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A�ò�Ä��� ÄçÃ�Ù®��½ �Ê��Ý for multiphase fl ow 

through heterogeneous porous media such as those 

described by Helmig (1997), Mikyška et al. (2004), and Mikyška 

and Illangasekare (2005) require verifi cation to assure that the 

governing equations are solved correctly before applying them 

to practical simulations. Code verifi cation using the closed-form 

analytical solutions to the governing equations allows estima-

tion of the accuracy of numerical schemes. Two well-known 

one-dimensional solutions of the two-phase fl ow problem in a 

homogeneous porous medium are the Buckley–Leverett solu-

tion for fl ow without capillary eff ects (e.g., Helmig, 1997, p. 

177; LeVeque, 2002) and the semianalytical solution derived by 

McWhorter and Sunada (1990), with subsequent discussions by 

Chen et al. (1992), McWhorter and Sunada (1992), and Fučík 

et al. (2005, 2007). Th e semianalytical solution by McWhorter 

and Sunada (1992) includes both advective and capillary eff ects. 

We present the extension of this type of solution for the case of a 

heterogeneous porous medium with a simple discontinuity.

Since most natural systems are heterogeneous, numerical 

codes need to be verifi ed on problems involving heterogeneous 

media. Th is is possible in a case of a simple heterogeneity. Such 

exact solutions exist for the diff usion case only (Philip, 1991; 

Raats and van Duijn, 1995; van Duijn and de Neef, 1998; Philip 

and van Duijn, 1999; Heinen and Raats, 1999) or for the sta-

tionary advection–diff usion case (Yortsos and Chang, 1990). 

Currently, however, there are no closed-form solutions available 

for this task when advection, diff usion, and accumulation terms 

are all included in the equation. In our case, we coupled the ana-

lytical solutions for fl ow in both homogeneous subdomains by 

a specifi c type of interfacial condition. Th e solution of the fl ow 

through a heterogeneous medium is then obtained by iteration. 

Th e form of proposed model does not, however, allow simulation 

of the trapping eff ect discussed by Helmig (1997, p. 264) and 

experimentally observed by Illangasekare et al. (1995).

Formula  on of the Flow Problem
in a Homogeneous Medium

A one-dimensional problem describing fl ow of two incom-

pressible immiscible liquids through a porous medium was 

considered where the wetting phase (water, indexed by w) dis-

places the nonwetting fl uid (air or oil, indexed by n) in the hori-

zontal direction (without the infl uence of gravity).
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We present a benchmark soluƟ on for one-dimensional porous media with heterogeneity involving two soils separated 
by a sharp interface. A similar problem was discussed previously by other researchers; however, only a diff usion term 
was considered in their models. The proposed soluƟ on allows the inclusion of advecƟ on terms in a limited way. This 
soluƟ on is useful in the verifi caƟ on of more complex numerical models of mulƟ phase fl ow developed for general appli-
caƟ ons involving heterogeneous aquifers. A derivaƟ on of the semianalyƟ cal soluƟ on for heterogeneous porous media 
is presented and its existence and uniqueness are discussed. A computaƟ onally effi  cient algorithm and several compu-
taƟ onal results are presented.
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Let S be the eff ective wetting-phase saturation defi ned by 

S = (Sw − Swr)/(1 − Swr − Snr), where Sw is the wetting-phase satu-

ration and Swr and Snr are the residual saturation of the wetting 

and nonwetting phase, respectively (Helmig, 1997, p. 54).

Th e governing equation for the unknown eff ective wetting-

phase saturation function S = S(t,x), where t is time and x is the 

spatial coordinate, has the form

( )
( )t

S f S S
q D S

t x x x

⎡ ⎤∂ ∂ ∂ ∂
Φϑ =− + ⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 [1]

where Φ is the porosity, qt is the total fl ux, and ϑ stands for 

(1 − Swr − Snr). Th e capillary-hydraulic properties of the fl uid–

porous medium system are refl ected in the functions f and D, 

where f = f (S) is the fractional fl ow function and D = D(S) is the 

diff usion coeffi  cient that includes the capillary eff ects (see Fučík 

et al., 2007).

In our approach to fl ow through the heterogeneous medium, 

we relied on the fact that Eq. [1] can be treated analytically in 

each homogeneous subdomain provided that the following 

settings are considered. Th e initial condition and boundary 

conditions at x = 0 and x → +∞ are in the form

( ) 00S t S, =  [2]

( ) iS t S,+∞ =  [3]

( ) i0S x S, =  [4]

for all x ∈ (0,+∞) and t ∈ [0,+∞). Th e fl ux of the displacing 

wetting phase (qw) at x = 0 is given by

( ) ( ) 1/2
w 00q t q t At−, = :=  [5]

where A depends on S0 and Si (McWhorter and Sunada, 1990). 

Th e value of A will follow from the derivation of the semianalyti-

cal solution. Th e other-phase velocities at x = 0 and at x → +∞ 

are unknown, although one can suppose that the boundary 

at x → +∞ is semipermeable, characterized by a constant scalar 

coeffi  cient R. Assuming time-dependent input fl ux qw(t,0) = q0(t) 
at x = 0, the total fl ux qt = qw + qn is constant in space and given 

as qt(t) = Rq0(t) (McWhorter and Sunada, 1990).

Th e displaced nonwetting phase leaves the domain at x → +∞  

or x = 0 depending on the parameter R. Since qt = qw + qn, the 

nonwetting phase fl ux at x = 0 is given in the form

( ) ( ) 1/2
n 0 1q t A R t−, = −  [6]

Originally, McWhorter and Sunada (1990) considered R ∈ {0,1} 

only, indicating that either the unidirectional (R = 1) or the 

bidirectional (R = 0) displacement occurs. In the fi rst case, the 

unidirectional displacement implies that the total fl ux is equal to 

the fl ux of the displacing phase at x = 0; that is, qt(t) = q0(t) for all 

t > 0 and the nonwetting phase is being drained at x → +∞. 

In case of the bidirectional displacement, the outflow of the 

nonwetting phase is prevented at x → +∞. Th is means that the 

total fl ux equals zero, i.e., qt(t) = 0 for all t > 0. Th erefore, the 

phases have opposite fl uxes for all x ∈ [0,+∞).

Th e formulation of the McWhorter and Sunada problem can 

be further generalized by allowing the parameter R ∈ [0,1] (see 

Fučík et al., 2007). In this work, we further allow R ∈ (−∞,1]. 

If we assume that the displaced phase is injected instead of being 

drained out at x → +∞, then a negative value of R can be pre-

scribed. Th e displacing phase thus fl ows in the countercurrent 

fl ow direction of the total fl ux qt. Th is generalization is important 

because it allows extension of the semianalytical solutions to a 

porous medium with a discontinuity.

Solu  on of the Flow Problem
in Homogeneous Subdomains

Assume fi rst that the boundary saturation S0 is greater than 

the initial saturation Si. Th is means that the wetting phase enters 

the semi-infi nite domain (0,+∞) at x = 0, so that the parameter 

A is strictly positive. Th e other case, S0 < Si, where A < 0, will be 

discussed separately below.

Th e function F is introduced as

( )1/2
i1

D S
F

xAt Rf S−
∂

= ϕ−
⎡ ⎤ ∂−⎣ ⎦

 [7]

where ϕ is given by

( )
( )

i

i1

−
ϕ =

−

f f S
R

Rf S
 [8]

A substitution

( )[ ] 1/2S t x xt−λ , =  [9]

where the relationship λ = λ(S) is assumed to be monotonous 

(see Fučík et al., 2007) reveals that F = F(S). Th e substitu-

tion of Eq. [9] into the two-phase fl ow Eq. [1] is described in 

Appendix A. Consequently, the solution of Eq. [1] is obtained 

in the inverted form

( )
( )[ ]i 1/22 1 d

d

A Rf S F
S t x xt

S

−
⎡ ⎤−⎣ ⎦ , =

Φϑ
 [10]

for all values of S ∈ [Si,S0]. Th e function F is obtained from the 

integral equation

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

0

0

i

i

d

1

d

S

S

S

S

v S D v
v

F v v
F S

v S D v
v

F v v

−
−ϕ= −

−
−ϕ

∫

∫
 [11]

and the value of A (related to S0, Si, and R) is given by

( )

( ) ( )

( ) ( )
0

i

i2
2

w i

1
d

2 1

−
=

−ϕ⎡ ⎤−⎣ ⎦
∫

S

S

v S D v
A v

F v vRf S
 [12]

For given values of S0, Si, and R, the integral Eq. [11] has fi rst 

to be solved to obtain function F(S). Th is is done using itera-

tive methods described in the Appendix B. Once the function 

F(S) is known, the value of A is determined from Eq. [12]. 

Finally, as both F(S) and A are known, the value of S(t,x) can 

be determined from Eq. [10] in the inverse form, i.e., for 

given values of S and t, the position x is computed from Eq. 

[10] such that S = S(t,x) holds. In this way, the semianalytical 

solution can be constructed.
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In the case of S0 < Si, we use the following substitutions:

n 1S S= −  [13]

( ) ( )n n n1f S f S= −  [14]

( ) ( )n n n1D S D S= −  [15]

( )n 1A A R= −  [16]

n
1

R
R

R
=

−
 [17]

to transform Eq. [1] into

( )
( )n nn n

t n n

f SS S
q D S

t x x x

∂ ⎡ ⎤∂ ∂ ∂
Φϑ =− + ⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 [18]

Equation [18] is formally the same as Eq. [1], with the initial 

and boundary conditions such that Sn0 > Sni. Th e substitutions 

of Eq. [16] and [17] allow the fl uxes to be expressed in the form 

of qn = Ant−1/2 and qt = RnAnt−1/2, respectively. Th erefore, the 

semianalytical solution can be obtained as in the case of Eq. 

[1]. It follows from Eq. [16] that the value of A is negative 

in this case since the wetting phase fl ows out at x = 0, An > 0, 

and Rn ∈ (−∞,1). Negative values of A do not aff ect the formal 

derivation of the solution due to the square of A in Eq. [12].

Th e modifi ed iteration method of Eq. [50] in Appendix B 

is effi  cient for values of R ∈ [0,1]; however, it does not seem to 

converge if a negative value of R is prescribed. On the other hand, 

the original method of McWhorter and Sunada (1990; Eq. [48] 

in Appendix B) works for R < 0. Th erefore, we suggest obtain-

ing the semianalytical solution using either the original iteration 

method (Eq. [48]) for negative values of R or the modifi ed itera-

tion method (Eq. [50]) for positive values of R.

Flow Problem in a Heterogeneous
Porous Medium

We extend the ideas of van Duijn and de Neef (1998), 

who presented similarity solutions for two-phase fl ow in het-

erogeneous porous media for capillary redistribution problems 

without gravity:

( )
S S

D S
t x x

⎡ ⎤∂ ∂ ∂
Φϑ = ⎢ ⎥

⎢ ⎥∂ ∂ ∂⎣ ⎦
 [19]

Equation [19] is obtained from Eq. [1] when qt = 0.

Consider two semi-infi nite one-dimensional porous media 

domains (−∞,0) and (0,+∞) of diff erent material properties with 

an interface at x = 0. At t = 0, both domains contain the wetting 

phase with initial saturations Si
r and Si

l, where the superscripts l 

and r denote the two domains. Th e initial state is illustrated in 

Fig. 1. Both wetting and nonwetting fl uxes are continuous across 

the material interface, i.e.,

( ) ( )l r0 0 for all 0 {w n}q t q t tα α, = , , ≥ , α ∈ ,  [20]

According to van Duijn et al. (1995), the saturation jump at the 

interface is modeled by the extended capillary pressure condition, 

formulated as

( ) ( )

( ) ( )
c c

1

c c

1        if 1

       else

A A B

B

B A A

p S p
S

p p S
−

⎧⎪ ≤⎪⎪= ⎨⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎣ ⎦⎩
 [21]

where (A,B) = (l,r) or (A,B) = (r,l) is chosen in such a way that 

B denotes the subdomain with higher entry pressure. Nontrivial 

semianalytical solutions at the subdomains can be obtained only 

if qn ≠ 0. Th erefore, we do not handle the trapping eff ects by 

this solution and we have to assume that the capillary pressure is 

continuous across the interface.

Van Duijn and de Neef (1998) derived the similarity solu-

tion as a combination of two solutions in semi-infi nite domains 

by implementing the interface conditions of Eq. [20] and the 

continuity of capillary pressures of Eq. [21]. We apply their idea 

to Eq. [1] in both subdomains, Ωl and Ωr, including the advec-

tion term.

Coupling of Problems
We denote the indices characterizing the material in Ωr and 

Ωl by the superscripts r and l, respectively. Under this notation, 

the system of the two-phase fl ow equations can be given as

( )
( )

r
r r r r

t in 
S f S S

q D S
t x x x

⎡ ⎤∂ ∂ ∂ ∂
Φ ϑ =− + Ω⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 [22]

( )
( )

l
l l l l

t in 
S f S S

q D S
t x x x

⎡ ⎤∂ ∂ ∂ ∂
Φ ϑ =− + Ω⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 [23]

Th e initial and boundary conditions described below are given 

such that the semianalytical solution can be obtained in both 

subdomains (see above).

For Ωr, we set

( ) r
00 for all 0S t S t, = >  [24]

( ) r
i+ for all 0, ∞ = >S t S t  [25]

( ) r
i0 for all 0S x S x, = >  [26]

while for Ωl, we set

F®¦. 1. IniƟ al state of the porous medium with a soil texture 
disconƟ nuity. 
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( ) l
00 for all 0S t S t, = >  [27]

( ) l
i for all 0S t S t,−∞ = >  [28]

( ) l
i0 for all 0S x S x, = <  [29]

Th e wetting fl ux is given as qw
r(t,0) = Art−1/2 for Ωr and using 

the defi nition of the ratio R in Eq. [6], the total fl ux becomes 

qt(t) = ArRt−1/2. Th e unknown parameters S0
l and S0

r will be 

determined as a result of the continuity of the fl uxes in Eq. [20] 

and the continuity of capillary pressures.

We transform the problem in Ωl to take advantage of the 

McWhorter and Sunada (1990) semianalytical solution. Th is is 

done by a substitution of x  = −x in Ωl. Th e transformed wetting-

phase fl ux l
wq  at x  = 0 becomes

( )l l 1/2
w 0q t A t−, =  [30]

At the interface, the wetting-phase fl ux is continuous Eq. [20], 

which allows coupling of both left and right subdomain problems 

together by the following (fl uxes have opposite signs after the 

transformation x  = −x):

l rA A=−  [31]

The total flux is constant in space throughout both subdo-

mains and continuous across the interface. Th e value of the 

transformed total flux is t
q  = −qt = −ArRt−1/2 = AlRt−1/2. 

Consequently, the same value of the parameter R must be used 

in both subdomains.

Th e negative value of the fl ux in the McWhorter and Sunada 

(1990) formulation corresponds to the fact that S0 < Si. Th us, to 

obtain a positive value of A in one subdomain and a negative 

value of A in the other subdomain (c.f., Eq. [31]), either

l l r r
0 i 0 iandS S S S> <  [32]

or

l l r r
0 i 0 iandS S S S< >  [33]

must hold.

Th e continuity of capillary pressures provides the common 

value of interfacial capillary pressure (pc
0) in the form

( ) ( )0 r r l l
c c 0 c 0p p S p S:= =  [34]

As the capillary pressure is a strictly decreasing function of water 

saturation, Eq. [32] and [33] together with Eq. [34] imply that

( ) ( )r r 0 l l
c i c c ip S p p S< <  [35]

or

( ) ( )l l 0 r r
c i c c ip S p p S< <  [36]

respectively. Taking into account that pc
0 must be greater than 

pc
max, where

( ) ( ){ }max l r
c c cmax 1 1p p p:= ,  [37]

(otherwise the capillary pressure prevents fl ow of the nonwet-

ting phase across the interface and continuity of the capillary 

pressure cannot be established), we fi nally obtain a range for 

pc
0 ∈ (pmin, pmax), where

( ) ( ){ }l l r r
max c i c imaxp p S p S:= ,  [38]

and

( ) ( ){ }max l l r r
min c c i c imax minp p p S p S⎡ ⎤:= , ,⎢ ⎥⎣ ⎦

 [39]

Th e existence of the semianalytical solution of the McWhorter 

and Sunada (1990) problem for the porous medium with a dis-

continuity is equivalent to the existence of such saturations S0
l 

and S0
r that the condition Eq. [31] holds. Both Al and Ar are 

functions of S0
l, R, Si

l, and S0
r, R, Si

r, respectively, but the explicit 

relationship fulfi lling Eq. [31] is unknown. If the solution exists, 

then it is unique due to the monotonic relationship between A 

and S0 (see Fučík et al., 2007).

Computa  onal Algorithm
Let Si

l, Si
r, and R be given. Th e proposed algorithm is based 

on determining pc
0 ∈ (pmin, pmax), where the values pmin and 

pmax are given by Eq. [38] and [39], respectively. Th e boundary 

saturations S0
l and S0

r are computed knowing pc
0 using the conti-

nuity of capillary pressures given by Eq. [34]. Consequently, the 

semianalytical solutions are obtained for each subdomain. As a 

result, the values of Al and Ar are computed based on the values 

S0
l and S0

r, which are functions of pc
0. Th erefore Al and Ar can be 

also be regarded as functions of pc
0. Th e aim is to fi nd a value of 

pc
0 such that Eq. [31] holds, i.e., Al(pc

0) + Ar(pc
0) = 0.

Denoting κ(pc) = Al(pc) + Ar(pc), the value of pc
0 is deter-

mined by the equation

( )0
c 0pκ =  [40]

We observe that pc(S) is strictly decreasing (so is its inverse), and 

that Al = Al(S l), Ar = Ar(S r) are strictly increasing functions. Th is 

implies that κ(pc) is a monotonic function. Th e solution of Eq. 

[40] therefore can be found iteratively using the bisection method. 

Moreover, monotonicity of κ allows verifi cation of the existence 

of the solution pc
0 of Eq. [40] by considering the sign of κ(pmin) 

and κ(pmax) (see Step 2 below).

Th e bisection algorithm given below requires values of the 

function κ for several pc
0. For a given pc

0, the function κ(pc
0) is 

evaluated as follows:

1. Boundary saturations S0
l and S0

r are obtained from pc
0 us-

ing Eq. [34].

2. Th e semianalytical solutions in Ωl and Ωr are computed as 

above together with values of Al(pc
0) and Ar(pc

0).

3. Set κ(pc
0) = Al(pc

0) + Ar(pc
0).

Th e bisection algorithm works as follows:
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1. Let R, Si
l, Si

r and a tolerance ε > 0 be given. 
Determine pmin and pmax from Eq. [38] and 
[39], set p = pmin and p  = pmax.

2. Compute κ(pmax) and κ(pmin). If κ(pmax)κ(pmin) > 0, 
then the problem cannot be solved due to physi-
cally unrealistic initial conditions (fl uxes on the 
two sides are in opposite directions) and the algo-
rithm is terminated.

3. Set pc
0 = 1/2(p + p ).

4. Evaluate κ(pc
0). If |κ(pc

0)| < ε, then terminate the 
algorithm with success.

5. If κ(pc
0)κ(p) > 0, then set p := pc

0; otherwise set 
p  := pc

0.

6. Continue with Step 3.

Computa  onal Studies
For computations, the sands with properties given 

in Table 1 were used. Th e Brooks and Corey model (see 

Brooks and Corey, 1964) for capillary pressure was com-

bined with the Burdine model of relative permeability 

(see Helmig, 1997, p. 75). As the wetting phase, water 

(μw = 0.001 kg m−1 s−1) was used, interacting with the non-

wetting phase (tetrachloroethene, μn = 0.0009 kg m−1 s−1). 

Th e two-phase fl ow in one-dimensional heterogeneous 

medium described by Eq. [22] and [23] with corresponding con-

ditions set up above was then solved for several choices of the initial 

conditions and of the values of the parameter R. Th e existence of 

the solution of Eq. [40] cannot be always guaranteed, however, as 

shown in Fig. 2a, where Si
l = 1, Si

r = 0, and R = 0.95. On the other 

hand, Fig. 2b to 2d indicate situations where the solution of Eq. 

[40] was found. Solvability of Eq. [40] is related to the choice of 

R and refl ects the physical limitations of the problem formulation. 

Th is is illustrated in Fig. 3. Th e values of pc
0 are limited by the 

minimal achievable capillary pressure pmin given by Eq. [39]. In Fig. 

4, saturation profi les obtained for three diff erent choices of initial 

conditions and for four diff erent choices of the parameter R are 

shown. More computational studies and interactive implementa-

tion of the presented algorithm can be found at http://mmg.fj fi .

cvut.cz/~fucik/hetero (verifi ed 28 May 2008).

Conclusions
Th is study dealt with the semianalytical solution for two-

phase fl ow in a simple heterogeneous medium consisting of two 

soils separated by a sharp interface. Th is result is based on the 

approach presented in McWhorter and Sunada (1990) and Fučík 

et al. (2007) dealing with the advection–diff usion problem in a 

homogeneous medium. Treatment of interfaces in a heteroge-

neous medium follows the formulation by Philip (1991), van 

Duijn and de Neef (1998), and Philip and van Duijn (1999), lim-

ited to the diff usion case only. Our approach allows consideration 

of diff usion together with advection, as there are many situations 

in two-phase fl ow where both advection and diff usion terms have 

to be considered. Th e solution is obtained by an iteration proce-

dure working with the fl ow in both homogeneous subdomains 

to reach the required condition at the interface. Th e functional-

ity of the algorithm is illustrated by means of several numerical 

examples using the Brooks and Corey model for the relative 

permeability and capillary pressure functions. Additionally, the 

conditions under which a solution exists are discussed as well.

Appendix A
Appendix A summarizes the steps leading to the analytical 

implicit formula solving Eq. [1]. It was derived by McWhorter 

and Sunada (1990) and further discussed in Fučík et al. (2007).

Th e transformation of Eq. [1] into Eq. [10] using the sub-

stitution of Eq. [9] is performed in the following steps. Th e 

substitution of Eq. [9] allows expression of the partial derivatives 

of S(t,x) in the following form:

( )

( )

1
1/2

1
3/2

d
and

d

1 d

2 d

S S
t

x S

S S
xt

t S

−
−

−
−

⎡ ⎤∂ λ
⎢ ⎥=
⎢ ⎥∂ ⎣ ⎦

⎡ ⎤∂ λ
⎢ ⎥=−
⎢ ⎥∂ ⎣ ⎦

 [41]

T��½� 1. Parameter setup for coarse and fi ne sands according to 
de Neef and Molenaar (1997).

Parameter Fine sand Coarse sand 

Porosity (Φ) 0.34 0.34
Intrinsic permeability (K), m2 5.3 × 10−12 7 × 10−12

Residual water saturaƟ on (Swr) 0 0
Brooks–Corey entry pressure (Pd), Pa 2550 2218
Brooks–Corey pore size 

distribuƟ on index (λ)

2.48 2.48

F®¦. 2. RelaƟ onship between −Al and Ar (logarithmic scale is used) and pc
0.

F®¦. 3. RelaƟ onship between R and pc
0.
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Substituting the partial derivative ∂S/∂x given by Eq. [41] into 

Eq. [7], we obtain

( )
( ) 1

i

d

d1

−⎡ ⎤λ
⎢ ⎥= ϕ−

⎡ ⎤ ⎢ ⎥− ⎣ ⎦⎣ ⎦

SD
F

SA Rf S
 [42]

Consequently, F is expressed in terms of S only (variables x, t, and 

∂S/∂x were eliminated), i.e., F = F(S). Equation [7] allows us to 

rewrite Eq. [1] in terms of F as

( )1/2
i1

S F
At Rf S

t x

−∂ ∂⎡ ⎤φϑ =− −⎣ ⎦∂ ∂
 [43]

Using the fact that ∂F/∂x = (dF/dS)(∂S/∂x), the substitution of 

Eq. [41] into Eq. [43] leads to

( )

( ) ( ) ( )

1
3/2

1
1/2 1/2

i

1 d

2 d

d d
1

d d

S
xt

S

F S S
At Rf S t

S S

−
−

−
− −

⎡ ⎤λ
⎢ ⎥−Φϑ
⎢ ⎥⎣ ⎦

⎡ ⎤λ⎡ ⎤ ⎢ ⎥=− −⎣ ⎦ ⎢ ⎥⎣ ⎦

 [44]

from which Eq. [10] follows directly.

To derive Eq. [11], Eq. [10] is diff erentiated with respect 

to S to obtain

( )
( )

2

2
i

d d

d 2 1 d

F
S

S A Rf S S

Φϑ λ
=

⎡ ⎤−⎣ ⎦
 [45]

where we substitute for dλ/dS from Eq. [42] to get the following 

diff erential equation for F(S)

( )
( ) ( ) ( )

2

22 2
i

d

d 2 1

F D
S

S F S SA Rf S

Φϑ
=−

−ϕ⎡ ⎤−⎣ ⎦
 [46]

Th is equation can be twice integrated. Using the conditions 

F(S0) = 1 and dF /dS = 0, which follow from Eq. [2] and [3], 

respectively, we obtain

( )
( )

( ) ( )

( ) ( )
0

22
i

1 d
2 1

−Φϑ
= −

−ϕ⎡ ⎤−⎣ ⎦
∫

S

S

v S D v
F S v

F v vA Rf S
 [47]

Taking into account that F(Si) = 0, Eq. [47] yields Eq. [12] for 

A. Finally, Eq. [47] can be rewritten by means of Eq. [12] into 

Eq. [11].

Appendix B
Th is appendix is devoted to the description of the iterative 

procedure for solving Eq. [11]. For given values of S0, Si, and R, 

the integral Eq. [11] has fi rst to be solved to obtain the function 

F(S). Th is is done iteratively and approximately, therefore the 

solution is referred to as semianalytical. McWhorter and Sunada 

(1992) suggested using F0(S) ≡ 1 as a fi rst iteration and evaluat-

ing the next iterations by substituting the previously obtained 

iteration of the function F into the right-hand side of the integral 

Eq. [11], i.e.,

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

0

0

i

1
i

d

1

d

S

S
k

k
S

S
k

v S D v
v

F v v
F S

v S D v
v

F v v

+

−
−ϕ

= −
−

−ϕ

∫

∫
 [48]

Th e iterations are terminated when ||Fk+1 − Fk||L+∞ < tol, where 

tol is a user-defi ned tolerance. Th e iterative method of Eq. [48] 

does not converge for values of S0 larger than a certain critical value 

S0
crit if R is close to 1. Th is problem was analyzed in detail in Fučík et 

al. (2007), where an alternative iteration method was developed that 

works for all values of S0 except for the case R = 1 and S0 → 1. In 

this method, the expression G(S) = D(S)/[F(S) − ϕ(S)] is used 

to rewrite Eq. [11] as

( )
( )
( )

( )
( ) ( )

( ) ( )

0

0

i
i

d
1

d

S

S
S

S

v S G v vD S
F S S

G S v S G v v

−
= +ϕ = −

−

∫
∫

 [49]

Th e iteration scheme for G has the following form

( )

( ) ( ) ( )
( ) ( )

( ) ( )

0

0

i

1

i

d

d

k

S

S
k S

S

G S

v S G v v
D S G S S

v S G v v

+

⎡ ⎤
⎢ ⎥−
⎢ ⎥= + ϕ +⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∫
∫

 [50]

F®¦. 4. SemianalyƟ cal soluƟ ons for a medium with a disconƟ nuity for 
three diff erent iniƟ al setups and various R at Ɵ me t = 1000 s.



www.vadosezonejournal.org · Vol. 7, No. 3, August 2008 1007

Th e initial guess G0(S) = D/(1 − ϕ) corresponds to the choice 

F0 ≡ 1 in Eq. [48]. After each iteration, the value Fk+1(S) can be 

computed from Gk+1(S) as

( )
( )

( )
( )1

1
k

k

D S
F S S

G S
+

+
= +ϕ  [51]
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