unsaturated fl ow modeling, the two-phase fl ow system is simplifi ed 
using the Richards equation, where the pressure of the nonwetting phase (air) is assumed 
to be constant throughout the fl ow domain. Using this simplifi cation, as shown in Ippisch 
et al. (2006), the dynamic eff ect was not found to be of importance for the heterogeneous 
system that was studied. Other numerical studies on the dynamic eff ect in capillary pressure 
models have been reported (Manthey et al., 2005; Manthey, 2006; Peszyńska and Yi, 2008); 
however, the implications of using the dynamic capillary pressure models in two-phase 
models (without the assumption of constant nonwetting phase pressure) have not been fully 
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investigated. Helmig et al. (2007) presented a semi-implicit numeri-
cal scheme based on the upwind fi nite volume method, where the 
material interfaces in a heterogeneous system are handled using the 
Lagrange multiplier method. In a subsequent study (Helmig et al., 
2009), the idea was further developed. In those studies, only a con-
stant dynamic eff ect coeffi  cient was considered. Another interesting 
tool for studying dynamic eff ects in capillarity was presented in van 
Duijn et al. (2007), where traveling wave solutions were considered 
for two-phase fl ow involving a simplifi ed model for dynamic eff ects 
in capillarity. Th is method is not applicable, however, when the 
constitutive models are nonlinear, as in the case of two-phase fl ow.

In past studies, the dynamic eff ect coeffi  cient was assumed to 
depend on water saturation (Sakaki et al., 2010; O’Carroll et al., 
2005; Nieber et al., 2005), which was also supported by experi-
mental data generated in our group. We believe that this is critical, 
especially in heterogeneous porous media. The fully implicit 
numerical scheme that we developed can be used for a detailed 
investigation of the saturation and capillary pressure behavior 
when a dynamic eff ect in capillary pressure is used in modeling 
two-phase fl ow. De Neef and Molenaar (1997) presented a method 
to describe the nonwetting phase fl ow behavior at material inter-
faces using static capillary pressures and we extended this approach 
for the dynamic eff ect. Th e developed numerical scheme was used 
to investigate the behavior of diff erent functional models of the 
dynamic capillary pressure coeffi  cient in drainage fl ow regimes.

 MathemaƟ cal Model
In this study, two phases—a wetting phase (indexed w) and a non-
wetting phase (indexed n)—were considered to be present within 
the pores of a porous medium and both fl uids were assumed to 
be incompressible and immiscible. Under these assumptions, the 
following one-dimensional pw − Sn formulation (Bastian, 1999) 
in a domain Ω = [0,L] is given by

= 0
S u
t x
α α∂ ∂

Φ +
∂ ∂

 [1]
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where Sw + Sn = 1; δαn is the Kronecker symbol; α = w, n; Sα is 
the saturation, pα the pressure, ρα the volumetric density, μα the 
dynamic viscosity, and krα the relative permeability of the α phase; 
the Darcy velocities are denoted by uα; and Φ, K, and g stand for 
the porosity, the permeability of the soil matrix, and the gravita-
tional acceleration, respectively. A summary of the symbols used 
here, including units, is given in the Appendix.

Th e governing Eq. [1] and [2] are subjected to an initial condition
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where n denotes the outer normal vector to the boundary. 
Generally, N

uα
Γ , D

SΓ , and D
pα

Γ  denote subsets of the boundary Γ of 
the domain Ω, here, Γ = {0,L}, with ΓD denoting a Dirichlet-type 
boundary subset and ΓN a Neumann-type boundary subset.

Following the standard defi nitions in the literature (Bear and 
Verruijt, 1990; Helmig, 1997), the capillary pressure pc at the pore 
scale is defi ned as the diff erence between the nonwetting-phase 
pressure pn and the wetting-phase pressure pw:

c n w=p p p−  [5]

At the macro scale, the capillary pressure has been commonly consid-
ered to be a function of the wetting-phase saturation only (Helmig, 
1997; Bear and Verruijt, 1990; Mikyška et al., 2009; Fučík et al., 2004, 
2005, 2007). In this study, this assumption was justifi ed because we 
considered only drainage fl ow regimes without hysteresis. We used 
the following Brooks and Corey (1964, p. 27) model of the capillary 
pressure–saturation relationship in the two-phase fl ow model:

( ) 1/eq e
c d w=p p S

− λ
 [6]

where pd is the entry pressure, λ is the pore size distribution index, 
and e

wS  is the eff ective saturation of the wetting phase, defi ned as

e
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− −
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where Srα is the α-phase irreducible saturation. A superscript eq is used 
in Eq. [6] with respect to pc and it indicates the model of the capillary 
pressure for the system in a state of thermodynamic equilibrium.

Th e Brooks and Corey relationship (Eq. [6]) is suitable for modeling 
fl ow in heterogeneous porous media because the diff erence in the 
entry pressure coeffi  cients pd in diff erent porous materials captures 
the barrier eff ect that has been observed in various experiments 
(Illangasekare et al., 1995). Th e permeability model according to 
Burdine (1953) and Brooks and Corey (1964, p. 27) is given as

( )
( ) ( )
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2 1 2/e e
rn w w

=

= 1 1

k S

k S S
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 [8]

Th e dynamic capillary pressure–saturation relationship has been 
proposed in the following form (Gray and Hassanizadeh, 1991b)
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where eq
cp  is the capillary pressure–saturation relationship in ther-

modynamic equilibrium of the system and τ, the dynamic eff ect 
coeffi  cient, is a material property of the system.

In 1978, before the thermodynamic defi nition of capillary pres-
sure (Eq. [9]) in Gray and Hassanizadeh (1991b), Stauff er (1978) 
observed the dynamic eff ect in laboratory experiments and pro-
posed the following empirical expression for τ:

2
w d

S S
w
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p

K g

⎛ ⎞μ Φ ⎟⎜ ⎟τ α ⎜ ⎟⎜ ⎟⎜λ ρ⎝ ⎠
 [10]

where αS = 0.1 denotes a scaling parameter. Both λ and pd are the 
Brooks and Corey parameters that can be experimentally determined.

Th e Stauff er model for the dynamic eff ect coeffi  cient τS was obtained 
by correlating experimental data. The values of τS vary between 
2.4 × 104 and 7.7 × 104 Pa s (Manthey, 2006, p. 27). In the case of the 
sands used in this study (see Table 1), Eq. [10] gives higher values of τS 
than for the sands used by Stauff er (1978). Other researchers have sug-
gested that the magnitude of τ should be smaller, i.e., on the order of 
102 to 103 Pa s (Dahle et al., 2005), or, on the other hand, it should be 
higher, i.e., on the order of 104 to 108 Pa s (Hassanizadeh et al., 2002). 
Furthermore, the dynamic coeffi  cient may depend on averaging scales 
as well as saturation (Nordbotten et al., 2007, 2008). As the infl uence 

of the averaging scales was not found to be important in Camps-Roach 
et al. (2010), we did not consider that dependence in this study.

In this study, we considered τ as a function of Sw and we used 
experimentally determined functional models of τ(Sw) in the 
numerical simulations to investigate their infl uence on two-phase 
fl ow simulations. Th e laboratory experiment is described briefl y 
below and in detail in Sakaki et al. (2010).

 Material Interface
In this section, we extend the approach of de Neef and Molenaar 
(1997) to the case of dynamic capillary pressure conditions.

Let us consider an initially fully water-saturated column with two 
sands separated by a sharp interface. Th e situation at the interface is 
illustrated in Fig. 1. Th e Brooks and Corey capillary pressure curves 
(Eq. [6]) for the sands used in this study are shown in Fig. 2. As the 
nonwetting phase reaches the material interface from the coarse sand 
(denoted by the superscript I), the interfacial capillary pressure I

cp  
increases. When I

cp  is lower than the entry pressure II
dp  of the fi ner 

medium, the nonwetting phase cannot penetrate the interface (i.e., 
its fl ux through the interface is zero) and starts to accumulate at the 
interface. Once the capillary pressure I

cp  exceeds the entry pressure 
threshold II

dp , the nonwetting phase enters the fi ner sand.

Altogether, the condition at the material interface is established 
in the following form:

Table 1. Properties of porous media and f luids used in the numerical simulation and experimentally determined models of the dynamic effect 
coefficient τ (Eq. [9]) for Sand A and fictitious calculated values of τ for Sands B and C.

Sand property Sand A Sand B Sand C 

CESEP† labels Ohji sand (fi eld sand) Sand no. 70 (silica sand) Sand no. 110 (silica sand) 

Porosity (Φ) 0.448 0.418 0.343

Intrinsic permeability (K), m2 1.63 × 10−11 1.44 × 10−11 5.168 × 10−12

Residual water saturation (Swr) 0.265 0.089 0.040

Entry pressure (pd), Pa 3450 4042 8028

Pore size distribution index (λ) 4.66 5.32 5.41

Models of τ, Pa s 

 Stauff er model τS τS,A = 3.3 × 105 τS,B = 4.85 × 105 τS,C = 4.25 × 106

 Constant model τconst τconst,A = 1.1 × 106 τconst,B = (τS,B/τS,A)τconst,A τconst,C = (τS,C/τS,A)τconst,A

 Linear model τlin τlin,A(Sw) = 3.2 × 106(1 − Sw) τlin,B = (τS,B/τS,A)τlin,A τlin,C = (τS,C/τS,A) τlin,A 

 Loglinear model τlog τlog,A(Sw) = 108exp(−7.7Sw) τlog,B = (τS,B/τS,A)τlog,A τlog,C = (τS,C/τS,A)τlog,A 

Fluid property Water Air

Density (ρ), kg m−3 997.8 1.205

 Dynamic viscosity (μ), kg m−1 s−1 9.77 × 10−4 1.82 × 10−5

† Labels used by the Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, Golden.
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Equation [11] is referred to as the extended capillary pressure condi-
tion (van Duijn et al., 1995; de Neef and Molenaar, 1997). In the 
case of static capillary pressure, a unique value of the wetting phase 
saturation *,I

wS  can be associated with the threshold value of the 
capillary pressure such that

( ) ( )1*,I I II
w c d=S p p

−
 [12]

as shown in Fig. 2.

We assumed that the condition in Eq. [11] also holds for the 
dynamic capillary pressure in the form

II II II I II
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c c
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S S
p p

t t
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 [13]

In contrast to the static capillary pressure model, the threshold 
saturation cannot be uniquely associated with the entry pressure 
of the fi ner sand as in Eq. [12] because the value of the dynamic 
capillary pressure depends on the dynamics of the system through 
the time derivative of the saturation. Consequently, the required 
entry pressure threshold pd can be reached for higher values of I

wS  
than in the static case.

 Numerical Model
We used a standard, fi nite-volume, discretization technique to 
determine the approximate discrete solutions n,

k
iS  = Sn(kΔt,iΔx) 

and pw(kΔt,iΔx) of the problem (Eq. [1]), where i = 0, 1, …, M, 
MΔx = L, k = 0, 1, …, N, and NΔt = T, where L denotes the length 
of the domain and T is the fi nal time of the simulation. Within 
this standard numerical scheme, we propose a new scheme to treat 
the material interfaces.

Th e fully implicit numerical scheme is given as

1 1 1
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where α = w, n. Th e discrete Darcy velocities uα introduced by Eq. 
[2] are given by
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and the discrete capillary pressure by
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where 
1

,upw

k
S
+

α
 is the saturation taken in the upstream direction with 

respect to the gradient of the phase potential Ψα , i.e.,
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Th e fully implicit numerical scheme is solved using the Newton–
Raphson iteration method in which the Jacobi matrix is block 
tridiagonal. In each iteration, a new guess of discrete saturation 

1
n,
k
iS +  is given (in the current time step k + 1) and the upstream 

saturations in Eq. [15] are recomputed.

Fig. 1. Illustration of the situation at the interface between two porous 
subdomains, ΩI and ΩII, where the material properties of intrinsic per-
meability (K), porosity (Φ), relative permeability of the wetting and 
nonwetting phases (kr,w and kr,n, respectively), and capillary pressure (pc) 
can be discontinuous.

Fig. 2. Curves of the static capillary pressure models for coarse over fi ne 
sand confi gurations: (a) Sand A over Sand B and (b) Sand A over Sand 
C. Th e threshold value *,I

wS  is the value where the capillary pressure I
cp  

of the coarser sand is equal to the entry pressure II
dp  of the fi ner sand.
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At the material interface, the extended capillary pressure condition 
(Eq. [13]) implies a jump in saturation (see Fig. 2). Such discontinu-
ous saturation is represented by I

n,iS  and II
n,iS  (see Fig. 3), where i is 

the index of the node located at the material interface. At this node, 
the discrete saturation in the Newton–Raphson iteration process 

1
n,
k
iS +  corresponds to the saturation of the porous medium with 

lower entry pressure, i.e., here 1
n,
k
iS +  = I, 1

n,
k
iS + . Th e other interfa-

cial saturation II, 1
n,

k
iS +  is determined using the extended capillary 

pressure condition Eq. [11]:
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where the discrete capillary pressures are given by Eq. [16].

An analysis of the second option in Eq. [18] reveals that II, 1
n,

k
iS +
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Equation [19] is a nonlinear equation that couples I, 1
n,
k
iS +  and 

II, 1
n,

k
iS + . In Eq. [19], the interfacial saturations from the previous 

time step I,
n,
k
iS  and II,

n,
k
iS  are also required. Th erefore, using only 

one interfacial saturation to store values from the previous time 
steps would give rise to a numerically expensive recursion. Hence, 
an extra variable is added into each interfacial node to store both 
interfacial saturations I

n,iS  and II
n,iS  from the previous time step.

 Verifi caƟ on of the
Numerical Scheme
Th e numerical scheme (Eq. [14–19]) was benchmarked by semi-
analytical solutions that were available only for the static capillary 
pressure model and no gravity, i.e., τ = 0 and g = 0. Th e reliabil-
ity of the numerical scheme was determined for a homogeneous 
and a heterogeneous porous medium. Th e experimental order of 
convergence eock estimates the theoretical order of convergence 
of a numerical scheme and is computed using the Lk norm of the 
diff erence between the numerical num

nS  and the semianalytical 
an
nS  solutions at the fi nal time of the simulation, where we used 

k = 1,2. Th e Lk norm of an integrable function f raised to the 
power k is given as

( )( )
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0
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For numerical solutions on two meshes with mesh sizes Δx1 and 
Δx2, denoted as 
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where C is some positive constant and ε is the order of convergence 
of the numerical scheme. Using Eq. [21], ε is approximated by eock as
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 [22]

First, we investigated two-phase fl ow of air and water in a horizontal 
one-dimensional column fi lled with a homogeneous sand. Water 
was displaced by air due to the imposed fl ux of air at the boundary. 
In this case, the fl ow is governed by both capillarity and advection. 
As the domain is placed horizontally, i.e., g = 0, the generalized 
McWhorter problem formulation in Fučík et al. (2007) can be used 
to obtain a semianalytical solution. Th e description of the model 
parameters and initial and boundary conditions are given in Table 2. 
Th e resulting air saturation Sn and capillary pressure pc compared 
with the McWhorter and Sunada (1990) semianalytical solution 
are shown in Fig. 4a and the values of eoc show the convergence 
rate of the numerical solution toward the exact solution in Table 3. 
Th ese values of eoc in Table 3 are typical for a fi rst-order numerical 
scheme with upwind technique (LeVeque, 2002).

In the case of a porous medium with a single material discontinu-
ity, we verifi ed the implementation of the interfacial condition 

Fig. 3. Discretization of the saturation Sw by the vertex-centered fi nite 
volume method. Th e saturation jump at material discontinuity (in 
node k) is handled using two discrete values, I

w,kS  and II
w,kS .

Table 2. Parameters of the McWhorter and Sunada (1990) benchmark 
problem in a homogeneous porous medium.

Parameter Value

Initial condition Sn(x,0) = 0 for x in (0,L)

Boundary conditions Sn(0,t) = 0.73 for t in [0,T] 

Sn(L,t) = 0 for t in [0,T] 

un(0,t) = u0(t) = 1.63 × 10−3t−1/2 for t in [0,T] 

uw(L,t) = 0.9u0(t) for t in [0,T] 

Problem setup  T = 1000 s, L = 1 m, g = 0

Capillary pressure Static model (Eq. [6]), pc ≡ pc
eq, τ = 0

Material Sand A, Table 1

Fluids Air and water, Table 1
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(Eq. [19]) using the semianalytical solution developed in Fučík 
et al. (2008). We considered a porous medium consisting of two 
homogeneous blocks separated by a sharp interface. Th e system 
of Eq. [1] can be reformulated into the problem published in van 
Duijn and de Neef (1996), where the material discontinuity is 
located in the middle of the domain at L/2. In Fučík et al. (2008), 
we generalized the van Duijn and de Neef problem formulation 
to include both advection and capillarity. Th e resulting problem 
formulation requires that the initial saturation distribution and 
the boundary fl uxes are prescribed as shown in Table 4. In Fig. 
4b, the numerical solutions are compared with the semianalyti-
cal solution and the experimental order of convergence is shown 
in Table 3. As in the previous case, the values of the eoc show a 
convergence rate of the numerical solution toward the semiana-
lytical solution.

As shown in Fig. 4b, the jump in saturations across the inter-
face in the case of the heterogeneous porous medium was 
determined correctly. The estimated experimental orders of 
convergence (eocs) indicate that the numerical solution con-
verges to the analytical solution in both homogeneous and 
heterogeneous benchmarks. In the following discussion, this 
is used as a referential solution for further investigation of the 
interfacial condition Eq. [13] in heterogeneous porous media. 
A more detailed numerical analysis of the scheme can be found 
in Fučík et al. (2009).

 Numerical Experiments
We used the numerical scheme (Eq. [14–19]) to simulate two prob-
lems of two-phase fl ow in a homogeneous and a heterogeneous 
porous medium. In both situations, immiscible and incompressible 
displacement of water by air was considered.

SimulaƟ on 1: Numerical SimulaƟ on of a 
Laboratory Experiment
The first problem simulated a laboratory experiment that was 
performed in the Center for Experimental Study of Subsurface 
Environmental Processes, Colorado School of Mines. As a result 
of this experiment, three functional models of the dynamic eff ect 
coeffi  cient τ = τ(Sw) were correlated (Sakaki et al., 2010).

The experiment in Fig. 5 consisted of a single, vertically placed, 
10-cm-long Tempe cell uniformly fi lled with a homogeneous fi eld 
sand from the Ohji site sampled in Tokyo, Japan. This sand is 
denoted as Sand A (see Table 1). Initially, the column was fl ushed 
with water such that no air phase was present inside, as shown in 
Fig. 6, Case 1. A series of slow drainage steps was performed to deter-
mine the capillary pressure–saturation relationship in equilibrium 

eq
cp . Th e measured Brooks and Corey model parameters are shown 

in Table 1. Th en, a series of fast primary drainage experiments was 
performed and values of the capillary pressure and the air saturation 
were measured every 15 s by sensors in the middle of the column. Th e 
values of τ were directly calculated using Eq. [9] and the model of 
the static capillary pressure eq

cp  that was measured separately using 
the same soil sample. In the primary drainage cycle, the measured τ 
exhibited a dependency on saturation as in Fig. 7; thus, three models 
were fi tted and evaluated. Th ese are given in Table 1.

Fig. 4. Numerical solution of the McWhorter and Sunada problem in 
(a) homogeneous and (b) heterogeneous porous media placed hori-
zontally; time t = 1000 s, and Δt/(Δx)2 = 4 s cm−2 is kept constant. 
Illustration of the convergence of the numerical solutions toward the 
semianalytical solution (drawn as a solid line). Th e corresponding 
experimental orders of convergence are given in Table 3.

Table 3. Experimental orders of convergence (eoc) of the numerical 
scheme for homogeneous and layered (heterogeneous) porous media 
measured in L1 and L2 norms (Eq. [20]), respectively. Th e convergence 
of the numerical scheme toward the analytical solution for both homo-
geneous and heterogeneous cases is illustrated in Fig. 4.

Mesh size eoc1 eoc2

cm

Homogeneous medium

4 → 2 0 83 0.64

2 → 1 0.73 0.64

1 → 1/2 0.75 0.65

1/2 → 1/4 0.77 0.67

1/4 → 1/8 0.79 0.68

1/8 → 1/16 0.81 0.70

Heterogeneous medium

1 → 1/2 0.71 0.45

1/2 → 1/4 0.84 0.52

1/4 → 1/8 0.96 0.58

1/8 → 1/16 1.03 0.65

1/16 → 1/32 1.03 0.75

1/32 → 1/64 1.07 0.96



www.VadoseZoneJournal.org | 703

We simulated the experiment as a one-dimensional problem with 
diff erent models of τ(Sw). Th e parameters of the discrete problem 
(Eq. [14–16]) are summarized in Table 5.

In these numerical simulations, the measured outfl ow of water 
(denoted as uwater and shown as the solid line in Fig. 8) was used 
as a Neumann boundary condition at the bottom of the column 
(x = L). Th e resulting temporal profi les of the air saturation Sn and 
the capillary pressure pc are shown in Fig. 9a.

Th e nonsmooth shapes of the numerical solutions in Fig. 9a were 
caused solely by the nonsmoothness of the prescribed fl ux of water. 
Because the temporal derivative of the air saturation is directly 
infl uenced by the given fl ux, the nonsmoothness is magnifi ed in the 
values of the dynamic capillary pressure given by Eq. [9]. Th at is why 
the bumps do not appear in the case of the static capillary pressure.

To assure that the diff erences among the numerical solutions with 
respect to diff erent models of τ(Sw) were not caused by the non-
smoothness of the prescribed fl ux, we used a smooth functional 
approximation of the boundary fl ux that preserves the total mass 
of the effl  uent water in the form

* 5 3
water

7 1

( ) 3.7 10 exp( 1.7 10 )

7.4 10 m s

u t t− −

− −

= × − ×

+ ×
 [23]

Table 4. Parameters of the advection and capillary diff usion benchmark 
problem in a heterogeneous porous medium.

Parameter Value

Initial condition  Sn(x,0) = 0.73 for x in (0,L/2) 

 Sn(x,0) = 0 for x in (L/2,L) 

Boundary conditions  Sn(0,t) = 0.73 for t in [0,T] 

 Sn(L,t) = 0 for t in [0,T] 

 pn(0,t) = constant = 0 for t in [0,t] 

uw(L,t) + un(L,t) = 1.59 × 10−3t−1/2 for t in [0,T] 

Problem setup T = 1000 s, L = 2 m, g = 0

Capillary pressure
Static model (Eq. [6]), pc ≡ eq

cp  , τ = 0 

Materials Sand A (coarse), Table 1 in (0,L/2) 

Sand B (fi ne), Table 1 in (L/2,0) 

Fluids Air and water, Table 1

Fig. 5. Schematic view of the experimental setup. Th e upper part was 
exposed to the atmosphere through a small hole in the top cap. Th e 
lower part was connected to a constant-head water reservoir. Th e water 
pressure was measured with two tensiometers and averaged (from 
Sakaki et al., 2010).

Fig. 6. Sketch of homogeneous (Case 1) and layered (Cases 2–4) con-
fi gurations of the porous medium. In each case, the porous medium was 
placed vertically and fully water saturated, Sw = 1, at time t = 0 s. Th e 
gravitational acceleration vector g points in the positive x direction. Sands 
A and Aκ diff er only in the ratio between the entry pressures. Th e entry 
pressure and the intrinsic permeability of Sand Aκ is pd = κpd,A and K = 
κ−2KA, respectively, where pd,A is the entry pressure and KA is the intrin-
sic permeability of Sand A.

Fig. 7. Fitted models of the dynamic coeffi  cient τ (logarithmic scale) 
to the observed laboratory data (from Sakaki et al., 2010).
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In Fig. 8, the measured f lux of water is compared with its 
smooth functional approximation *

wateru . As shown in Fig. 9b, 
the numerical solutions using the f lux *

wateru  are smooth alter-
nates to the bumpy-shaped solutions in Fig. 9a. Consequently, 
the bumpiness of the capillary pressure was not caused by the 
numerical scheme, and the nonsmoothness of the prescribed 
f lux did not significantly affect the overall temporal profiles 
of the solutions.

Th e infl uence of diff erent models of the dynamic eff ect coeffi  cient 
τ on the numerical solution of the air saturation Sn was negligible 
(see Fig. 9a). On the other hand, their infl uence on the capillary 
pressure pc is important in cases where there is a temporal change 
in the saturation Sn because the temporal derivative of Sn is mul-
tiplied by the dynamic eff ect coeffi  cient τ in Eq. [9]. Th e constant 
model for τ does not seem to be a good model for the appropriate 
approximation because it overestimated the laboratory-measured 
dynamic coeffi  cient for high wetting-phase saturation (see Fig. 7) 
and its numerical solution of pc diff ered substantially from the 
measured capillary pressure (see Fig. 9a).

SimulaƟ on 2: Numerical SimulaƟ on 
in a Heterogeneous Porous Medium
We investigated the eff ects of diff erent dynamic capillary pressure 
models on the behavior of the nonwetting phase at heterogeneity 
interfaces. Because no laboratory experiment involving dynamic 
capillary pressure was available for the case of a heterogeneous 
porous medium, only a numerical simulation is provided here. 
Similar to the setup of the laboratory experiment in Simulation 1, 
we considered a vertically placed column fi lled with two diff er-
ent sands, where we combined Sand A and a fi ner Sand B or C. 
Th ese sands were separated by a sharp interface in the middle of 
the column, as shown in Fig. 6, Cases 2 and 3. Initially, the column 
was fully water saturated. At t = 0, the water started to fl ow out of 
the column at x = L with a fl ow rate given by Eq. [23]. Th e model 
parameters are summarized in Table 6.

Unfortunately, there is no known laboratory-measured model 
for the dynamic coeffi  cient τ for Sand B or C and the air–water 
system; however, the Stauff er model τS,B and τS,C, respectively, 
can be computed for these sands. Based on the ratio between 
the Stauff er model τS,A for Sand A and τS,B or τS,C, the three 
functional relationships τ = τ(Sw) were estimated from the labo-
ratory-determined Sand A models as shown in Table 1.

In Fig. 10, we show the position of the air front with time for dif-
ferent models of the dynamic coeffi  cient τ = τ(Sw). First, the air 
fl owed from the coarse to the fi ne sand (Fig. 10a and 10b), where 
the barrier eff ect was simulated. Th e barrier eff ect, modeled by the 
Brooks and Corey model (Eq. [6]) and the extended capillary pres-
sure condition (Eq. [11]) for the capillary pressure pc, implies that the 
nonwetting fl uid (air) cannot enter the fi ner sand unless its capillary 
pressure at the interface is higher than the entry pressure pd of the 
fi ner sand (Helmig, 1997; Brooks and Corey, 1964, p. 27). We then 
considered the opposite confi guration (Fig. 10c and 10d), where the 
barrier eff ect did not occur. In all cases, the use of the linear model of 
τ = τ(Sw) caused faster propagation of the air front in the homoge-
neous layers of the porous medium, whereas the log-linear model did 
not infl uence the speed substantially with respect to the use of the 

Table 5. Parameters of the simulation of the laboratory experiment 
(Simulation 1). Th e profi les of the measured and smoothly approxi-
mated fl ux of water, uwater and *

wateru , respectively, are shown in Fig. 8.

Parameter Value

Initial condition Sn(x,0) = 0 for x in (0,L)

Boundary conditions uw(0,t) = 0 for t in [0,T]

pn(0,t) = constant = 0 for t in [0,T]

uw(L,t) = uwater(t) or uwater*(t) for t in [0,T] 

un(L,t) = 0 for t in [0,T]

Problem setup T = 5000 s, L = 10 cm, g = 9.81 m s−2

Capillary pressure Dynamic capillary pressure pc, various 
models for τ(Sw), Table 1

Material Sand A, Table 1

Fluids Air and water, Table 1

Fig. 8. Measured (solid line) and smoothly approximated (dashed line) water outfl ow from the bottom of the column (at x = 10 cm). We used the 
smooth approximation to demonstrate that the numerical scheme works for both non-smooth and smooth boundary conditions.
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static capillary pressure. Th e constant model of τ = τ(Sw) exhibited 
a diff erent behavior in diff erent situations. In Fig. 10a and 10c, for 
instance, the solution obtained with constant τ has a substantially 
slower front propagation than other solutions. We believe that this 

Table 6. Parameters of the simulation of a fi ctitious laboratory experi-
ment with a heterogeneous porous medium (Simulations 2 and 3).

Parameter Value

Initial condition  Sn(x,0) = 0 for x in (0,L)  

Boundary conditions  uw(0,t) = 0 for t in [0,T]  

 pn(0,t) = constant = 0 for t in [0,T]  

 uw(L,t) = uwater*(t) for t in [0,T]  

 un(L,t) = 0 for t in [0,T] 

Problem setup T = 1500 s, L = 10 cm, g = 9.81 m s−2

Capillary pressure Dynamic capillary pressure pc, various 
models for τ(Sw), Table 1

Materials Sand A (coarse), Table 1

Sand B (fi ner than Sand A), Table 1

Sand C (fi ner than Sand A), Table 1

Fluids Air and water, Table 1

Fig. 9. Numerical solutions obtained with (a) laboratory-measured fl ux uwater (solid line in Fig. 8) and (b) smooth fl ux *
wateru  (dashed line in Fig. 8) 

for Case 1 in Fig. 6 compared with the measured laboratory values of air saturation Sn and capillary pressure pc in the middle of the column for various 
models of the dynamic coeffi  cient τ = τ(Sw), where Sw is the wetting-phase saturation. Th e temporal profi les of the capillary pressure in (a) obtained 
with measured fl ux uwater resemble those in (b) obtained with smooth fl ux *

wateru  (Simulation 1).

Fig. 10. Position of the air front in time for various models of the 
dynamic coeffi  cient τ for the layered confi gurations of porous media 
shown in Fig. 6: (a and b) Case 2 and (c and d) Case 3. Note that both 
Sands B and C are fi ner than Sand A and, therefore, (a) and (b) show 
situations where the barrier eff ect is simulated (Simulation 2).
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is because the constant model overestimates the dynamic coeffi  cient 
for high wetting-phase saturation Sw (see Fig. 7).

Th e delay of the nonwetting phase at the interface due to the bar-
rier eff ect diff ered when various confi gurations of sands were used. 
In the case of Sand B with a lower entry pressure than Sand C 
(Fig. 10a), the time required to penetrate the fi ner medium was 
generally smaller when using the dynamic models of capillarity 
than in the case of static capillary pressure. In the case of the fi ner 
Sand C, however, these penetration times were comparable or even 
larger than in the static case (Fig. 10b).

SimulaƟ on 3: Infl uence of Entry 
Pressure on PenetraƟ on Time 
of Air under Dynamic CondiƟ ons
We used a layered medium confi guration, sketched in Fig. 6 (Case 4), 
to investigate the sensitivity of the propagation speed to the ratio 
between the entry pressures of layers consisting of Sand A overlying 
Sand Aκ . Th e value of the entry pressure in Sand Aκ is defi ned as 

d,Apκ  = κpd,A, where pd,A denotes the entry pressure of Sand A. Th e 

intrinsic permeability AK
κ

 was evaluated using the Leverett scaling 
pc ∝ √(Φ/K) (Leverett, 1941) as AK

κ
 = κ−2KA, where KA is the 

intrinsic permeability of Sand A. We assumed that the porosities of 
both sands were the same. Unlike in the previous case, we prescribed 
a constant fl ow rate uw(L,t) = 10−4 m s−1 at the lower boundary of 
the column. Figure 11 shows the times when the air phase reached 
the bottom boundary (at x = 10 cm) using the dynamic or static 
models of capillary pressure. As shown by the long-dashed line in Fig. 
11, the propagation speed of the linear model of τ was almost two 
times faster than in the case of static capillary pressure (dash-dotted 
line, τ = 0) when the medium was homogeneous (κ = 1). Th en, by 
increasing κ (i.e., coarse top, fi ne bottom), the traveling time of the 
air front for the linear model of τ = τ(Sw) increased, and approxi-
mately at κ ~ 1.7, it crosses the curve corresponding to the static 
capillary pressure. In the case of the log-linear model, the traveling 
times were similar to the static case when κ was near 1 and they 
became larger for κ > 1.3. Th e constant model had a substantially 
slower propagation speed with respect to the static case for all con-
sidered values of κ > 1. Th ese results agree with the fi ndings shown 
in Fig. 10, where the ratio between the entry pressures is κA/B = 1.17 

Fig. 11. Th e time at which the air phase reaches the lower boundary for various models of the dynamic coeffi  cient τ for the case of the layered confi gura-
tion of porous media shown in Fig. 6 (Case 4) for multiple choices of the ratio d,A d,Ap p

κ
κ= , where d,Ap

κ
 and pd,A are the entry pressures of Sand 

Aκ
 and Sand A, respectively (Simulation 3).

Fig. 12. Accumulation time of the air phase at the material interface (i.e., delay of the air at the interface due to the capillary barrier eff ect) for various 
models of the dynamic coeffi  cient τ for the case of the layered confi guration of porous media shown in Fig. 6 (Case 4) for multiple choices of the ratio 

d,A d,Ap p
κ

κ= , where d,Ap
κ

 and pd,A are the entry pressures of Sand Aκ
 and Sand A, respectively. Th e interface was placed at x = 5 cm (Simulation 3).
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and κA/C = 2.33 for the Sand A over Sand B and Sand A over Sand 
C configurations, respectively.

To explain different delays at the interface observed in Simulation 2 
(Fig. 10a and 10b), we focused on the situations where the barrier 
effect was simulated, i.e., κ > 1. In Fig. 12, we plotted accumulation 
times as a function of κ . Here, the accumulation time is defined as 
the delay between the times when the nonwetting phase reached 
and when it penetrated the material interface. In Fig. 12, the results 
approximately correspond to the already observed behavior of dif-
ferent simulated delays due to the barrier effect in Fig. 10a and 
10b (see the points pd,B/pd,A and pd,C/pd,A in Fig. 12). In general, 
the accumulation times for κ < 2 are notably lower and for κ > 3 
substantially higher when using the dynamic effect in capillarity 
compared with the referential curve with static capillary pressure 
(drawn as a dash-dotted line). Additionally, for higher differences 
in entry pressures, the curves tended to steady and when using 
the model of capillarity with dynamic effect, the accumulation 
times were more than three times higher than in the case of static 
capillary pressure. Hence, in the case of a heterogeneous medium, 
the inclusion of the dynamic effect in the capillary pressure may 
substantially change the simulated evolution of the flow because 
the entry pressure of the finer porous medium can be achieved 
sooner or later than in the static case (see Fig. 10 and 11).

 Conclusions
A one-dimensional numerical scheme of two-phase incompressible 
and immiscible flow is presented that enables simulation of two-
phase flow in both homogeneous and heterogeneous media under 
dynamic capillary pressure conditions where the treatment of the 
conditions at the material interfaces is not numerically trivial. The 
numerical scheme was verified and its order of convergence was 
estimated using semianalytical solutions for homogeneous and 
heterogeneous porous media, respectively.

Laboratory-measured parameters were used in the numerical simula-
tion of the dynamic capillary pressure including three models of the 
dynamic effect coefficient τ = τ(Sw). The numerical solutions for the 
dynamic effect in the capillary pressure showed that the dynamic 
effect has a significant impact on the magnitude of the capillary pres-
sure, while the change in the saturation profiles may be considered 
negligible in some cases. The constant model of τ showed a rather 
unrealistic profile of the numerical approximation of the capillary 
pressure when compared with the laboratory-measured data.

The results of the simulation indicate that the dynamic effect may 
not be so important in drainage problems in a homogeneous porous 
medium, but it is of great importance in heterogeneous media 
where the capillarity governs flow across the material interfaces. 
The linear model of τ accelerated the flow of air across the inter-
face for both configurations of the coarse and fine porous media 
when the ratio between entry pressures of the media was close to 1. 

In all other cases, the use of the dynamic effect seemed to increase 
the time needed for the nonwetting fluid to accumulate at a finer 
sand interface (a delay due to the barrier effect). This suggests that 
without dynamic effects, the travel time of the nonwetting phase 
can possibly be estimated to be smaller or larger than the actual 
time. The conclusion can be settled by laboratory experiment only.

The methodology used in this study is currently being developed 
for the two-dimensional case. Two-dimensional laboratory experi-
ments are also in preparation.

 Appendix
List of Symbols
α index of wetting (w) or nonwetting (n) fluid
αS scaling parameter in Stauffer model τS 
ε order of convergence of a numerical scheme
κ  ratio between entry pressures
λ  Brooks–Corey pore size distribution index
μ  dynamic viscosity, kg m−1 s−1

n outer normal unit vector
Φ  porosity
ρ   density, kg m−3

τ  dynamic effect coefficient, kg m−1 s−1

τS  Stauffer model of dynamic effect coefficient, kg m−1 s−1

 Computational domain

Γ Boundary of  

ΓD Dirichlet-type boundary subset of Γ 

ΓN Neumann-type boundary subset of Γ 
g gravitational acceleration, m s−2

K intrinsic permeability, m2

kr relative permeability
L  length of the domain, m
p  pressure, kg m−1 s−2

pc  capillary pressure, kg m−1 s−2

eq
cp  static capillary pressure, kg m−1 s−2

pd  Brooks–Corey entry pressure, kg m−1 s−2

S  saturation
Sr  residual saturation
Se  effective saturation
T  final time of the simulation, s
u  fluid velocity, m s−1

Acknowledgments
This work has been supported by the project “Applied Mathematics in Technical 
and Physical Sciences” MSM 6840770010, Ministry of Education of the Czech 
Republic; the project “Environmental modeling” KONTAKT ME878, Ministry 
of Education of the Czech Republic; the National Science Foundation through 
the award 0222286 (CMG Research: “Numerical and Experimental Validation 
of Stochastic Upscaling for Subsurface Contamination Problems Involving Mul-
tiphase Volatile Chlorinated Solvents”); and the project “Mathematical Mod-
elling of Multiphase Porous Media Flow” 201/08/P567 of the Czech Science 
Foundation (GA ČR).

References
BasƟan, P. 1999. Numerical computaƟon of mulƟphase flows in porous me-

dia. HabilitaƟon thesis. <iel Univ., <iel, Germany.
Bear, J., and A. Verruijt. 1990. Modeling groundwater flow and polluƟon. D. 

Reidel, Dordrecht, the Netherlands.
Brooks, R.H., and A.T. Corey. 1964. Hydraulic properƟes of porous media. Hy-

drol. Pap. 3. Colorado State Univ., Fort Collins.
Burdine, N.T. 1953. RelaƟve permeability calculaƟons from pore-size distribu-

Ɵon data. Trans. Am. Inst. Min. Eng. 198:71–78.



www.VadoseZoneJournal.org | 708

Camps-Roach, G., D.M. O’Carroll, T.A. Newson, T. Sakaki, and T.H. Illangasek-
are. 2010. Experimental invesƟ gaƟ on of dynamic eff ects in capillary pres-
sure: Grain size dependency and upscaling. Water Resour. Res. (in press), 
doi:10.1029/2009WR008792.

Dahle, H.K., M.A. Celia, and M.S. Hassanizadeh. 2005. Bundle-of-tubes model 
for calculaƟ ng dynamic eff ects in the capillary-pressure–saturaƟ on rela-
Ɵ onship. Transp. Porous Media 58:5–22.

de Neef, M.I., and J. Molenaar. 1997. Analysis of DNAPL Infi ltraƟ on in a me-
dium with a low-permeable lens. Comput. Geosci. 1:191–214.

Fučík, R., M. Beneš, J. Mikyška, and T.H. Illangasekare. 2004. GeneralizaƟ on of 
the benchmark soluƟ on for the two-phase porous-media fl ow. p. 181–184. 
In K. Kovar et al. (ed.) Int. Conf. on Finite-Element Models, MODFLOW, and 
More: Solving Groundwater Problems, Carlsbad, Czech Republic. 13–16 
Sept. 2004.

Fučík, R., J. Mikyška, and T.H. Illangasekare. 2005. EvaluaƟ on of saturaƟ on-
dependent fl ux on two-phase fl ow using generalized semi-analyƟ c solu-
Ɵ on. p. 23–35. In M. Beneš et al. (ed.) Proc. Czech–Japanese Seminar in 
Applied MathemaƟ cs. Faculty of Nucl. Sci. and Phys. Eng., Czech Tech. Univ., 
Prague.

Fučík, R., J. Mikyška, M. Beneš, and T.H. Illangasekare. 2007. An improved 
semi-analyƟ cal soluƟ on for verifi caƟ on of numerical models of two-phase 
fl ow in porous media. Vadose Zone J. 6:93–104.

Fučík, R., J. Mikyška, M. Beneš, and T.H. Illangasekare. 2008. SemianalyƟ cal 
soluƟ on for two-phase fl ow in porous media with a disconƟ nuity. Vadose 
Zone J. 7:1001–1007.

Fučík, R., J. Mikyška, T. Sakaki, and T.H. Illangasekare. 2009. Numerical study of 
the eff ect of dynamic capillary pressure in porous medium. p. 14–30. In M. 
Beneš et al. (ed.) Proc. Czech–Japanese Seminar in Applied MathemaƟ cs 
2008. COE Lecture Note, Vol. 14. Faculty of Math., Kyushu Univ., Fukuoka, 
Japan.

Gray, W.G., and S.M. Hassanizadeh. 1991a. Paradoxes and realiƟ es in unsatu-
rated fl ow theory. Water Resour. Res. 27:1847–1854.

Gray, W.G., and S.M. Hassanizadeh. 1991b. Unsaturated fl ow theory including 
interfacial phenomena. Water Resour. Res. 27:1855–1863.

Hassanizadeh, S.M., M.A. Celia, and H.K. Dahle. 2002. Dynamic eff ect in the 
capillary pressure–saturaƟ on relaƟ onship and its impacts on unsaturated 
fl ow. Vadose Zone J. 1:38–57.

Hassanizadeh, S.M., and W.G. Gray. 1993. Thermodynamic basis of capillary 
pressure in porous media. Water Resour. Res. 29:3389–3406.

Helmig, R. 1997. MulƟ phase fl ow and transport processes in the subsurface: 
A contribuƟ on to the modeling of hydrosystems. Springer-Verlag, Berlin.

Helmig, R., A. Weiss, and B.I. Wohlmuth. 2007. Dynamic capillary eff ects in 
heterogeneous porous media. Comput. Geosci. 11:261–274.

Helmig, R., A. Weiss, and B.I. Wohlmuth. 2009. VariaƟ onal inequaliƟ es for 
modeling fl ow in heterogeneous porous media with entry pressure. Com-
put. Geosci. 13:1–17.

Illangasekare, T.H., E.J. Armbruster III, and D.N. Yates. 1995. Non-aqueous-
phase fl uids in heterogeneous aquifers: Experimental study. J. Environ. Eng. 
121:571–579.

Ippisch, O., H.J. Vogel, and P. BasƟ an. 2006. Validity limits for the van Genu-
chten–Mualem model and implicaƟ ons for parameter esƟ maƟ on and nu-
merical simulaƟ on. Adv. Water Resour. 29:1780–1789.

LeVeque, R.J. 2002. Finite volume methods for hyperbolic problems. Cam-
bridge Univ. Press, Cambridge, UK.

LevereƩ , M.C. 1941. Capillary behavior in porous solids. Trans. Am. Inst. Min. 
Eng. 142:152–169.

Manthey, S. 2006. Two-phase fl ow processes with dynamic eff ects in porous 
media: Parameter esƟ maƟ on and simulaƟ on. Inst. für Wasserbau der Uni-
versität StuƩ gart, StuƩ gart, Germany.

Manthey, S., M.S. Hassanizadeh, and R. Helmig. 2005. Macro-scale dynamic 
eff ects in homogeneous and heterogeneous porous media. Transp. Porous 
Media 58:121–145.

McWhorter, D.B., and D.K. Sunada. 1990. Exact integral soluƟ ons for two-
phase fl ow. Water Resour. Res. 26:399–413.

Mikyška, J., M. Beneš, and T.H. Illangasekare. 2009. Numerical invesƟ gaƟ on 
of non-aqueous phase liquid behavior at heterogeneous sand layers using 
VODA mulƟ phase fl ow code. J. Porous Media 12:685–694.

Nieber, J.L., R.Z. Dautov, A.G. Egorov, and A.Y. Sheshukov. 2005. Dynamic capil-
lary pressure mechanism for instability in gravity-driven fl ows: Review and 
extension to very dry condiƟ ons. Transp. Porous Media 58:147–172.

NordboƩ en, J.M., M.A. Celia, H.K. Dahle, and S.M. Hassanizadeh. 2007. In-
terpretaƟ on of macroscale variables in Darcy’s law. Water Resour. Res. 
43:W08430, doi:10.1029/2006WR005018.

NordboƩ en, J.M., M.A. Celia, H.K. Dahle, and S.M. Hassanizadeh. 2008. On 
the defi niƟ on of macroscale pressure for mulƟ phase fl ow in porous media. 
Water Resour. Res. 44:W06S02, doi:10.1029/2006WR005715.

O’Carroll, D.M., T.J. Phelan, and L.M. Abriola. 2005. Exploring dynamic eff ects 
in capillary pressure in mulƟ step ouƞ low experiments. Water Resour. Res. 
41:W11419, doi:10.1029/2005WR004010.

Peszyńska, M., and S.Y. Yi. 2008. Numerical methods for unsaturated fl ow with 
dynamic capillary pressure in heterogeneous porous media. Int. J. Numer. 
Anal. Model. 5:126–149.

Sakaki, T., D.M. O’Carroll, and T.H. Illangasekare. 2010. Direct quanƟ fi caƟ on 
of dynamic eff ects in capillary pressure for drainage and weƫ  ng cycles. 
Vadose Zone J. 9:424–437.

Stauff er, F. 1978. Time dependence of the relaƟ ons between capillary pres-
sure, water content and conducƟ vity during drainage of porous media. p. 
3.35–3.52. In IAHR Symp. on Scale Eff ects in Porous Media, Thessaloniki, 
Greece. 28 Aug.–1 Sept. 1978. Int. Assoc. Hydro-Environ. Eng. Res., Madrid.

van Duijn, C.J., and M.J. de Neef. 1998. Self-similar profi les for capillary dif-
fusion driven fl ow in heterogeneous porous media. Adv. Water Resour. 
21:451–461.

van Duijn, C.J., J. Molenaar, and M.J. de Neef. 1995. The eff ect of capillary forc-
es on immiscible two-phase fl ow in heterogeneous porous media. Transp. 
Porous Media 21:71–93.

van Duijn, C.J., L.A. PeleƟ er, and I.S. Pop. 2007. A new class of entropy solu-
Ɵ ons of the Buckley–LevereƩ  equaƟ on. SIAM J. Math. Anal. 39:507–536.

van Genuchten, M.Th. 1980. A closed-form equaƟ on for predicƟ ng the hydrau-
lic conducƟ vity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892–898.


