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a b s t r a c t

We have developed a fast and robust algorithm for the general multi-phase equilibrium calculation at
constant internal energy, volume, and moles (specification UVN). The algorithm is based on the direct
maximization of the total entropy of the system subject to the internal energy-, volume-, and mole-
balance constraints. The algorithm uses the Newton-Raphson method with line-search and modified
Cholesky decomposition of the Hessian matrix to produce a sequence of states with increasing values of
the total entropy of the system. Unlike the previously published formulations, our method uses results of
the UVN-phase stability testing for initialization of the UVN-flash calculation. As the number of phases is
not known a-priori, the proposed strategy is based on repeated UVN-stability testing and UVN phase-
split calculation until a stable phase split is found. The performance of the algorithm is demonstrated
on many examples of different complexity.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Investigation of phase stability and multi-phase equilibrium
calculation for multicomponent mixtures are basic problems in
chemical engineering with numerous applications in the industry.
The most frequently encountered formulation of these problems
uses pressure P, temperature T, and mole numbers N1,…, Nn (or
mole fractions z1,…, zn) as specification variables e this is the case
of the so called PTN-stability and PTN-flash equilibrium calculation.
These problems have been treated extensively by many authors
building mainly on the classical works of Michelsen [1e3], see e.g.
Refs. [4,5]. In this work, we are interested in developing methods
for phase stability testing and phase equilibrium calculation in a
different variables specification e namely internal energy U, vol-
ume V, andmole numbersN1,…,Nn. This is the problem of the UVN-
stability and UVN-phase equlibrium computation.

Compared to PTN-stability and PTN-flash, other variables
specifications are less common. Notable problems are the
specification in terms of temperature T, volume V, and mole
numbers N1,…, Nn (TVN-based formulation) and the UVN-
formulation. The TVN-formulation can be used e.g. for
a).
simulations of equilibria in a closed vessel of known volume at
constant temperature (see e.g. Refs. [6e8]), or in compositional
simulation [9] where the flash calculation is performed locally on
each finite element of the discretized domain at each time step
under the assumptions of constant temperature and local ther-
modynamic equilibrium. On the other hand, the UVN-
formulation is useful in non-isothermal problems as, for
example, in the dynamic simulation of separation vessels [10,11]
or dynamic filling of a process vessel [12]. In these problems,
temperature changes during the simulation must be computed
using the energy balance and the assumption of the local ther-
modynamic equilibrium. As evolution of the internal energy is
provided by solving the energy balance equations, it is natural to
solve the phase equilibrium using the UVN-formulation.

There are only few papers concerning the UVN-flash. First,
Michelsen has proposed a general framework for other variables
specifications in Ref. [13], including the UVN- and TVN-
formulations. His approach uses PTN-flash in the inner loop while
pressure and temperature are iterated in an outer loop with the
goal of fulfilling the pertinent variable(s) specification(s). This
approach has the advantage that existing implementations of the
PTN-flash can be reused, but the price to pay is the increased CPU
cost because of the nested iterations. Moreover, numerical issues
can appear, as for example, during the course of the TVN-flash
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iterations, pressure can be negative and the conventional PTN-
based codes may not be well suited to treat the negative pressure.

The second paper devoted to the UVN-flash equilibrium calcu-
lation is the paper [12]. Here, a sophisticated heuristics is devel-
oped to estimate the pressure and temperature corresponding to
the given internal energy, volume, and moles. Initial K-values are
estimated using the Wilson correlation and the estimated values of
pressure and temperature. Then, an iterative method is proposed
using a combination of the Newton-Raphson method for the up-
date of the pressure and temperature, and the successive substi-
tution iteration (SSI) for the update of the equilibrium K-values of
all components. According to [12], convergence towards the trivial
solution has been observed frequently. The solution method pro-
posed in Ref. [12] is not directly applicable to a system consisting
from a single component. Therefore, the authors propose a special
procedure for single-component systems.

The third paper devoted specifically to the UVN-formulation is
the paper [14]. The basic approach used in this paper is the direct
entropy maximization, which we also use in our work. However, to
get good initial phase split for the direct entropy maximization in
Ref. [14], one has to use estimates of the pressure P and tempera-
ture T, which are to be specified by the user together with the input
data or estimated by some heuristics. In case of numerical diffi-
culties, the algorithm has to use nested loops in which PTN-flash is
used in the inner loop and the pressure and temperature estimates
are adjusted in the outer loop so that V and U are close to the
specified values. When sufficiently good estimates of P and T have
been found, the procedure is switched back to the direct entropy
maximization. The resulting phase split is tested using the PTN-
stability and the procedure is terminated when the stable phase
split has been found. The detailed explanation of this procedure can
be found in Ref. [14]. The procedure flow-chart in Ref. [14] is pretty
complex and, as reported in Ref. [14], also prone to numerical dif-
ficulties e in some cases some parts of the algorithm have to be
performed in complex arithmetics.

In this paper we propose a different algorithm for UVN-phase
stability and UVN-flash equilibrium calculation. Similarly to [14],
our method is based on the direct entropy maximization. Unlike in
Ref. [14], we use the direct formulation of the UVN-phase stability
testing for constructing an initial guess for the UVN-flash calcula-
tion. As we will show in this paper, this combination is both robust
and efficient, and can be performed without numerical difficulties
mentioned in the previous works. Especially, the algorithm pro-
ceeds in a straightforward way, is applicable to both single-
component and multi-component systems, and there is no need
for the complex arithmetics.

The paper is structured as follows. In Section 2, we derive the
criterion for testing phase stability when the internal energy, vol-
ume, and mole numbers are specified. In Section 3, we describe the
procedure for calculation of temperature corresponding to the
specified internal energy, volume, and moles. In Section 4, we
derive a numerical algorithm for the UVN-based phase stability
testing. In Section 5, we describe the algorithm for the UVN-flash
equilibrium calculation. In Section 6, we explain how this algo-
rithm is combined with the UVN-phase stability test in order to
treat systems that can separate into any number of phases. In
Section 7, we test the algorithm on different example cases. Finally,
in Section 8, we summarize themain properties of our algorithm. In
the Appendix, details of the equations of state are given.

2. Single-phase stability testing at given internal energy,
volume, and moles

Consider a mixture of n components with mole numbers
N*
1;…;N*

n occupying volume V* and having internal energy U*. The
goal is to decide if this system remains in a single phase or splits
into two (or more) phases. The entropy of the hypothetical single-
phase system reads as

SI ¼ S
�
U*;V*;N*

1;…;N*
n

�
: (1)

From this system we are trying to separate a small amount of a
new trial phase with internal energy U0, volume V 0 and mole
numbers N0

1;…;N0
n. The total entropy of the two-phase system

reads as

SII ¼ S
�
U� � U0;V� � V 0;N�

1 � N0
1;…;N�

n � N0
n
�

þ S
�
U0;V 0;N0

1;…;N0
n
�
: (2)

Using the Taylor expansion around the point [U*,V*,N1
*,…,Nn

*], we
obtain

S
�
U* � U0;V* � V 0;N*

1 � N0
1;…;N*

n � N0
n

�
¼ S
�
U*;V*;N*

1;…;N*
n

�
� U0 vS

vU

�
U*;V*;N*

1;…;N*
n

�
� V 0 vS

vV

�
U*;V*;N*

1;…;N*
n

�
�
X
i¼1

n

N0
i
vS
vNi

�
U*;V*;N*

1;…;N*
n

�
þ R1

�
U0;V 0;N0

1;…;N0
n
�
;

(3)

where R1 denotes the remainder term in the Taylor expansion. We
assume that the trial phase volume can be arbitrarily small, and the
internal energy density u0 ¼ U0/V 0 and molar densities c0i ¼ N0

i=V
0

can be chosen arbitrarily, but are held constant. Similarly, we
denote by u* ¼ U*/V* and c�i ¼ N�

i =V
� the internal energy density

and the molar concentrations of the components in the initial
phase, respectively. Under these assumptions,

lim
V 0/0þ

R1
�
V 0u;V 0; c01V

0;…; c0nV 0�
V 0 ¼ 0: (4)

As

vS
vU

¼ 1
T
;

vS
vV

¼ P
T
;

vS
vNi

¼ �mi
T
; (5)

SII can be rewritten as follows

SII ¼ SI � U0

T*
� V 0P*

T*
þ
X
i¼1

n

N0
i
m*i
T*

þ R1
�
U0;V 0;N0

1;…;N0
n
�

þ S
�
U0;V 0;N0

1;…;N0
n
�
: (6)

Entropy is a homogeneous function of degree one in internal
energy, volume, and mole numbers. The Euler formula for homo-
geneous functions yields the following expression for the entropy
of the trial phase

S
�
U0;V 0;N0

1;…;N0
n
� ¼ U0

T 0
þ P0

T 0
V 0 �

X
i¼1

n

N0
i
m0i
T 0

: (7)

In the equations above, we denoted by T� ¼ TðU�;V�;N�
1;…;N�

nÞ,
P� ¼ PðU�;V�;N�

1;…;N�
nÞ, and m�i ¼ miðU�;V�;N�

1;…;N�
nÞ the values

of temperature, pressure and chemical potentials of all components
in the initial phase. Analogously, we denote by T 0 ¼ TðU0;V 0;
N0
1;…;N0

nÞ, P0 ¼ PðU0;V 0;N0
1;…;N0

nÞ, and m0i ¼ miðU0;V 0;N0
1;…;N0

nÞ
the values of temperature, pressure and chemical potentials of all
components in the trial phase.

Finally, we can introduce function D of variables c01;…; c0n and u0
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by

D ¼ lim
V 0/0þ

SII � SI

V 0

¼ u0
�
1
T 0

� 1
T*

�
þ
�
P0

T 0
� P*

T*

�
�
Xn
i¼1

 
m0i
T 0

� m*i
T*

!
c0i: (8)

In this equation, the values of temperature, pressure, and
chemical potential in the trial phase are evaluated as
X0 ¼ Xðu0;1; c01;…; c0nÞ, where X stands for either T, P, or mi as pres-
sure, temperature, and chemical potentials are intensive variables.

The function D can be used for testing the phase stability of a
given state described by the internal energy, volume, and mole
numbers. If Dðc01;…; c0n;u0Þ � 0 for all admissible ½c01;…; c0n;u0�, then
the initial phase is stable, because no two-phase split will have
higher entropy than the initial single-phase state. On the other
hand, if there exists an admissible state ½c01;…; c0n;u0� for which
Dðc01;…; c0n;u0Þ>0; then the initial state is unstable and the phase
splitting will occur. In the unstable case, it follows from the defi-
nition of function D that a small positive volume V 0 exists for which
SII�SI is positive. The volume V 0 can be found by the bisectioning.
Once V 0 has been found, denoting

Uð1Þ ¼ u0V 0; V ð1Þ ¼ V 0; Nð1Þ
i ¼ c0iV

0; (9)

and

Uð2Þ ¼ U* � u0V 0; V ð2Þ ¼ V* � V 0; Nð2Þ
i ¼ N*

i � c0iV
0; (10)

we have constructed a two phase split of ½U�;V�;N�
1;…;N�

n� into
phases described by states ½Uð1Þ;V ð1Þ;Nð1Þ

1 ;…;Nð1Þ
n � and

½Uð2Þ;V ð2Þ;Nð2Þ
1 ;…;Nð2Þ

n � with higher total entropy than the entropy
of the initial phase. The phase stability testing not only decides on
the phase stability but in the unstable case provides tools for
constructing of an initial two-phase split with higher entropy than
the entropy of the initial case. This will be advantageous for the
initialization of the UVN phase equilibrium calculation.

3. Evaluation of the UVN-dependent functions

In the above derivations, pressure P, temperature T, and chem-
ical potentials of all components mi were considered as functions of
the internal energy U, volume V, and mole numbers N1,…,Nn.
Commonly used equations of state are, however, usually formu-
lated as functions of temperature T, volume V, and mole numbers
N1,…,Nn. It is therefore necessary to establish connection between
these two sets of variables, especially to specify how to find the
value of temperature T corresponding to the specified values of U, V,
and N1,…,Nn.

We assume that the system is described by a pressure-explicit
equation of state of the form

P ¼ PðEOSÞðT ;V ;N1;…;NnÞ: (11)

This equation has to be complemented with a compatible
thermal equation of state of the form

U ¼ UðEOSÞðT;V ;N1;…;NnÞ; (12)

prescribing relation between internal energy and temperature and
by the entropy equation of state

S ¼ SðEOSÞðT;V ;N1;…;NnÞ; (13)

which allows to evaluate entropy as a function of T,V,N1,…, Nn.
Specific forms of the functions P(EOS), U(EOS), and S(EOS) are given in
the Appendix.

Assuming that the dependency of U on T in (12) is strictly
increasing, (12) provides an implicit definition of function
T ¼ T(U,V,N1,…,Nn) by

U ¼ UðEOSÞðTðU;V ;N1;…;NnÞ;V ;N1;…;NnÞ: (14)

For any admissible set of values [U,V,N1,…,Nn], equation (14) can
be solved numerically for T either by the bisection technique or by
the Newton method. Once the value of T(U,V,N1,…,Nn) has been
calculated, pressure P is established by the equation of state

PðU;V ;N1;…;NnÞ ¼ PðEOSÞðTðU;V ;N1;…;NnÞ;V ;N1;…;NnÞ;
(15)

entropy reads as

SðU;V ;N1;…;NnÞ ¼ SðEOSÞðTðU;V ;N1;…;NnÞ;V ;N1;…;NnÞ;
(16)

and the chemical potential can be evaluated using

miðU;V ;N1;…;NnÞ¼ vUðEOSÞ

vNi
ðTðU;V ;N1;…;NnÞ;V ;N1;…;NnÞ

�TðU;V ;N1;…;NnÞvS
ðEOSÞ

vNi
ðTðU;V ;N1;…;NnÞ;V ;N1;…;NnÞ:

(17)
4. Numerical algorithm for the single phase stability testing
at given internal energy, volume, and moles

To find out if there exists a state ½c01;…; c0n;u0� for which
Dðc01;…; c0n;u0Þ>0, we will seek for local maxima of D. Components
of the gradient of function D can be derived by differentiation of D
with respect to c0k and u0 and using the Gibbs-Duhem relation,
which results into

vD
vc0k

¼ m*k
T*

� m0k
T 0
;

vD
vu0

¼ 1
T 0

� 1
T*

: (18)

If we define a vector F2ℝnþ1 by

F ¼
 
vD
vc01

;…;
vD
vc0n

;
vD
vu0

!T

; (19)

(T denotes the transposed matrix), then we are going to solve a
system of (n þ 1) non-linear algebraic equations

F
�
c01;…; c0n;u

0� ¼ 0: (20)

We now consider two ways to solve the system.
4.1. A direct solution using the Newton-Raphson method

The system (20) can be solved iteratively using the modified
Newton-Raphson method. If we denote

x ¼ �c01;…; c0n;u
0�T ; (21)

then the modified Newton-Raphson iterations can be performed as
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xðkþ1Þ ¼ xðkÞ þ lðkÞDxðkÞ; (22)

where lðkÞ2ð0;1� is a damping parameter and Dx(k) is an increment,
which is determined as a solution of the system

J
�
xðkÞ
�
DxðkÞ ¼ �F

�
xðkÞ
�
: (23)

Here J is the Jacobian matrix of function F (or the Hessian of
function D), which can be written in a block-matrix form as

J ¼
�

B ℂ
ℂT D

�
; (24)

where the matrix blocks are of the following forms

B2ℝn;n;Bij ¼
v2D
vc0ivc

0
j
; (25)

ℂ2ℝn;ℂi ¼
v2D
vc0ivu

0 ; (26)

D2ℝ;D ¼ v2D

vðu0Þ2
: (27)

The derivatives can be evaluated using (18) as

v2D
vc0ivc

0
j
¼ �

vm0
i

vNj
T 0 � m0i

vT 0
vNj

ðT 0Þ2
; (28)

v2D
vc0ivu

0 ¼ �
vm0

i
vVT

0 � m0i
vT 0
vV

ðT 0Þ2
; (29)

v2D

vðu0Þ2
¼ � 1

ðT 0Þ2
vT 0

vU
: (30)

Once the increment direction Dx(k) has been established, the
damping factor has to be determined. First we try to set l(k) ¼ 1. If
x(kþ1) is out of the admissible domain, we halve l(k) until the new
approximation belongs to the admissible domain. Using this
modification of the Newton-Raphson method (the so-called line-
search technique) allows to attain global convergence in the
Newton-Raphson method.

When testing stability at given pressure, temperature, and
moles (PTN-flash), one usually uses Wilson's correlation [15] for
construction of initial approximations. Similarly, available algo-
rithms for testing phase stability at constant volume, temperature,
and moles (TVN-flash) [16] obtains initial approximations using
saturation pressures of the individual components of the mixture.
Neither of these two approaches is possible in the UVN-formulation
because in this case temperature is not known a-priori. Therefore,
we propose the following method for initialization of the UVN-
phase stability algorithm. The admissible molar concentrations c0i
must obey

X
i¼1

n

c0ibi <1; (31)

c0i � 0; i ¼ 1;…;n; (32)

where bi > 0 is the co-volume parameter from the Peng-Robinson
equation of state. The set of admissible concentrations forms an
n-simplex. The first initial approximation for ½c01;…; c0n� will be the
barycenter of the simplex. Another n þ 1 initial approximations for
½c01;…; c0n� will be at the midpoints between the barycenter and any
of the n þ 1 vertices of the admissible domain. This way we obtain
n þ 2 initial approximations for ½c01;…; c0n�. These initial molar
concentrations are supplemented by several initial approximations
of the internal energy density u0 so that the resulting state
½c01;…; c0n;u0� corresponds to a certain temperature T. The lowest
temperature is T ¼ 100K and then we increase the temperature by
50K up to T ¼ 400K. This way we construct 7(n þ 2) initial ap-
proximations for UVN-stability testing which can be used in the
modified Newton-Raphson method. Numerical experiments pre-
sented in later sections indicate that using this choice of initial
approximations, we obtain the global maximum of function D.
4.2. Solution of a reduced system

The last equation in (20) reads as

1
T 0

� 1
T*

¼ 0: (33)

This equation implies that T 0 ¼ T*, i.e. the trial phase should have
the same temperature as the initial phase. Substituting this equality
into the first n equations in (20), we obtain a reduced set of
equations

1
T*
�
m*k � m0k

� ¼ 0; k ¼ 1;…;n: (34)

Multiplying these equations by T* we get the following set of n
non-linear algebraic equations

m*k � m0k ¼ 0; i ¼ 1;…;n; (35)

for unknown trial phase concentrations c01;…; c0n. These are the
same equations as those in the TVN-stability testing. It is thus
tempting to use the TVN-stability testing algorithm described in
Ref. [16], but our numerical experiments show that this procedure
does not provide good results in some cases. Similarly, in Ref. [14]
Castier proposed to use PTN-stability testing for testing the sta-
bility of a given state. However, this procedure can also fail, as e.g.
for a two-phase system, the pressure evaluated from the equation
of state for the single-phase system can be negative. For most PTN-
stability testing algorithms, the specification of a negative pressure
leads to the failure of the computation. For negative pressure one
can tell that the system is unstable without stability testing, but
without stability testing, we do not get any reasonable initial guess
for the flash calculation (c.f. also the discussion in Ref. [17]). All
these issues are avoided by resorting to the UVN-based stability
testing.

The viable alternative is to apply the algorithm described in the
previous subsection to the reduced system of equations. The
modification of the algorithm is straightforward e the matrix Jwill
contain the block B only and the vector F will contain just the
first n components. Initial approximations of the solutions
xð0Þ ¼ ½c01;…; c0n�T will be covering the admissible domain of con-
centrations only. We use the same choice of the initial molar con-
centrations as in the previous subsection. This results into n þ 2
different initial approximations of the solution. Compared to the
previous section, the number of initial guesses to be tested is seven
times reduced. This reduction of the number of initial guesses is
important especially in case of multicomponent mixtures with
many components in the stable case (in the unstable case, the
search for unstable state is terminated when the first unstable state
is found, but if the mixture is stable, we have to test stability using
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each of the initial guesses).
4.3. Modified Cholesky decomposition

When using modified Newton-Raphson method, iterates may
not converge towards a local maximum, but also to a local mini-
mum or towards a saddle point. This problem can be avoided using
a modification of the Hessian. The aim of the modification is to
guarantee that the value of function D will increase in each itera-
tion. It is well known that if the Hessian is negative definite, then
the increment shows the ascent direction of function D. For suffi-
ciently low values of the damping parameter l(k), we have
D(x(kþ1)) >D(k). If the Hessian is not negative definite, then the value
of D in the next iteration can be either higher or lower than in the
previous iteration. In this case we have to modify the Hessian
matrix so that it becomes negative definite. Negative definiteness of
the modified Hessian is ensured using the modified Cholesky
decomposition of the Hessian matrix J. The standard Cholesky
decomposition of a symmetric positive definite matrix �J factor-
izes the matrix to the product of a lower triangular matrix L and its
transpose, i.e.

J ¼ �LLT : (36)

If �J is not positive definite, its Cholesky decomposition may
not exist or can be unstable. The modified Cholesky decomposition
is performed in the same way as the standard Cholesky decom-
position, however, when a negative or too small element appears at
the diagonal of the factorized matrix, the corresponding diagonal
element of �J is increased, so as to become sufficiently large. This
way we obtain a Cholesky factorization of a modified matrix J� E,
where E is a diagonal matrix with non-negative elements. When
constructing the modified Cholesky decomposition of matrix �J,
we have to satisfy four requirements:

1. If �J is sufficiently positive definite, then E ¼ 0.
2. If�J is not positive definite, then the norm kEk should be as low

as possible.
3. Matrix J� E should be well-conditioned.
4. The construction should be cheap.

The first two requirements guarantee fast convergence of the
Newton method. The third point guarantees good solvability and
stability of the solution of the resulting system of linear algebraic
equations. In our previous works [6e8], we have used the modified
Cholesky decomposition from Ref. [18]. However, it is shown in
Ref. [19] that the algorithm from Ref. [18] is not optimal because the
requirement 1 is not fulfilled sufficiently well. In this work, we use
the algorithm introduced in Ref. [20]. This new algorithm distin-
guishes better whether the matrix is positive definite or not and
provides better results compared to the algorithm from Ref. [18].
For the details of the algorithm, the reader is referred to the original
paper [20].
4.4. Summary of the numerical algorithm for UVN-stability testing

We summarize essential steps of the algorithm for the single-
phase stability testing at given internal energy, volume, and
moles. We will describe the version of the algorithm derived in
Section 4.1.

1. Let the values U�;V�;N�
1;…;N�

n be given. Construct 7(n þ 2)
initial approximations of the solutions as described in Section
4.1. Set m ¼ 1.
2. Set iteration count k ¼ 0. Let x(0) be the m-th initial approxi-
mation of the solution in the form� 	T
xð0Þ ¼ c01;…; c0n;u

0 :

3. Assemble matrix JðxðkÞÞ and vector F(x(k)) using equations (24)
and (19).

4. Evaluate the increment of the solution DxðkÞ2ℝnþ1 by solving
the system of linear algebraic equations� � � �

J xðkÞ DxðkÞ ¼ �F xðkÞ :

If JðxðkÞÞ is not negative definite, use the modified Cholesky
decomposition to get the modified Hessian and obtain the
increment Dx(k) by solving the modified system� � � �
bJ xðkÞ DxðkÞ ¼ �F xðkÞ ;

where bJ ¼ J� E.
5. Determine l(k) > 0 so that� � � �
D xðkÞ þ lðkÞDx >D xðkÞ : (37)

Set l(k) ¼ 1 and test condition (37). If the condition does not
hold, iterate lðkÞ ¼ l

ðkÞ

2 , until (37) is fulfilled.
6. Update the solution using (22)

ðkÞ
xðkþ1Þ ¼ xðkÞ þ l DxðkÞ:

7. Test the convergence. The iterations can be stopped, if

 !1



DxðkÞ


 ¼
Xn
i¼1

DxðkÞ2i

c2
þ DxðkÞ2nþ1

u2

2

< 3; (38)

where 3is the required tolerance, e.g. 3¼ 10�6. If the condition is
satisfied, go to step 8, if not, set k ¼ k þ 1 and go to step 3.
8. If D(x(k)) > 0, terminate the algorithm and declare the state as

unstable. In the opposite case see if m < 7(n þ 2). If yes, set
m ¼ m þ 1 and go to step 2, in the opposite case terminate al-
gorithm and declare the state as stable.
5. Solution of the UVN-phase equilibrium problem by direct
entropy maximization

In this section we describe an algorithm for calculation of the
equilibrium state of amulticomponentmixture at specified internal
energy U*, volume V* and mole numbers N�

1;…;N�
n, with an a-priori

known number p � 2 phases. This algorithm and the algorithm for
testing the phase stability will be combined in Section 6 leading to a
general strategy for establishing the equilibrium state in a system in
which the number of phases p is a-priori unknown.

Let us consider a mixture that is split among p � 2 phases. The
total entropy of this p-phase split reads as

SðpÞ ¼
Xp
k¼1

S
�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
; (39)

where UðkÞ;V ðkÞ;NðkÞ
1 ;…;NðkÞ

n are the internal energy, volume, and
mole numbers of individual components in phase k. The
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superscript (p) denotes the fact that this entropy is a function of
variables of all p phases. Entropy is a subject to the following
constraints

U* ¼
X
k¼1

p

UðkÞ; (40)

V� ¼
X
k¼1

p

V ðkÞ; (41)

N*
i ¼

X
k¼1

p

NðkÞ
i ; i ¼ 1;…;n: (42)

The equilibrium state is the state which maximizes entropy (39)
and obeys the constraints (40)e(42), i.e. we are solving a con-
strained maximization problem for p(n þ 2) unknowns with n þ 2
constraints. After elimination of the constraints, the problem can be
transformed into an unconstrained maximization problem in a
lower dimension. Eliminating the variables of the p-th phase using
the constraints, we obtain

SðpÞred ¼
Xp�1

k¼1

S
�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
þ S

 
U* �

Xp�1

k¼1

UðkÞ;

V* �
Xp�1

k¼1

V ðkÞ;N*
1 �

Xp�1

k¼1

NðkÞ
1 ;…;N*

n �
Xp�1

k¼1

NðkÞ
n

!
:

Denoting

x+¼
 
U*�

X
k¼1

p�1

UðkÞ;V*�
X
k¼1

p�1

VðkÞ;N*
1�
X
k¼1

p�1

NðkÞ
1 ;…;N*

n�
X
k¼1

p�1

NðkÞ
n

!
;

(43)

we can write

SðpÞred ¼
Xp�1

k¼1

S
�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
þ S
�
x+
�
: (44)

To determine the equilibrium state, one must solve the uncon-
strained maximization problem for (p�1)(n þ 2) unknown vari-
ables UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n for k2{1, 2,…, p�1}.

5.1. Numerical procedure

The maximum of function (44) can be found using the modified
Newton-Raphson method. Denoting the vectors of unknowns for
the reduced unconstrained problem as well as for the original
constrained problem as

x¼
�
Nð1Þ
1 ;…;Nð1Þ

n ;V ð1Þ;Uð1Þ;…;Nðp�1Þ
1 ;…;Nðp�1Þ

n ;V ðp�1Þ;Uðp�1Þ
�T

;

(45)

X ¼
�
Nð1Þ
1 ;…;Nð1Þ

n ;V ð1Þ;Uð1Þ;…;NðpÞ
1 ;…;NðpÞ

n ;V ðpÞ;UðpÞ
�T

;

(46)

the modified Newton-Raphson method updates any given
approximation as

Xðjþ1Þ ¼ XðjÞ þ lðjÞDXðjÞ: (47)

In the above equation lðjÞ2ð0;1� is a damping parameter and
DXðjÞ ¼ ℤDxðjÞ is the solution increment, which is obtained by
solving the following system of linear algebraic equations

ℍ
�
xðjÞ
�
DxðjÞ ¼ �g

�
xðjÞ
�
: (48)

Matrix ℤ2ℝpðnþ2Þ;ðp�1Þðnþ2Þ is of the following block form

ℤ ¼

0BBBBBB@
Inþ2 O O … O

O Inþ2 O … O

O O Inþ2 … O

« « « 1 «
O O … O Inþ2

�Inþ2 �Inþ2 … �Inþ2 �Inþ2

1CCCCCCA; (49)

where Inþ2 is the square identity matrix of size n þ 2 and O is the
square zero matrix of size n þ 2. In equation (48),
ℍðxðjÞÞ2ℝðp�1Þðnþ2Þ;ðp�1Þðnþ2Þ is the Hessian, i.e. the matrix of the
second derivatives of function SðpÞred and gðxðjÞÞ2ℝðp�1Þðnþ2Þ; is the
gradient of function SðpÞred.
5.1.1. Evaluation of the gradient of function SðpÞred
Gradient of function SðpÞred, denoted as g(x), can be written as

follows

gðxÞ ¼
0@ gð1Þ

«
gðp�1Þ

1A; (50)

where gðkÞ2ℝnþ2 for k ¼ 1,…,p�1 and

gðkÞ ¼

0BBBBBBBBBBBBBBBBBBBB@

vSðpÞred

vNðkÞ
1

«

vSðpÞred

vNðkÞ
n

vSðpÞred

vV ðkÞ

vSðpÞred

vUðkÞ

1CCCCCCCCCCCCCCCCCCCCA

¼

0BBBBBBBBBBBBB@

�m1
T

�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
þ m1

T

�
x+
�

«

�mn
T

�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
þ mn

T

�
x+
�

P
T

�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
� P
T

�
x+
�

1
T

�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
� 1
T

�
x+
�

1CCCCCCCCCCCCCA
:

(51)
5.1.2. Evaluation of the Hessian of function SðpÞred
The matrix ℍ can be written in the following block form

ℍ¼

0BBBB@
ℍð1;1Þ ℍð1;2Þ ℍð1;3Þ / ℍð1;p�1Þ
ℍð2;1Þ ℍð2;2Þ ℍð2;3Þ / ℍð2;p�1Þ
ℍð3;1Þ ℍð3;2Þ ℍð3;3Þ / ℍð3;p�1Þ

« « « 1 «
ℍðp�1;1Þ ℍðp�1;2Þ / ℍðp�1;p�2Þ ℍðp�1;p�1Þ

1CCCCA; (52)

where the blocks ℍðk;lÞ2ℝnþ2;nþ2 for k,l2{1,…, p�1} read as

ℍðk;lÞ ¼

0BBB@
Bðk;lÞ ℂðk;lÞ Eðk;lÞ�
ℂðk;lÞ

�T
Dðk;lÞ Fðk;lÞ�

Eðk;lÞ
�T

Fðk;lÞ Gðk;lÞ

1CCCA: (53)

Furthermore,



Table 1
Parameters of the Peng-Robinson equation of state used in Problems 1e9.

Component Tcrit [K] Pcrit [bar] u [-]

C1 190.4 46.0 0.011
H2S 373.2 89.4 0.081
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Bðk;lÞ2ℝn;n;B
ðk;lÞ
ij ¼ v2SðpÞred

vNðkÞ
i vNðlÞ

j

ðxÞ; (54)

ℂðk;lÞ2ℝn;ℂðk;lÞ
i ¼ v2SðpÞred

vNðkÞ
i vV ðlÞ

ðxÞ; (55)

Eðk;lÞ2ℝn;E
ðk;lÞ
i ¼ v2SðpÞred

vNðkÞ
i vUðlÞ

ðxÞ; (56)

Dðk;lÞ2ℝ;Dðk;lÞ ¼ v2SðpÞred

vV ðkÞvV ðlÞ ðxÞ; (57)

Fðk;lÞ2ℝ; Fðk;lÞ ¼ v2SðpÞred

vUðkÞvV ðlÞ ðxÞ; (58)

Gðk;lÞ2ℝ;Gðk;lÞ ¼ v2SðpÞred

vUðkÞvUðlÞ ðxÞ: (59)

These partial derivatives can be expressed as

Bðk;lÞij ¼ �
vmi
vNj

� mi
vT
vNj

T2

�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l

�
vmi
vNj

� mi
vT
vNj

T2
�
x+
�
; (60)

Cðk;lÞ
i ¼

vP
vNi

T � P vT
vNi

T2

�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l

þ
vP
vNi

T � P vT
vNi

T2
�
x+
�
; (61)

Eðk;lÞi ¼ � 1
T2

vT
vNi

�
UðkÞ;VðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l �

1
T2

vT
vNi

�
x+
�
;

(62)

Dðk;lÞ ¼
vP
vV T � P vT

vV

T2

�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l

þ
vP
vV T � P vT

vV
T2

�
x+
�
; (63)

Fðk;lÞ ¼ � 1
T2

vT
vV

�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l �

1
T2

vT
vV

�
x+
�
;

(64)

Gðk;lÞ ¼ � 1
T2

vT
vU

�
UðkÞ;V ðkÞ;NðkÞ

1 ;…;NðkÞ
n

�
dk;l �

1
T2

vT
vU

�
x+
�
:

(65)

Here, dk,l is the Kronecker symbol, which is equal to 1 for k ¼ l
and 0 for ksl. Note that for ksl the right hand sides of equations
(60) to (65) do not depend on k and l. As a consequence, all non-
diagonal block matrices ℍðk;lÞ in equation (52) are the same.
C2 305.4 48.8 0.099
C3H6 364.9 46.0 0.144
C3 369.8 42.5 0.153
iC4 408.2 36.5 0.183
nC4 425.2 38.0 0.199
nC5 469.7 33.7 0.251
H2O 647.3 221.2 0.344
5.1.3. Preconditioning of the system ℍDx ¼ �g
To determine Dx, we have to solve the system

ℍDx ¼ �g: (66)
This system is solved using the modified Cholesky decomposi-
tion, which was described in Section 4.3. This method guarantees
that the value of SðpÞred will increase in each iteration. Therefore, the
modified Newton method will converge to at least local maximum
of function SðpÞred. Numerical experiments indicate that it is advan-
tageous to use a symmetric diagonal preconditioning of matrix ℍ so
as to equilibrate the diagonal elements of ℍ. Instead of solving (66),
we solve the equivalent system

ℙℍℙTy ¼ �ℙg; (67)

where Dx ¼ ℙTy and ℙ2ℝðp�1Þðnþ2Þ;ðp�1Þðnþ2Þ is a diagonal matrix
with nonzero diagonal elements which are chosen so that the di-
agonal elements of the preconditionedmatrix ℙℍℙT are equal to ±1.
This procedure significantly improves convergence of the Newton-
Raphsonmethod. At the same time, the condition number of matrix
ℙℍℙT is much lower compared to ℍ and we are thus solving a much
better conditioned problem.
5.1.4. The stopping criteria
In our previous works ([7]) we have used the stopping criterium

in the modified Newton-Raphsonmethod based on the norm of the
increment in the form

kDxk< 3; (68)

where the norm k$k is defined as

kxk ¼
0@Xp

k¼1

0@ Xnþðk�1Þðnþ2Þ

i¼1þðk�1Þðnþ2Þ

x2i
N2 þ

x2kðnþ2Þ�1

V2 þ
x2kðnþ2Þ
U2

1A1A1
2

(69)

This criterium is not optimal. In some examples the computa-
tion was stopped too early. Therefore, following the discussion in
Ref. [18], we propose the stopping criterium based on three pa-
rameters e increase of function S(p), size of the increment of solu-
tion, and the size of the gradient of function SðpÞred. The modified
Newton-Raphson iterations are terminated when all the
following conditions hold

SðpÞ
�
XðjÞ
�
� SðpÞ

�
Xðj�1Þ

�
<Qj; (70)




XðjÞ � Xðj�1Þ



< ffiffiffi

t
p �

1þ



XðjÞ




�; (71)




g�xðjÞ�



2
<

ffiffiffi
t3

p 


VSðpÞ�XðjÞ
�




2
; (72)

where

Qj ¼ t
�
1þ

���SðpÞ�XðjÞ
�����:



Table 2
Correlation coefficients for evaluation of cigp in Problems 1e9. Data taken over from
Ref. [22].

Component a0 a1 a2 a3

C1 19.25 5.213 � 10�2 1.197 � 10�5 �1.132 � 10�8

H2S 31.94 1.463 � 10�3 2.432 � 10�5 �1.176 � 10�8

C2 5.409 1.781 � 10�1 �6.938 � 10�5 8.713 � 10�9

C3H6 3.710 2.345 � 10�1 �1.160 � 10�4 2.205 � 10�8

C3 �4.224 3.063 � 10�1 �1.586 � 10�4 3.215 � 10�8

iC4 �1.390 3.847 � 10�1 �1.846 � 10�4 2.895 � 10�8

nC4 9.487 3.313 � 10�1 �1.108 � 10�4 �2.822 � 10�9

nC5 �3.626 4.873 � 10�1 �2.580 � 10�4 5.305 � 10�8

H2O 32.24 1.924 � 10�3 1.055 � 10�5 �3.596 � 10�9

Table 3
Specifications of Problems 1e4. The reference state for internal energy U is described
in the Appendix.

Property [unit] Problem 1 Problem 2 Problem 3 Problem 4

U [J] �756500.8 �1511407.6 �331083.7 �636468
V [cm3] 52869 4268.1 80258.1 9926.71
NC1

[mol] 10 0.95 15.1 10
NH2S[mol] 90 99.05 84.9 90

Table 5
Specifications of Problems 5 and 6. The reference state for internal energy U is
described in the Appendix.

Property [unit] Problem 5 Problem 6

U [J] �16272506.4 24858.2
V [cm3] 479845 289380.3
NC2

[mol] 10.8 10.8
NC3H6

[mol] 360.8 360.8
NC3

[mol] 146.5 146.5
NiC4

[mol] 233 233
NnC4

[mol] 233 233
NC5

[mol] 15.9 15.9
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Parameter t is the prescribed tolerance. In this work we use
t ¼ ffiffiffi

3
p

, where 3is the machine precision. In (71) the norm k$k
denotes the norm defined by equation (69), the norm k$k2 in (72) is
the standard Euclidean norm.
5.1.5. Summary of the computational algorithm
Now we summarize the essential steps of the algorithm for

calculating the equilibrium state of a p-phase systemwith specified
internal energy, volume, and moles.

1. Let U,V,N1,…,Nn assume the values given in the specification. Set
j¼ 0 and consider an initial approximation of the phase split X(0)

Xð0Þ ¼
�
Nð1Þ
1 ;…;Nð1Þ

n ;V ð1Þ;Uð1Þ;…;NðpÞ
1 ;…;NðpÞ

n ;V ðpÞ;UðpÞ
�T

:

(73)
2. Assemble matrix ℍ and vector g using (52) and (50)
3. Evaluate DxðjÞ2ℝðp�1Þðnþ2Þ by solving the system ℍDxðjÞ ¼ �g

using the modified Cholesky decomposition.
4. Evaluate DXðjÞ2ℝpðnþ2Þ using DXðjÞ ¼ ZDxðjÞ, where Z is defined

by (49).
Table 4
Results of Problems 1e4. SI denotes the entropy of the hypothetical single-phase state, wh
states for internal energy U and entropy S are described in the Appendix.

Problem 1 Problem 2

Phase 1 Phase 2 Phase 1 Phase 2

U [J] �544956.214319 �211544.585681 �1510985.753624 �421.846
V [cm3] 1502.361229 51366.638771 4165.673900 102.426
NC1

[mol] 0.335680 9.664320 0.930730 0.019
NH2S[mol] 35.684022 54.315978 98.941685 0.108

T [K] 297.997716 297.997716 298.000861 298.000
P [Pa] 2500170.787203 2500170.787153 2500317.847486 2500317.776

mC1
[J mol�1] 3303.806129 3303.806129 3303.775622 3303.775

mH2S [J mol�1] 7051.238967 7051.238967 7051.480304 7051.480

SI [J K�1] �4847.824318 �7391.709463
SII [J K�1] �4335.499136 �7390.326639
Iterations 9 3
5. Find l(j) > 0 so that

SðpÞ
�
XðjÞ þ lðjÞDX

�
> SðpÞ

�
XðjÞ
�

(74)

First, set l(j) ¼ 1 and test condition (74). If the condition is not
satisfied, iterate l(j) ¼ l(j)/2, until the condition (74) holds.

6. Update the solution by

Xðjþ1Þ ¼ XðjÞ þ lðjÞDXðjÞ: (75)
7. Check the convergence. If the conditions (70)e(72) are satisfied,
terminate the iterations and the vector X(j) is the solution. In the
opposite case, set j ¼ j þ 1 and return to step 2.

6. General UVN-phase equilibrium computation with a-priori
unknown number of phases

In the previous section, we have described the computation of
phase equilibria for a system with specified internal energy, vol-
ume, and moles assuming an a-priori given number of phases p.
The number of phases is often unknown and it is the expected
result of the computation.

6.1. Phase addition and removal

In Sections 2 and 4, we have described the algorithm for testing
single-phase stability at specified internal energy, volume, and
moles. As the criterion depends only on the values of pressure,
temperature, and chemical potentials (which in the equilibrium
system are the same in all phases), the same algorithm can be used
for testing stability of a general p-phase equilibrium system. In this
situation it is necessary to test stability of only one (arbitrarily
ile SII denotes the equilibrium entropy of the stable two-phase system. The reference

Problem 3 Problem 4

Phase 1 Phase 2 Phase 1 Phase 2

376 �566.777015 �330516.922985 �245807.965175 �390660.034825
100 1.562506 80256.537494 3512.626019 6414.083981
270 0.000349 15.099651 3.551418 6.448582
315 0.037113 84.862887 33.609473 56.390527

856 297.996887 297.996887 361.997885 361.997885
275 2500125.243552 2500124.858262 10130505.626170 10130505.626049
371 3303.775698 3303.775686 8352.778379 8352.778379
059 7051.175471 7051.175450 11536.674427 11536.674427

�2613.988230 �4579.402758
�2613.987835 �4579.402147

3 5



Table 6
Results of Problems 5e6. SI denotes the entropy of the hypothetical single-phase state, while SII denotes the equilibrium entropy of the stable two-phase system. The reference
states for internal energy U and entropy S are described in the Appendix.

Problem 5 Problem 6

Phase 1 Phase 2 Phase 1 Phase 2

U [J] �15892619.468615 �379886.931385 �150012.775415 174870.975415
V [cm3] 78647.609580 401197.390420 16232.876572 273147.423428
NC2

[mol] 6.596564 4.203436 0.735307 10.064693
NC3H6

[mol] 292.574168 68.225832 27.089302 333.710698
NC3

[mol] 122.083040 24.416960 11.174346 135.325654
NiC4

[mol] 214.470841 18.529159 19.334487 213.665513
NnC4

[mol] 219.114563 13.885437 19.881086 213.118914
NC5

[mol] 15.574400 0.325600 1.508810 14.391190

T [K] 299.999735 299.999735 394.998501 394.998501
P [Pa] 700082.833469 700082.833469 4230233.608414 4230233.576530

mC2
[J mol�1] �3805.672092 �3805.672092 �3002.464669 �3002.464675

mC3H6
[J mol�1] 2997.221501 2997.221501 7239.889856 7239.889846

mC3
[J mol�1] 397.265640 397.265640 3882.999701 3882.999692

miC4
[J mol�1] �445.138790 �445.138790 3964.389004 3964.388995

mnC4
[J mol�1] �1196.477103 �1196.477103 3693.302135 3693.302127

mC5
[J mol�1] �10746.440440 �10746.440440 �6800.367303 �6800.367304

SI [J K�1] �73647.697512 �9052.552759
SII [J K�1] �54939.068244 �9052.431373
Iterations 10 5

Table 7
Specifications of Problems 7e9. The reference state for internal energy U is described
in the Appendix.

Property [unit] Problem 7 Problem 8 Problem 9

U [J] �17008802.6 �4575454.3 �7088052.5
V [cm3] 401916.6 2209.9 265831.3
NC2

[mol] 10.8 0.0108 10.8
NC3H6

[mol] 360.8 0.3608 360.8
NC3

[mol] 146.5 0.1465 146.5
NiC4

[mol] 233 0.233 233
NnC4

[mol] 233 0.233 233
NC5

[mol] 15.9 0.0159 15.9
NH2O [mol] 14 100 200
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selected) phase from the equilibrium phase split. As already
described at the end of Section 2, the phase stability testing pro-
vides a way to introduce a new phase in an unstable equilibrium
system so that the total entropy of the new system is higher than
the entropy of the equilibrium system. Phase stability testing thus
provides and excellent way for initialization of the phase equilib-
rium calculation.

During the computation of the phase equilibrium in systems at
p � 3 phases, it may happen that one of the phases disappears. This
may be consequence of the fact that during computation of the
phase equilibrium in a (p�1)-phase system, the algorithm has
converged to the local maximum only, and therefore, there exists
an (p�1)-phase state with higher entropy than the computed state.
For this reason, the algorithm must involve a test whether some of
the current phases should be removed. We use the following cri-
terion for the phase removal. A phase k is removed when

V ðkÞ

V* <
ffiffi
3

p
; (76)

where 3is the machine precision. If this condition is satisfied for
some k, we remove the phase from the system, split uniformly its
internal energy, volume, and moles among the remaining phases,
and continue the computation using the (p�1)-phase UVN-flash.

The proposed algorithm ensures increase of the entropy in each
iteration (including the steps in which the number of phases is
changing). Thanks to this property, the convergence towards the
trivial solution is avoided, which is not the case of some other
methods available in the literature (see e.g. Refs. [1,2,4]).
6.2. General strategy for the UVN-phase equilibrium calculation

As we do not know the number of phases a-priori, we start with
p ¼ 1, and we will consecutively add and remove phases until the
phase stability test indicates the stable phase split.

0. Let U*;V*;N*
1;…;N*

n be given. Set p ¼ 1.
1. Test the stability of the p-phase split. If the state is stable,

terminate the algorithm.
2. If the state is unstable, increase the number of phases by one.

Introduce the new phase using the strategy described in
Section 2.

3. Evaluate the equilibrium state in the systemwith p phases using
the algorithm from Section 5. Use the resulting trial phase from
the stability testing for constructing the initial approximation of
the solution.

4. Test if for some phase V ðkÞ
V* <

ffiffiffi
3

p
. If yes, remove the pertinent

phase and decrease the number of phases by one.
5. Repeat the steps 1e4, until the stability test indicates the stable

state.
7. Numerical examples

We have implemented the algorithms described above in Cþþ.
In the following section, we report results of the code that were
computed using examples available in the literature, and also our
own test problems.
7.1. Examples from paper [14]

In this sectionwe test our algorithm on all examples from paper
[14]. Parameters of all components used in Problems 1e9 are given
in Table 1. Values of the correlation coefficients for the molar heat
capacity at cigp are presented in Table 2.
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Table 9
Problem 7: Result of the single-phase stability testing e values pre-
sented are the concentrations and internal energy density of a trial
phase that maximizes function D, the value of D at this state, and the
number of iterations in the UVN-stability test. The reference state for
internal energy U is described in the Appendix.

cC2
[mol m�3] 0.000003

cC3H6
[mol m�3] 0.000011

cC3
[mol m�3] 0.000000

ciC4
[mol m�3] 0.000000

cnC4
[mol m�3] 0.000000

cC5
[mol m�3] 0.000000

cH2O [mol m�3] 50790.652384
u [J m�3] �3029929171.784120

D [Pa K�1] 9790660.167058
Iterations 124
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7.1.1. Mixture of C1 and H2S
In the first set of examples we consider a binary mixture of

methane (C1) and hydrogen sulfide (H2S). The binary interaction
parameter between C1 and H2S is dC1�H2S ¼ 0:083. Four different
specifications are given in Table 3. According to [14], these speci-
fications were chosen so that large amounts of both (vapor and
liquid) phases are present in equilibrium in Problem 1, specifica-
tions of Problems 2 and 3 lead to states close to the bubble and dew
points, respectively, while the solution of Problem 4 is close to the
critical point. All four problems have been solved using our method.
Results are given in Table 4 in which we report the phase split
properties together with values of pressure, temperature, and
chemical potentials of all components in each phase. These data
allow to check whether the iterations have converged towards the
equilibrium state. We also provide values of entropy of the hypo-
thetical single-phase state, the total entropy of the phase split, and
the numbers of iterations needed for convergence.

Thematch of our results and the results given in Ref. [14] is quite
satisfactory. The numbers of iterations needed for convergence are
either the same or lower in our method than those reported in
Ref. [14], but these numbers depend on the stopping criterion.
Interestingly, in Problem 4, which is deemed to be close-critical,
convergence is achieved in 5 iterations only. Unlike in Ref. [14],
our method does not need any estimates of the pressure and
temperature. Instead, it constructs an initial guess for 2-phase flash
calculation using the UVN-phase stability analysis. In Problems
1e4, stability detects the two-phase state using one initial guess
only and provides an initial guess for the UVN-phase equlibrium
calculation. Iterations reported in Table 4 count iterations of the
modified Newtonmethod in UVN-flash calculation using this single
Table 10
Problem 7: Initial 2-phase split for 2-phase UVN-phase equilibrium calculation
constructed using the single-phase stability analysis. SII denotes the entropy of the
two-phase split, while SI is the entropy of the hypothetical (unstable) single-phase
state. The reference states for internal energy U and entropy S are described in the
Appendix.

Phase 1 Phase 2

U [J] �594618.569807 �16414184.030193
V [cm3] 196.248340 401720.351660
NC2

[mol] 0.000000 10.800000
NC3H6

[mol] 0.000000 360.800000
NC3

[mol] 0.000000 146.500000
NiC4

[mol] 0.000000 233.000000
NnC4

[mol] 0.000000 233.000000
NC5

[mol] 0.000000 15.900000
NH2O [mol] 9.967581 4.032419

SII [J K�1] �73383.490865
SI [J K�1] �75123.865978



Table 11
Problem 7: 2-phase split obtained from the 2-phase UVN-flash equilibrium calcu-
lation. The reference states for internal energy U and entropy S are described in the
Appendix.

Phase 1 Phase 2

U [J] �819369.896249 �16189432.703751
V [cm3] 275.324119 401641.275881
NC2

[mol] 0.000000 10.8
NC3H6

[mol] 0.000000 360.8
NC3

[mol] 0.000000 146.5
NiC4

[mol] 0.000000 233.0
NnC4

[mol] 0.000000 233.0
NC5

[mol] 0.000000 15.9
NH2O [mol] 14.000000 0.0000

T [K] 145.637031 145.637031
P [Pa] �5338578.032320 �5338578.032331

mC2
[J mol�1] �8212.719344 �8212.719344

mC3H6
[J mol�1] �5846.099219 �5846.099170

mC3
[J mol�1] �7640.732298 �7640.731359

miC4
[J mol�1] �9531.520073 �9531.520028

mnC4
[J mol�1] �9937.110132 �9937.109580

mC5
[J mol�1] �15845.701333 �15845.701333

mH2O [J mol�1] �31867.132701 �31867.132707

Iterations 15
SII [J K�1] �72803.265597

Table 12
Problem 7: Result of 2-phase stability testing e values presented are
the concentrations and internal energy density of a trial phase that
maximizes function D, the value of D at this state, and the number of
iterations in the UVN-stability test. The reference state for internal
energy U is described in the Appendix.

cC2
[mol m�3] 44.606046

cC3H6
[mol m�3] 4819.073335

cC3
[mol m�3] 1489.109655

ciC4
[mol m�3] 2262.318729

cnC4
[mol m�3] 5356.898847

cC5
[mol m�3] 636.576083

cH2O [mol m�3] 0.007316
u [J m�3] �513216740.034418

D [Pa K�1] 669527.524959
Iterations 23

Table 14
Problem 7: Numbers of iterations needed to achieve convergence in the UVN-phase
stability testing and themaximumvalues of function D for each of 9 initial guesses in
testing stability of the final 3-phase equilibrium split.

Initial guess Iterations D

1 18 �106.400525
2 19 �106.430255
3 19 �105.906830
4 18 �106.464686
5 18 �106.296797
6 18 �106.369733
7 18 �106.108887
8 30 �0.547776
9 21 �106.098904

Table 15
Parameters of the Peng-Robinson equation of state used in Problem 10.

Component Tcrit [K] Pcrit [bar] u [-]

C1 190.56 45.99 0.011
CO2 304.14 73.75 0.239

Table 16
Correlation coefficients for evaluation of cigp in Problem 10. Data taken over from
Ref. [22].

Component a0 a1 a2 a4

C1 19.25 5.213 � 10�2 1.197 � 10�5 �1.132 � 10�8

CO2 19.80 7.344 � 10�2 �5.602 � 10�5 �1.715 � 10�8
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initial guess from UVN-stability. Finally, let us point out that our
algorithm is fully performed in real arithmetics. On the other hand,
in Ref. [14] it is reported that in some cases it is necessary to
perform some parts of the algorithm in complex arithmetics.

7.1.2. Liquified petroleum gas (LPG) mixture
Another two examples from Ref. [14] deal with a 6-component
Table 13
Problem 7: Initial 3-phase split for 3-phase UVN-phase equilibrium calculation
constructed using the UVN-stability analysis. SIII denotes the entropy of the 3-phase
split. The reference states for internal energy U and entropy S are described in the
Appendix.

Phase 1 Phase 2 Phase 3

U [J] �819369.896249 �3145.279332 �16186287.424419
V [cm3] 275.324119 6.128560 401635.147322
NC2

[mol] 0.000000 0.000273 10.799727
NC3H6

[mol] 0.000000 0.029534 360.770466
NC3

[mol] 0.000000 0.009126 146.490874
NiC4

[mol] 0.000000 0.013865 232.986135
NnC4

[mol] 0.000000 0.032830 232.967170
NC5

[mol] 0.000000 0.003901 15.896099
NH2O [mol] 14.000000 0.000000 0.000000

SIII [J K�1] �72799.163197
LPG mixture. As in Ref. [14], binary interaction coefficients be-
tween all components are set to zero. The specification of Problems
5 and 6 are given in Table 5. Castier [14] reports that in Problem 5,
because of appearance of the negative pressure in one part of the
computation, his algorithm has to be modified to use the nested
loops. Using the UVN-phase stability analysis for the construction
of the initial phase split, our method converges directly in 10 iter-
ations in Problem 5 and in 5 iterations in Problem 6. These numbers
are the same and lower than those reported in Ref. [14], but they
depend on the formulation of the stopping criterion. The resulting
Fig. 1. Approximate boundaries between the single-phase, two-phase, and three-
phase domains: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and
zC1

¼ 0:547413.



Fig. 2. Equilibrium pressure at u ¼ �2.5 � 108 J m�3 as a function of the overall molar
concentration c: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and
zC1

¼ 0:547413.

Fig. 4. Volume fractions of the equilibrium phases at u ¼ �2.5 � 108 J m�3 as functions
of the overall molar concentration c: mixture of CO2 and C1 at constant
zCO2

¼ 0:452587 and zC1
¼ 0:547413.
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phase splits together with values of pressure, temperature, chem-
ical potentials of all components in all phases, values of the entropy
in both single-phase and two-phase systems, and the numbers of
iterations are given in Table 6.
7.1.3. LPG gas mixture with water
The last three problems from Ref. [14] (denoted as Problems

7e9) deal with the 6 component LPG mixture from the last sub-
section mixed with water. In agreement with [14], all binary
interaction coefficients are set equal to zero. The specifications of
the problems are given in Table 7. According to [14], the specifica-
tions are chosen so that the Problem 7 leads to a 3-phase vapor-
liquid-liquid equilibrium, Problem 8 is a 2-phase liquid-liquid
equilibrium, and Problem 9 represents a high-pressure 3-phase
equilibrium calculation. Resulting phase splits together with
values of pressure, temperature, chemical potentials of all compo-
nents in all phases, entropies, and numbers of iterations of the
Fig. 3. Equilibrium temperature at u ¼ �2.5 � 108 J m�3 as a function of the overall
molar concentration c: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and
zC1

¼ 0:547413.
modified Newton method in the 2-phase and 3-phase UVN-flash
equilibrium calculations are summarized in Table 8. The number
of iterations in Problems 8 and 9 are similar (same or lower in our
method) to those reported in Ref. [14]. For Problem 7, Castier [14]
reports 3 iterations in 3-phase calculation together with 24 outer
loop iterations for initial estimates, while we have 15 iterations in
2-phase and 13 iterations in 3-phase UVN-flash equilibrium
calculation using a single initial guess provided by the UVN-
stability testing algorithm. Let us point out again that unlike in
Ref. [14], our approach does not require any initial estimates of the
equilibrium pressure and temperature and the whole algorithm
proceeds in a straightforward way using the real arithmetics only.

7.1.4. Detailed computation of Problem 7
To demonstrate main features of the UVN-stability analysis and

its application in the UVN-phase equilibrium calculation, we pre-
sent a detailed description of computation for Problem 7 from the
Fig. 5. Molar fractions of all components in all phases at u ¼ �2.5 � 108 J m�3 as
functions of the overall molar concentration c: mixture of CO2 and C1 at constant
zCO2

¼ 0:452587 and zC1
¼ 0:547413.



Fig. 6. Equilibrium pressure at c ¼ 26000 mol m�3 as a function of the internal energy
density u: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and zC1
¼ 0:547413.

Fig. 8. Volume fraction of equilibrium phases at c ¼ 26000 mol m�3 as a function of
the internal energy density u: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and
zC1

¼ 0:547413.
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previous paragraph. The procedure starts by testing the single-
phase stability of the proposed UVN-specification. The stability
test indicates the unstable single-phase using only one initial guess
(the first guess indicated the phase as unstable, so the other initial
guesses are not tested) and needed 124 iterations to converge. The
result of stability testing is summarized in Table 9. This result is
used for the construction of a two-phase split with higher entropy
than that of the single-phase state using the procedure described at
the end of Section 2. The initial phase split for two-phase equilib-
rium calculation is presented in Table 10. Then, the two-phase
UVN-flash is performed. In 15 iterations the algorithm converges
towards the 2-phase split presented in Table 11. This split is tested
for stability (the second phase is tested). The stability test indicates
the unstable 2-phase split using the first available initial guess
(therefore, other initial guesses are not tested) and needed 23 it-
erations to converge. The result of two-phase stability testing is
summarized in Table 12. This result is used for the construction of
an initial three-phase split with higher entropy than that of the
two-phase state. The initial phase split for three-phase equilibrium
Fig. 7. Equilibrium temperature at c ¼ 26000 mol m�3 as a function of the internal
energy density u: mixture of CO2 and C1 at constant zCO2

¼ 0:452587 and
zC1

¼ 0:547413.
calculation is presented in Table 13. Then, the three-phase UVN-
flash is performed. In 13 iterations the algorithm converges towards
the final result presented previously in Table 8. To confirm stability
of this 3-phase split, the UVN-phase stability test is performed. We
use the reduced number of 9 initial guesses as described in Section
4.2. Numbers of iterations needed to achieve convergence in the
UVN-stability testing and the maximum values of function D for
each initial guess are summarized in Table 14. As all maximum
values of D are negative, the 3-phase split is deemed to be stable
and the computation is terminated.

7.2. Mixture of CO2 and C1 at various conditions

To demonstrate robustness of our method, we consider a binary
mixture of carbon dioxide (CO2) and methane (C1) with overall
mole fractions zCO2

¼ 0:452587 and zC1
¼ 0:547413. Parameters of

the Peng-Robinson equation of state for these components are
presented in Table 15. Correlation coefficients for the evaluation of
cigp are presented in Table 16. The binary interaction coefficient
between CO2 and C1 is dCO2�C1

¼ 0:15. In Fig. 1 we present the
Fig. 9. Molar fractions of all components in all phases at c ¼ 26000 mol m�3 as a
function of the internal energy density u: mixture of CO2 and C1 at constant
zCO2

¼ 0:452587 and zC1
¼ 0:547413.



Table 17
Suggested two-phase split with higher entropy than that of single-phase state for
pure CO2 at U ¼ �87211375.744478 J, V ¼ 1 m3, and NCO2

¼ 104 mol. The reference
states for internal energy U and entropy S are described in the Appendix.

Phase 1 Phase 2

U [J] �31246919.908809 �55964455.835669
V [cm3] 125000.0 875000.0

NCO2
[mol] 2433.647310 7566.352690

SII [J K�1] �584220.924005
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number of equilibrium phases and boundaries between the single-
phase, two-phase and three-phase subdomains in the uec domain
(i.e. as a function of the internal energy density u ¼ U/V and overall
molar concentration of the mixture c assuming that the overall
composition of the mixture remains the same). Note that for suf-
ficiently low values of the internal energy U, there may be no
temperature corresponding to the given values U, V, and N1,…,Nn.
The set of physically reasonable values of U is thus bounded from
below. In Fig. 1, the unphysical domain is denoted as 0-phase
domain.

Next, we investigate two cases, which are indicated in Fig. 1.
First, we study compression of the mixture in a closed vessel while
keeping the constant value of the internal energy density
u¼�2.5� 108 J m�3. In Figs. 2e5, we plot the equilibrium pressure
of the mixture, equilibrium temperature of the mixture, volume
fractions of the phases, and molar fractions of all components in all
phases, respectively, as functions of the overall molar density of the
mixture. Second, we study heating of the mixture in a closed vessel
of constant volume. The total molar density of the mixture is kept
constant with c ¼ 26000 mol m�3. In Figs. 6e9, we plot the equi-
librium pressure of the mixture, equilibrium temperature of the
mixture, volume fractions of the phases, and molar fractions of all
components in all phases, respectively, as functions of the internal
energy density u.

7.3. A single-component fluid

In the last example we investigate phase equilibrium of pure
CO2. We consider volume V ¼ 1 m3 containing NCO2

¼ 104 mol of
CO2 with internal energy U ¼ �87211375.744478 J. Parameters of
the Peng-Robinson equation of state and correlation coefficients for
the evaluation of cigp for CO2 are presented in Tables 15 and 16. The
single-phase stability test indicates that CO2 is unstable using the
first initial guess and the test needed 71 iterations to converge with
the final value of D ¼ 4608.218797 Pa K�1 attained for
c 0 ¼ 19469.178481 mol m�3, and u0 ¼ �249975359.270471 J m�3.
Then, an initial phase split with higher entropy than that of the
single-phase state is constructed, see Table 17. This two-phase split
is then used as an initial guess in two-phase flash equilibrium
calculation, which converges in 8 iterations to the final two-phase
Table 18
Equilibrium phase split for pure CO2 at U ¼ �87211375.744478 J, V ¼ 1 m3, and
NCO2

¼ 104 mol. The reference states for internal energy U and entropy S are
described in the Appendix.

Phase 1 Phase 2

U [J] �70337586.354061 �16873789.390417
V [cm3] 518716.380364 481283.619636

NCO2
[mol] 7181.961116 2818.038884

T [K] 299.040785 299.040785
P [Pa] 6570486.596964 6570486.595448

mCO2
[J mol�1] 9384.232798 9384.232798

SI [J K�1] �584388.217059
SII [J K�1] �583476.321606
Iterations 8
equilibrium state that is presented in Table 18. Note that the
computation of the UVN-phase equilibrium for the single-
component fluid proceeds without problems in the same way as
for the multi-component mixture. This is not the case of the UVN-
flash presented in Ref. [12], where the single-component case
required special treatment.

8. Discussion and conclusions

In this work, we have proposed algorithms for the phase sta-
bility testing and phase equilibrium calculation for multicompo-
nent mixtures with prescribed internal energy, volume, and molar
numbers of individual components which can split to an arbitrary
number of phases. As the number of phases is not necessarily
known a-priori, the proposed strategy is based on the repeated
UVN-phase stability testing and UVN-phase-split calculation until a
stable state is found. The proposed algorithm has been tested on a
number of examples that were available in the literature, and also
on our own problems. In all cases, the algorithm proceededwithout
difficulties and has found a sequence of states with increasing value
of the total entropy converging towards an equilibrium state con-
sisting up to three phases. Thanks to this property, convergence
towards the trivial solution does not occur. Using the initial guess in
the UVN-flash from the UVN-stability analysis allows to avoid the
need for estimates of the pressure and temperature of the system
which were required in the previous works [12,14]. Compared to
the previous works, the computational algorithm is much simpli-
fied, treats both single-component and multi-component mixtures
in the sameway, and can be performed in real arithmetics only. The
numerical difficulties mentioned in Ref. [14], which required some
parts of the algorithm to be performed in the complex arithmetics,
are thus avoided.
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Appendix

We use the Peng-Robinson equation of state [21] in the
following form

PðEOSÞðT ;V ;N1;…;NnÞ ¼ NRT
V � Nb

� aðTÞN2

V2 þ 2bNV � N2b2
: (77)

The parameters a,b of the Peng-Robinson equation of state are
defined as

a ¼
X
i¼1

n X
j¼1

n

xixjaij; (78)

aij ¼
�
1� di�j

� ffiffiffiffiffiffiffiffi
aiaj

p
; (79)

aiðTÞ ¼ 0:45724
R2T2i;crit
Pi;crit

h
1þmi

�
1�

ffiffiffiffiffiffiffi
Ti;r

q �i2
; (80)

b ¼
X
i¼1

n

xibi; (81)
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bi ¼ 0:0778
RTi;crit
Pi;crit

; (82)

mi ¼
(

0:37464þ 1:54226ui � 0:26992u2
i ui <0:5;

0:3796þ 1:485ui � 0:1644u2
i þ 0:01667u3

i ui � 0:5:

(83)

In the above equations xi ¼ Ni/N denotes the molar fraction of
component i, N ¼Pn

i¼1Ni is the total number of moles, R is the
universal gas constant, di�j is the binary interaction coefficient
between components i and j, Ti,crit, and Pi,crit are the critical tem-
perature and critical pressure of component i, respectively, Ti,r is the
reduced temperature defined as Ti;r ¼ T

Ti;crit
; and ui is the acentric

factor of component i.
Expressions for U ¼ U(EOS)(T,V,N1,…,Nn) and S ¼ S(EOS)(T,V,N1,

…,Nn) are derived following the procedures described in
Refs. [22,23]. The derived expression involves correlation co-
efficients aik to estimate the molar heat capacity at constant
pressure of component i considered as the ideal gas as

cigp;iðTÞ ¼
X3
k¼0

aikT
k: (84)

The superscript ig indicates that the component is considered to
be in the ideal gas state. For the Peng-Robinson equation of state we
obtain

UðEOSÞðT ;V ;N1;…;NnÞ ¼ N
TvT ðaÞ � a

2
ffiffiffi
2

p
b

ln

������
V þ

�
1þ

ffiffiffi
2

p �
bN

V þ
�
1�

ffiffiffi
2

p �
bN

������
� NRðT � T0Þ

þ
Xn
i¼1

Ni

X3
k¼0

aik
Tkþ1 � Tkþ1

0
kþ 1

þ Nu0;

(85)

and

SðEOSÞðT ;V ;N1;…;NnÞ ¼NR ln
����V � bN

V

����
þ N

vT ðaÞ
2
ffiffiffi
2

p
b
ln

������
V þ

�
1þ

ffiffiffi
2

p �
bN

V þ
�
1�

ffiffiffi
2

p �
bN

������
þ R

Xn
i¼1

Ni ln
VP0
NiRT

þ
Xn
i¼1

Ni

ZT
T0

cigp;iðxÞ
x

dx;

(86)
where vT denotes the partial derivative with respect to T,
T0 ¼ 298.15 K, P0 ¼ 1 bar, and u0 ¼ uðT0; P0Þ ¼
hðT0; P0Þ � RT0 ¼ �RT0^� 2478:95687512 J mol�1. This reference
state for the internal energy was chosen so that the molar enthalpy
of the ideal gas h(T,P) obeys h(T0,P0) ¼ 0. The molar entropy of pure
component i as an ideal gas at temperature T0 and pressure P0 is
equal to zero.
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