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We introduce a new thermodynamic function for phase-split computations at con-
stant temperature, moles, and volume. The new volume function Fi introduced in this
work is a natural choice under these conditions. Phase equilibrium conditions in terms
of the volume functions are derived using the Helmholtz free energy. We present a
numerical algorithm to investigate two-phase equilibrium based on the fixed point
iteration and Newton method. We demonstrate usefulness and powerful features of the
new thermodynamic function for a number of examples in two-phase equilibrium
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Introduction

Consider a closed system of constant volume V in which
there is a mixture of c components with mole numbers
n1,…,nc at temperature T. Assuming that the system is in
two-phase, we want to establish compositions and amounts
of both phases. This is the problem of two-phase phase-split
(the so called flash) under the constant temperature, moles,
and volume (VT-flash). The motivation for constant volume
flash is the equilibrium calculation in a PVT cell in two-
phase when two nonequilibrium phases are introduced.1,2

These cells are used to determine diffusion coefficients in
both phases in two-phase state. We have found out that the
use of conventional methods is based on ad hoc approaches.

The standard problem of constant pressure and temperature
(PT-flash) is addressed in many references.3–6 In this
approach, pressure, temperature, and overall chemical compo-
sition are given. The phase compositions and molar densities
are computed using the minimization of the Gibbs energy.
This approach has the shortcoming that it cannot provide an
answer when a single component is in two-phase region at
temperature T and saturation pressure P ¼ Psat(T) because
the chemical potentials of the component in both phases are
the same. Therefore, we cannot determine whether the com-
ponent at these specific conditions is vapor or liquid or a
mixture of both. Althought P and T are the most preferred
variables in chemical engineering, we see that specifying
pressure and temperature is not sufficient for the unique
determination of the state of the system in this case.

The issue can be resolved by reformulating the problem
using the minimization of the Helmholtz free energy rather
than Gibbs free energy. In this formulation, the volume of
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the system, mole numbers, and temperature are given, and
the chemical compositions, molar densities of the phases,
and pressure in the mixture are computed. The selection of
variables V, T, and ni, (i [{1,…,c}) is natural for pressure-
explicit equations of state. Unlike in PT-flash, the VT-flash
provides a unique answer in any physically admissible situa-
tion because when V is known, P can be evaluated readily
from say a cubic equation of state. Therefore, we develop a
new ‘‘volume-based’’ formulation of equilibrium thermody-
namics. The presented derivations lead to a new function Fi,
called volume function that plays an analogous role to fugac-
ity that is used in the pressure-based formulation. We present
all derivations in details to show that this approach is much
more fit for the pressure-explicit equations of state than the
standart development using the Gibbs free energy that suf-
fers from the nonuniqueness of volume at given pressure.

A theoretical possibility of other state function-based flash
specification (including VT-flash) is mentioned in Refs. 6
and 7, where a nested optimization approach is proposed.
This means that in an outer loop we search iteratively for
pressure, which is used in PT-flash in the inner loop to eval-
uate equilibrium state at that pressure. The goal of the itera-
tions is to find a pressure for which the volume constraint is
satisfied. This procedure allows to use existing implementa-
tions of the PT-flash but, on the other hand, is computation-
ally expensive as it requires many solutions of PT-flashes
before the true pressure is found. In this article, we offer an
alternative formulation allowing to formulate VT-flash
directly without using nested iterations.

The article is structured as follows. In the first section, we
introduce the new thermodynamic volume function Fi of vari-
ables V, T, and ni that will be useful in describing thermody-
namic behavior of real mixtures under the constant tempera-
ture, volume, and moles. Then, we develop an expression for
the chemical potential of a component in a mixture in terms
of this new function. We reformulate the two-phase equilib-
rium conditions at constant temperature, volume, and moles
using Fi. Next, we propose a numerical algorithm for compu-
tation of VT-flash, and, finally, we present examples showing
results of phase-equilibrium computations based on the new
formulation for a number of mixtures in two-phase state.

Volume Function Coefficient

We will introduce a new thermodynamic volume function
that will be useful to derive basic expressions for the chemi-
cal potential of a component in a multicomponent mixture
from the bulk phase equilibrium thermodynamics. Our deri-
vation will be based on Helmholtz free energy and will use
volume, temperature, and moles as primary variables.

Assuming a pressure-explicit equation of state, it is con-
venient to describe the system using the Helmholtz free
energy A ¼ A(V,T,n1,…,nc). The general expression for the
Helmholtz free energy of a bulk phase is given by

A ¼ �PV þ
Xc
i¼1

nili; (1)

where P¼P(V,T,n1,…,nc) is the pressure given by an equation
of state, and li ¼ li(V,T,n1,…,nc) is the chemical potential of
the i-th component in the mixture. From

dA ¼ �SdT � PdV þ
Xc
i¼1

lidni;

we see that

P ¼ � @A

@V
; li ¼

@A

@ni
: (2)

Assuming that A is a smooth function of its variables, the
mixed second-order derivatives must be interchangeable,
which implies

@li
@V

¼ � @P

@ni
; (3)

with appropriate variables held constant. Integrating (3)
between two volumes V1 and V2, we derive the following
expression describing the change of chemical potential with
volume at constant temperature and moles

liðV2;T; n1;…; ncÞ ¼ liðV1; T; n1;…; ncÞ

�
ZV2

V1

@P

@ni
ðV;T; n1;…; ncÞdV: ð4Þ

Algorithm: Two-Phase VT-Flash Using Fixed Point Iteration

1. Let c, z1,…zc, and T[ 0 be given. Evaluate P0 ¼ P(1/c,T,z1,…,zc),
initialize Ki’s using Wilson correlation,8 i.e.

ln Ki ¼ 5:37ð1þ xiÞ 1� Tci
T

� �
þ ln

Pci

P0

at the initial pressure P0 and set the number of iterations, n ¼ 0.
2. Evaluate a [ (0;1) by solving the Rachford-Rice equation

Xc
i¼1

ðKn
i � 1Þzi

1þ ðKn
i � 1Þa ¼ 0;

that can be solved, e.g., by Newton’s method.
3. Update chemical compositions of both phases by

x0i;nþ1 ¼
zi

1þ ðKn
i � 1Þa ; x00i;nþ1 ¼

ziK
n
i

1þ ðKn
i � 1Þa ;

4. Use bisection or other method to find S
00
nþ1 [ (0;1) satisfying

P
1� S00nþ1

cð1� aÞ ;T; x
0
1;nþ1;…; x0c;nþ1

� �

¼ P
S00nþ1

ca
;T; x001;nþ1;…; x00c;nþ1

� �
;

and update the other saturation and molar concentrations by

S0nþ1 ¼ 1� S00nþ1; c0nþ1 ¼
cð1� aÞ
1� S00nþ1

; c00nþ1 ¼
ca
S00nþ1

:

5. Update Ki values by

Knþ1
i ¼ c0nþ1Uið1;T; c00nþ1x

00
1;nþ1;…; c00nþ1x

00
c;nþ1Þ

c00nþ1Uið1; T; c0nx01;nþ1;…; c0nx
0
c;nþ1Þ

:

6. Check for convergence. If needed, increase n by one and go to step 2.
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For an ideal gas mixture, the equation of state

P ¼ nRT

V
; where n ¼

Xc
i¼1

ni

can be integrated using (4) to yield

liðV2; T; n1;…; ncÞ ¼ liðV1;T; n1;…; ncÞ � RT ln
V2

V1

: (5)

For real mixtures a more general equation than (5) must be
used. To simplify our derivations, it is convenient to have a
similar form of the expression for the chemical potential of a
component in a real mixture as in the ideal case. For this
purpose, we introduce the volume function of i-th component
Fi ¼ Fi(V,T,n1, …,nc) by the following properties

liðV2; T; n1;…; ncÞ ¼ liðV1;T; n1;…; ncÞ

�RT ln
FiðV2;T; n1;…; ncÞ
FiðV1;T; n1;…; ncÞ ; ð6Þ

and

lim
V!þ1

FiðV;T; n1;…; ncÞ
V

¼ 1: (7)

Furthermore, we define the volume function coefficient by

UiðV;T; n1;…; ncÞ ¼ FiðV;T; n1;…; ncÞ
V

: (8)

Equation 7 then amounts to saying that limV!þ1
Ui(V,T,n1,…,nc) ¼ 1 for given temperature and moles. The
volume function Fi and volume function coefficient Ui play
analogous roles to fugacity and fugacity coefficients. Compar-
ing (6) with (4), we have

RT ln
FiðV2; T; n1;…; ncÞ
FiðV1; T; n1;…; ncÞ ¼

ZV2

V1

@P

@ni
ðV; T; n1;…; ncÞdV:

Setting V1 ¼ V, the last equation can be rearranged to

ln
FiðV;T; n1;…; ncÞ

V

V

V2

V2

FiðV2;T; n1;…; ncÞ

¼ � 1

RT

ZV2

V

@P

@ni
ðV;T; n1;…; ncÞdV:

The above equation can be written as

ln
FiðV;T; n1;…; ncÞ

V
¼
ZV2

V

1

V
� 1

RT

@P

@ni
ðV;T; n1;…; ncÞ

� �
dV

þ ln
FiðV2; T; n1;…; ncÞ

V2

:

Passing V2 ! þ1, the last term on the right hand side
vanishes because of (7), which yields

lnUiðV;T; n1;…; ncÞ ¼
Zþ1

V

1

V
� 1

RT

@P

@ni
ðV;T; n1;…; ncÞ

� �
dV:

(9)

The integral on the right hand side can be evaluated
analytically using an equation of state. It follows from (9)
that for an ideal gas Fi(V,T,n1,…,nc) ¼ V, and Ui(V,T,n1,…,nc)
¼ 1 for any given temperature, moles, and volume. Thus, the
volume function coefficient can indicate the degree of
nonideality of a component in the mixture. These properties
are ‘‘volume-based’’ counterparts of analogous properties of
the fugacity and fugacity coefficients with respect to pressure.

Comparing the integral on the right hand side of (9) with
the formula for fugacity coefficients found in literature (see
e.g., Ref. 3), we note that the relationship between the vol-
ume function coefficient and the fugacity coefficient is

Ui ¼ 1

Zui

;

where ui denotes the conventional fugacity coefficient and Z is
the phase compressibility factor. Z and ui must now be
expressed in terms of volume, temperature, and moles. In the
literature, the Z and ui are usually understood as functions of
P, T, and composition. However, when Z and u are to be
evaluated for given P, T, and moles, one has to solve the cubic
equation to get volume, which may not be unique, and in that
case, one has to select one of the roots based on the Gibbs free
energy criteria or other methods. In this article, we present an
alternative formulation, which uses the volume function
coefficients rather than fugacity coefficients. In this formula-
tion, the root-selection problems do not appear because all
functions are expressed in terms of volume, temperature, and
moles.

The formula for the volume function coefficient Ui for the
Peng-Robinson equation9 is presented in the Appendix.

Chemical Potential of a Component in a Real
Mixture

In the new framework, we describe the dependency of the
chemical potential of a component in a real mixture to the
chemical potential in a pure substance. An ideal mixture is
the one which obeys

liðV;T; n1;…; ncÞ ¼ liðV; T; 0;…; 0; ni; 0;…; 0Þ:

To simplify the notation, we will denote the chemical potential
of the pure substance i as

l�i ðV;T; niÞ ¼ liðV; T; 0;…; 0; ni; 0;…; 0Þ;

and the volume function in the pure component as

F�
i ðV;T; niÞ ¼ FiðV;T; 0;…; 0; ni; 0;…; 0Þ:

Equation 6 can be written for the mixture as well as for the
pure component
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liðV; T; n1;…; ncÞ ¼ liðV1;T; n1;…; ncÞ

� RT ln
FiðV;T; n1;…; ncÞ
FiðV1; T; n1;…; ncÞ ;

l�i ðV; T; niÞ ¼ l�i ðV1;T; niÞ � RT ln
F�
i ðV;T; niÞ

F�
i ðV1; T; niÞ :

Subtracting the second expression from the first above,

liðV; T; n1;…; ncÞ � l�i ðV;T; niÞ
¼ liðV1;T; n1;…; ncÞ � l�i ðV1;T; niÞ

�RT ln
FiðV; T; n1;…; ncÞ
FiðV1;T; n1;…; ncÞ � RT ln

F�
i ðV1;T; niÞ
F�
i ðV; T; niÞ

:

If the volume V1 is sufficiently large, the mixture at volume V1

behaves ideally. Passing V1 ! þ1, one can derive

liðV;T; n1;…; ncÞ ¼ l�i ðV;T; niÞ � RT ln
FiðV;T; n1;…; ncÞ

F�
i ðV; T; niÞ

:

(10)

Let us assume that we have a mixture at two states (V0,T,n01,
…,n0c) and (V00,T,n001,…,n00c). Our goal is to express the
difference of chemical potentials between these two states in
terms of the volume functions. Using (10), we derive

liðV0;T; n01;…; n0cÞ � liðV00;T; n001;…; n00c Þ
¼ l�i ðV0; T; n0iÞ � l�i ðV00;T; n00i Þ

�RT ln
FiðV0;T; n01;…; n0cÞ
FiðV00;T; n001;…; n00c Þ

þ RT ln
F�
i ðV0;T; n0iÞ

F�
i ðV00; T; n00i Þ

:

The first two terms on the right hand side can be rewritten as

l�i ðV0;T;n0iÞ�l�i ðV00;T;n00i Þ ¼ l�i ðV0=n0i;T;1Þ�l�i ðV00=n00i ;T;1Þ

¼�RT ln
F�
i ðV0;T;n0iÞ

F�
i ðV00;T;n00i Þ

n00i
n0i
;

where we take advantage of the fact that the chemical potential
is a homogeneous function of order zero and the volume
function is a homogeneous function of order one in the volume
and moles. Combining the last two equations, we obtain the
following key expression for the difference of chemical
potentials at two different states written in terms of the
volume functions

liðV0;T; n01;…; n0cÞ � liðV00;T; n001;…; n00c Þ

¼ �RT ln
n00i
n0i

FiðV0;T; n01;…; n0cÞ
FiðV00;T; n001;…; n00c Þ

: ð11Þ

Conditions for Two-Phase Equilibrium

Consider a mixture of c components with mole numbers
n1,…,nc occupying volume V at temperature T. Assuming
that the mixture will split into two phases, we want to calcu-
late volumes V0 and V00, and mole numbers of each compo-
nent in each phase n0i and n00i for i ¼ 1,…,c, and con-
sequently the pressure. The equilibrium state is derived
from the minimization of the total Helmholtz energy of the
mixture

A ¼ AðV0; T; n01;…; n0cÞ þ AðV00;T; n001;…; n00c Þ;

which is subject to the following constraints

V0 þ V00 ¼ V; (12)

and

n0i þ n00i ¼ ni; i ¼ 1;…; c: (13)

Using the Lagrange multiplier method, one can find the
necessary conditions of the phase equilibria

PðV0; T; n01;…; n0cÞ ¼ PðV00;T; n001 ;…; n00c Þ; (14)

and

liðV0; T; n01;…; n0cÞ ¼ liðV00;T; n001;…; n00c Þ; i ¼ 1;…; c;

(15)

as expected. An equivalent expression of (15) in terms of the
volume functions reads as

n0i
FiðV0;T; n01;…; n0cÞ

¼ n00i
FiðV00; T; n001 ;…; n00c Þ

: (16)

Numerical Algorithm for Two-Phase Flash
Computation

In two-phase, we are interested to calculate phase compo-
sitions, amounts, and also the pressure of the system. Let us
rewrite the two-phase flash Eqs. 12–15 in terms of concen-
trations and compositions of both phases. We introduce the
overall molar concentration c ¼ n/V, the phase molar con-
centrations c0 ¼ n0/V0 and c00 ¼ n00/V00, overall mole fractions
zi ¼ ni/n, and phase mole fractions x0i ¼ n0i/n

0and x00i ¼ n00i/n
00,

and phase volume fractions S0 ¼ V0/V, and S
00 ¼ V

00
/V,

respectively. Using this notation, Eq. 12 transforms to

S0 þ S00 ¼ 1; (17)

whereas the mole balance Eq. 13 can be rewritten as

c0x0iS
0 þ c00x00i S

00 ¼ czi; i ¼ 1;…; c: (18)

As pressure is an intensive property (homogeneous function of
order zero in variables V,n1,…, nc), Eq. 14 yields

Pð1; T; c0x01;…; c0x0cÞ ¼ Pð1;T; c00x001 ;…; c00x00c Þ: (19)

Finally, the chemical equilibrium Eq. 16 can be written in
terms of the volume function coefficients using (11) as

c0x0i
Uið1; T; c0x01;…; c0x0cÞ

¼ c00x00i
Uið1;T; c00x001;…; c00x00c Þ

: (20)

To solve these equations using the fixed point iteration (also
called succesive substitution iteration, SSI), it is convenient to
introduce the Ki values by

Ki ¼ x00i
x0i
: (21)

From (21) it follows that x00i ¼ Kix
0
i, which can be substituted

into (18) to obtain
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x0i ¼
zi

1þ ðKi � 1Þa ; x00i ¼
ziKi

1þ ðKi � 1Þa ; (22)

where a ¼ c00S00/c is the mole fraction of the double-primed
phase. These equations can be used to evaluate phase
compositions provided that Ki and a are given. As composi-
tions of both phases in (22) should sum to one, for a given set
of Ki values, a can be updated by solving the Rachford-Rice
equation10

Xc
i¼1

ðx00i � x0iÞ ¼
Xc
i¼1

ðKi � 1Þzi
1þ ðKi � 1Þa ¼ 0: (23)

Once a and chemical composition of both phases are
established, phase molar concentrations and saturations must
be determined so that the pressures in both phases are the
same. The following system of four equations

c0S0 ¼ cð1� aÞ;
c00S00 ¼ ca;

S0 þ S00 ¼ 1;
P 1

c0 ; T; x
0
1;…; x0c

� � ¼ P 1
c00 ;T; x

00
1 ;…; x00c

� �
;

for the 4 unknowns (c0, c00, S00, and S00) can be readily reduced
into a single equation for one unknown saturation S00 [ (0;1)

P
1� S00

cð1� aÞ ;T; x
0
1;…; x0c

� �
¼ P

S00

ca
;T; x001;…; x00c

� �
: (24)

For a cubic equation of state, Eq. 24 is an algebraic equation of
the fifth order. In theory it may have up to five real roots. In all
examples we examinated, there was always only one root in
the interval (0;1), which could be readily approximated using
the bisection method. Other methods, like the Newton method,
can be used as well.

Finally, Ki values are updated using (20) as

Ki ¼ x00i
x0i

¼ c0Ui 1=c
00; T; x001;…; x00c

� �
c00Ui 1=c0; T; x01;…; x0c

� � :
The key steps of the method are summarized in the Algorithm.

The iterations are stopped whenever

max
i2f1;…;cg

lnKnþ1
i � lnKn

i

�� ��\ tol ¼ 10�12:

Numerical Examples

We have tested the algorithm in several examples of bi-
nary and multicomponent mixtures in two-phase. Below we
show performance of the method for two binary mixtures and
one four-component mixture. Further, we provide two more-
complex phase-split computations for a multicomponent reser-
voir fluid. All examples are motivated by experiments in the
PVT cells. In these experiments, the total volume is fixed. A
part of this volume is filled by a liquid at some initial pres-
sure Pini. The rest of the volume is filled by a gas at the same
initial pressure. When the two fluids are mixed, the pressure
changes. The final equilibrium pressure P of the system after
mixing results from the VT-flash computation. The correct-
ness of the VT-flash results is checked by performing the PT-
flash at the final pressure with the same overall composition
and temperature. The agreement was excellent in all cases.

Example 1

In the first example, we investigate two-phase equilibrium
for a binary mixture of methane (C1) and n-penthane (nC5)
of total concentration c ¼ 6307.21 mol m�3, with mole frac-
tions zC1

¼ 0.547413 and znC5
¼ 0.452587 at temperature

T ¼ 371 K. The condition corresponds to the PVT-cell
experiment in which C1 (34.4% of volume) is placed on the
top of nC5 at the initial pressure Pini ¼ 15 MPa. Parameters
of the Peng-Robinson equation of state are presented in Ta-
ble 1. The algorithm found a solution in 46 iterations.
Within each iteration the Rachford-Rice, Eq. 23, was solved
by Newton’s method with the initial guess a ¼ 0.5. The
resulting pressure is P ¼ 10.4653 MPa. The overall mixture
and phase-split results are summarized in Table 2. The
results were verified by the PT-flash computation performed
at the final pressure with the same overall composition and
temperature. The PT-flash converged in 45 iterations.

Table 1. Properties of the Components for the C1–nC5

Mixture Used in Examples 1 and 2

Component xi [�] Tcrit [K] Pcrit [MPa] Mw [g mol�1]

C1 0.011 190.56 4.599 16
nC5 0.251 469.70 3.37 72.2

The C1–nC5 binary interaction coefficient is dC1–nC5 ¼ 0.041.

Table 2. Overall Properties of the Mixture and Resulting
Phase Properties in Two-Phase Flash at Constant

Temperature T 5 371 K and Volume for Example 1

Property Unit
Overall
mixture Phase 1 Phase 2

Molar concentration mol m�3 6307.21 8616.72 4307.03
C1 mole fraction – 0.547413 0.388095 0.823458
nC5 mole fraction – 0.452587 0.611905 0.176542
Phase volume

fraction
– 0.464113 0.535887

Table 4. Properties of the Components for the

Four-Component Mixture Used in Example 3

Component xi [�] Tcrit [K] Pcrit [MPa] Mw [g mol�1]

N2 0.039 126.21 3.39 28
C1 0.011 190.56 4.599 16
C3 0.153 369.83 4.248 44.1
nC10 0.489 617.70 2.110 142.3

Table 3. Overall Properties of the Mixture and Resulting
Phase Properties in Two-Phase Flash at Constant

Temperature T 5 310.95 K and Volume for Example 2

Property Unit
Overall
mixture Phase 1 Phase 2

Molar concentration mol m�3 6135.3 10105.5 3177.77
C1 mole fraction – 0.489575 0.293471 0.954131
nC5 mole fraction – 0.510425 0.706529 0.0458693
Phase volume

fraction
– 0.42691 0.57309
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Example 2

In this example, we compute two-phase equilibrium for a
mixture of methane (C1) and n-penthane (nC5) of total con-
centration c ¼ 6135.3 mol m�3, with mole fractions zC1

¼
0.489575 and znC5

¼ 0.510425 at temperature T ¼ 310.95 K.
The condition corresponds to the PVT-cell experiment in
which C1 (65% of volume) is placed on the top of nC5 at
the initial pressure Pini ¼ 10.2 MPa. Parameters of the Peng-
Robinson equation of state are presented in Table 1. The
algorithm found a solution in 20 iterations. The resulting
pressure is P ¼ 6.95477 MPa. The overall mixture and split-
phase results are summarized in Table 3. The agreement
with the PT-flash at the final pressure is excellent. The PT-
flash converged in 19 iterations.

Example 3

In Example 3, we compute two-phase equilibrium for a
four-component mixture of nitrogen (N2), methane (C1), pro-
pane (C3), and n-decane (nC10) at temperature T ¼ 393.15
K. Here, nitrogen (35% of volume) is placed on the top of a
four-component mixture (zN2

¼ 0.01, zC1
¼ 0.29, zC3

¼ 0.29,
and znC10

¼ 0.41) at the initial pressure 13.73 MPa. Parame-
ters of the Peng-Robinson equation of state are presented in
Tables 4 and 5. The overall molar concentration and overall
mole fractions of all components are shown in Table 6. The
algorithm found a solution in 25 iterations. The resulting
pressure is P ¼ 14.9502 MPa. Note the pressure increase
due to vaporization. The overall mixture and split-phase
results are summarized in Table 6. The results agree with
those obtained using the PT-flash at the final pressure. The
PT-flash converged in 25 iterations.

Example 4

In Example 4, we compute two two-phase equilibria for a
multicomponent oil mixed with nitrogen (N2), and carbon
dioxide (CO2). The oil is modelled using seven components.
The composition of the oil and parameters of the Peng-Rob-
inson equation of state are presented in Tables 7 and 8. The

pseudocomponents are defined as PC1 (H2S þ C2 þ C3),
PC2 (C4–C6), and PC3 (C7–C11). In both experiments, 50%
of volume of the PVT cell is filled by this oil. The initial
pressure Pini ¼ 30.34 MPa, and the temperature is T ¼
413.71 K. Under these conditions, the oil is in single phase
with molar concentration coil ¼ 8944.22 mol m�3. The
remaining 50% of volume is filled with either N2 or CO2 at
the same initial pressure. Addition of gas turns the system
into two phase in both cases.

For the case of N2, the overall properties of the resulting
mixture and phase-split results are summarized in Table 9. The
final pressure is P ¼ 32.66 MPa. The algorithm found a solu-
tion in 33 iterations. The results agree with those obtained
using the PT-flash at the final pressure. The PT-flash converged
in 34 iterations. Some of the Ki-values in Table 9 are very dif-
ferent from one; the system is far from the critical point.

For the case of CO2, the overall properties of the resulting
mixture and split-phase results are summarized in Table 10.
The final pressure is P ¼ 31.27 MPa. The algorithm found a
solution in 266 iterations. The results agree with those obtained
using the PT-flash at the final pressure. The PT-flash converged
in 254 iterations. The Ki-values in Table 10 are closer to one.
Unlike in the previous case, the mixture is near-critical, which
explains the increased number of iterations that are needed to
converge using the fixed point iteration method.

Summary and Conclusions

In this work, we have introduced a new thermodynamic
function to describe two-phase equilibrium at constant tem-
perature, volume, and moles. The new volume function coef-
ficient replaces the fugacity coefficients that are used in
common formulations of two-phase equilibrium at constant
temperature and pressure. Unlike the conventional approach,
our method can determine uniquely the equilibrium state of
a pure substance in two-phase state. The volume-based for-
mulation of two-phase equilibrium in terms of the volume
function coefficients has been derived for the Peng-Robinson

Table 5. Binary Interaction Coefficients for the
Four-Component Mixture Used in Example 3

Component N2 C1 C3 nC10

N2 0 0.1 0.1 0.1
C1 0.1 0 0.036 0.052
C3 0.1 0.036 0 0
nC10 0.1 0.052 0 0

Table 7. Composition and Properties of the Components for
the Reservoir Fluid Used in Example 4

Component zi xi [�] Tcrit [K]
Pcrit

[MPa]
Mw

[g mol�1]

N2 0.0003 0.0390 126.21 3.390 28.0
CO2 0.0140 0.2390 304.14 7.375 44.0
C1 0.5634 0.0110 190.56 4.599 16.0
PC1 0.1970 0.1113 333.91 5.329 34.64
PC2 0.0770 0.2344 456.25 3.445 69.52
PC3 0.0845 0.4470 590.76 2.376 124.57
C12þ 0.0638 0.9125 742.58 1.341 248.30

Table 6. Overall Properties of the Mixture and Resulting
Phase Properties in Two-Phase Flash at Constant

Temperature T 5 393.15 K and Volume for Example 3

Property Unit
Overall
mixture Phase 1 Phase 2

Molar concentration mol m�3 5912.74 6690.98 4795.04
N2 mole fraction – 0.2463 0.12944 0.48049
C1 mole fraction – 0.2208 0.15509 0.35248
C3 mole fraction – 0.2208 0.25349 0.15529
nC10 mole fraction – 0.3121 0.46198 0.01173
Phase volume fraction – 0.58952 0.41048

Table 8. Binary Interaction Coefficients for the Reservoir
Fluid Used in Example 4

Component N2 CO2 C1 PC1 PC2 PC3 C12þ

N2 0.000 0.000 0.100 0.100 0.100 0.100 0.100
CO2 0.000 0.000 0.150 0.150 0.150 0.150 0.150
C1 0.100 0.150 0.000 0.035 0.040 0.049 0.069
PC1 0.100 0.150 0.035 0.000 0.000 0.000 0.000
PC2 0.100 0.150 0.040 0.000 0.000 0.000 0.000
PC3 0.100 0.150 0.049 0.000 0.000 0.000 0.000
C12þ 0.100 0.150 0.069 0.000 0.000 0.000 0.000
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equation of state, but the same concept can be used for other
pressure-explicit equations of state as well.

We proposed a numerical algorithm for computation of
the phase-split properties, which is based on a combination
of the fixed point outer iteration and Newton’s method in the
inner iteration. To show efficiency of this approach we have
performed results of numerical computations of multicompo-
nent mixtures of different complexity. The results indicate
that to achieve the same accuracy, the number of iterations
of the VT-flash method based on the fixed point iteration is
about the same as when using the PT-flash under the same
physical conditions. As the final pressure is not known a pri-
ori when the volume is constant, the computation of VT-
flash using the PT-flash combined with outer iterations, as
suggested Refs. 6 and in 7, is necessarily inefficient. Our
method provides the correct solution in practically the same
number of iterations as one run of the PT-flash at the final
pressure.
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Appendix: Volume Function Coefficient for
Peng-Robinson Equation of State

In this work, we use the Peng-Robinson equation of state9

in the form

PðV; T; n1;…; ncÞ ¼ nRT

V � B
� A

V2 þ 2BV � B2
;

where R is the universal gas constant, n ¼ P
c
i¼1ni is the total

number of moles, and coefficients A and B are given by

Table 10. Overall Properties of the Mixture of the Reservoir Fluid from Table 7 (50% of volume) with CO2 at the Initial
Pressure Pini 5 30.34 MPa and Resulting Phase Properties in Two-Phase Flash at Constant Temperature T 5 413.71 K and

Volume (Example 4)

Property Unit Overall mixture Phase 1 Phase 2 Ki-values

Molar concentration mol m�3 10211.55 9168.51 10335.60
N2 mole fraction – 0.000131 0.000103 0.000134 1.303750
CO2 mole fraction – 0.568185 0.504174 0.574938 1.140360
C1 mole fraction – 0.246739 0.214535 0.250136 1.165950
PC1 mole fraction – 0.086275 0.091552 0.085719 0.936288
PC2 mole fraction – 0.033722 0.043366 0.032704 0.754150
PC3 mole fraction – 0.037006 0.063680 0.034192 0.536942
C12þ mole fraction – 0.027941 0.082591 0.022175 0.268497
Phase volume fraction – 0.106291 0.893709

The final pressure is P ¼ 31.27 MPa.

Table 9. Overall Properties of the Mixture of the Reservoir Fluid from Table 7 (50% of volume) with N2 at the Initial
Pressure Pini 5 30.34 MPa and Resulting Phase Properties in Two-Phase Flash at Constant Temperature T 5 413.71 K and

Volume (Example 4)

Property Unit
Overall
mixture Phase 1 Phase 2 Ki-values

Molar concentration mol m�3 8386.44 6877.62 8863.05
N2 mole fraction – 0.466905 0.243471 0.521675 2.14266
CO2 mole fraction – 0.007466 0.006159 0.007786 1.26421
C1 mole fraction – 0.300435 0.210766 0.322416 1.52973
PC1 mole fraction – 0.105051 0.130065 0.098920 0.76054
PC2 mole fraction – 0.041061 0.084767 0.030347 0.35801
PC3 mole fraction – 0.045060 0.158289 0.017305 0.10932
C12þ mole fraction – 0.034021 0.166484 0.001551 0.00932
Phase volume fraction – 0.240057 0.759942

The final pressure is P ¼ 32.66 MPa.
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A¼
Xc
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Xc
j¼1

ninjaij; B¼
Xc
i¼1

nibi

aij ¼ ð1�dijÞ ffiffiffiffiffiffiffiffi
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; bi ¼ 0:0778

RTi;crit
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ai ¼ 0:45724
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1þmi 1�
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2
;

mi¼
0:37464þ1:54226xi�0:26992x2

i ; for xi\0:5;

0:3796þ1:485xi�0:1644x2
i þ 0:01667x3

i forxi� 0:5:

(

In these equations, dij denotes the binary interaction parameter
between the components i and j, Ti,crit, Pi,crit, and xi are the

critical temperature, critical pressure, and accentric factor of
the i-th component, respectively. The volume function
coefficient for the Peng-Robinson equation of state can be
found analytically using (9) as

lnUi ¼ ln
V � B

V
� bin

V � B
þ Abi
BRT

V

V2 þ 2BV � B2

� 1ffiffiffi
2

p
BRT

Abi
2B

�
Xc
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njaij

" #
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V þ ð1þ ffiffiffi
2
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V þ ð1� ffiffiffi
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