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ABSTRACT

The article presents a comparison of @ semianalytical and a numerical
approach to a one-dimensional flow-function model of two-phase flow
through a homogeneous porous medium which is used for validation of
more complex numerical models of two-phase flow. The flow-function
model equation can be treated analytically to obtain an implicit formula
for the saturation, which is resolved iteratively. This approach, originally
derived by McWhorter and Sunada (1990; 1992), is used in its improved
version so that we are able to readily obtain the wetting-phase saturation
for all parameter values. To enlarge the class of admissible boundary and
initial conditions, we propose another approach which relies on a numeri-
cal algorithm which solves the flow-function model equation, based on the
finite-difference method in space and time, yielding values of the solution
at given time momenis and on a spatial grid of positions. Our approach
is demonstrated in a series of one-dimensional computations showing the
accuracy, efficiency, and generality of the proposed algo rithms.
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NOMENCLATURE

kw Ko Hws W Pws Pn effective permeabilities, f(Sw), D(Syw) flow function and diffusivity

viscosities, and pressures function

(wetting and non-wetting phase) @ porosity coefficient

wetting phasesaturation

Gty Gws Gn total, wetting-phase and non- LT spatial dimension, length of
wetting phase volumetric flux the time interval

Py Dirs. P capillary, wetting-phase and Si, So boundary and initial conditions
non-wetting phase pressure for wetting-phase saturation

Swi S wetting-phase and non- Shr residual saturation of non-

wetting phase

1. INTRODUCTION

Multidimensional complex numerical models of two-
phase flow through porous medium such as the
ones described in Helmig (1997), MikySka et al.
(2004), Mikyska and Illangasekare (2005), Bene§ et
al. (2006), and in MikySka et al. (2009) require a
thorough numerical testing, comparison, and valida-
tion to establish their reliability and usefulness. One
of the tools for validation of such models is their
comparison to analytical or semianalytical solutions of
simplified models, namely, in one dimension. Among
the results available for this task, one can use, e.g., the
Buckley-Leverett solution of flow without capillary
effects [e.g., described in Helmig (1997), or see ref-
erences in McWhorter and Sunada (1990) and Fuéik
et al. (2005), and Futik et al. (2007)]. An important
tool widely used in the validation of models with cap-
illary effects is described in McWhorter and Sunada
(1990), with consequent discussions in Chen et al.
(1992) and McWhorter and Sunada (1992). It allows
an implicit functional equation for the wetting-phase
saturation to be obtained, which has to be treated
numerically to perform the functional inverse, yielding
the saturation function of time and space. The pro-
cedure is established for the entry saturation limited

by residual values. When using the entry saturation
values near maximum under a particular parameter
setting, we encounter difficulties in the numerical in-
version. Another limitation of the McWhorter and
Sunada approach is in a particular choice of the entry
wetting-phase flux which allows the analytical implicit
formula to be obtained. In Fué¢ik et al. (2007) an
improved version of this approach is presented which
attempts to overcome the above-described difficulties.
The improved method for resolution of the analyti-
cal formula works for any choice of entry-saturation
values. However, it is shown that the entry flux pro-
file allowing for the analytical treatment cannot be
generalized.

In this article we therefore present use of the semi-
analytical approach and comment on its output. We
also consider the possibility of obtaining the solution
to the transport problem based on the numerical so-
lution of the advection-diffusion equation by means
of the method of lines (Schiesser, 1991). We perform
a series of qualitative and quantitative computations
which show that our algorithm agrees with previously
obtained results, and that we are able to deliver a
more general class of numerical data which can serve
as benchmarks for testing complex multidimensional
models.
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2. ONE-DIMENSIONAL TWO-PHASE FLOW
BENCHMARK

2.1. Equations

In this section we present the transport problem with
capillarity related to the two-phase flow in porous
medium. We begin with a one-dimensional problem
describing flow of two incompressible immiscible
liquids through the porous medium where the non-
wetting phase (indexed n) is displaced by the wet-
ting liquid (water, indexed w) horizontally (therefore
without the influence of gravity). In agreement with
McWhorter and Sunada (1990), the below-described
formulation by means of the fractional flow function
allows a transport-type equation for saturation to be
obtained which can be treated analytically. The Darcy
law for the wetting and non-wetting phases has the
form

kw Opw

Qw = n =

Tl Oz

_H dx 0

where kyw. En. Hws Hns Pw, and p, are the effec-
tive permeabilities, viscosities, and pressures of corre-
sponding phases. The total volumetric flux g consists
of the wetting-phase part ¢, and non-wetting-phase
part ¢n: ¢t = Gw + @n. The capillary relation

Pe = Pn — Pw (2)

with a given function p. = p. (Sy) of the wetting-
phase saturation S, is used. Note that the non-wetting

phase saturation S, satisfies the condition S, = 1 —
Sy. Introducing the fractional flow and diffusivity
functions,
k‘w (Sw) 'J-n
Sw) = 2]
f ( ) kw (-Sw) “n 'i' krl (Sw) I—lw
kn (Sw) dpc (Sw)
D(S,) = ————=f(Sy) ———— 3
(Su) = =222 (S) P2 &

we have the expression for the wetting-phase flux

05w
Ow = f(Sw)QL = D(SW)W (4)

Considering the porosity of the material, assuming
constant density and no volumic source of mass, the
mass balance has the following form,

Otw 0Sy

— 4+ &d—— =0 5

ox 4 ot ©)
where @ is the porosity coefficient. The two-phase
flow equation is obtained by substituting (4) into the
mass balance

9Sw df (Sw) 0Sw = 0

. .88
(3 =— + — W il
Bt - 7ds, oz ('}:r[D (Sw)5g] ©

The Eq. (6) is accompanied by the initial condition
for Sy, and by corresponding boundary conditions for
Sw at = 0 and & = +o0. Equation (6) is our main
concern. We describe circumstances under which it
can be solved analytically or numerically so that it
can provide a simple one-dimensional benchmark data
for the validation of more complex two-phase flow
models, as has been done, e.g., in MikySka et al,
(2009). Our approach allows extension of the solution
of Eq. (6), described originally in McWhorter and
Sunada (1990), and improved in Fuéik et al. (2007)
to a family of time-dependent input fluxes g, = q(t),
generalizing the use of this benchmark.

When capillary effects represented by the term

dpe (Sw)

a5 (7)

in the diffusivity function are neglected, the term
D(Sy) in Eq. (6) vanishes and we obtain the
Buckley-Leverett transport equation

88w

T o 4t

ot

4f (Sw) DSw

dS, Ox ®

which also can be analytically solved as discussed,
e.g., in Helmig (1997) or Fucik et al. (2007).

2.2. Analytical Solution

Usefulness of a benchmark problem consists in the
relative simplicity of its solution. In this section we
summarize the analytical treatment of Eq. (6), and in
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the next section we describe the numerical treatment
of it. A closed-form expression for the solution of
Eq. (6) is presented in McWhorter and Sunada (1990),
commented on in Chen et al. (1992), McWhorter and
Sunada (1992), and improved in Fudik et al. (2007). A
quasi-stationary solution of (6) under a very particular
choice of the conditions can be found. We assume that

Gw (t%U) ={qo (f) = Ag (t) 3

Sw(0,2) = S 9)

Sw (¢, +00) = 5

where A and S; are given constants. Then, a relation-
ship between the constant A and the boundary con-
dition S, (t,0) = Sy exists under the circumstances
discussed below. In McWhorter and Sunada (1990)
and Fulik et al. (2007), it is shown that the function
g (t) has to have a particular form such that we are
able to convert Eq. (6) into an equation independent
of £,

g(t)y=t"1 (10)

even though it can be slightly generalized as in Fudik
et al. (2007). The solution of (6) is hidden in the
inverse formula

24(1— f(S)R) dF

i = Dy(t) dS,,

(Sw) (11

where R = 0 for the countercurrent flow, and R = 1
for the unidirectional flow (for values of R between
0 and 1, see Fulik et al., 2008). The fractional flow
function F' = F(S,,) is determined by the integral

equation
S{I
(s—5w)D(s)
qf Fla)—Tals) 95
F(Sy)=1- ”"—— (12)
j {s 51
Iu[ﬂj
with
s) — f(S;
fn (3) f()_fg_) (13)

1-f(S)R
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Use of the analytical formula (12) is indirect, as it
has the form of an implicit functional equation, from
which F'(S,,) has to be extracted. This can be done
using the following iteration schemes.

First type of iteration scheme. A numerical it-
erative scheme described in McWhorter and Sunada
(1990) has the following form:

(8—8w)D(s
f i) =T () 95
Fep1 (Sy)=1-2> (14)

f D{s
I)c(") Sul 3}

According to McWhorter and Sunada (1990) and
McWhorter and Sunada (1992), it is recommended
to use Fy(s) =
when Sy satisfies S; < Sy < Sy, where S, = 1 —
Shry Snr is the residual saturation of the non-wetting

1 as the first iteration. In the case

phase, discrete values of F'(S,) can be computed,
and consequently, the constantA is evaluated by the
formula

(5= S5)D(s)
e ; SI)R] / f.,( )

AZ

s (I5)

The main obstacle of this approach is the numeri-
cal behavior of the iteration scheme (14) for values
Sy — Sm, R = 1 when using real parameter val-
ues and material functions (see models 1 and 3 in
Appendix A). Difficulties can be encountered when
computing integrals in Eq. (14) numerically in some
cases, namely because the values Fj(s) and f,(s)
approached each other [see the denominator in the
integrals of Eq. (14)]. This causes the iteration process
to be unstable.

Second type of iteration scheme. The above-
described facts led in Fudik et al. (2007) to a
modification of the iteration method. Denoting the
significant part of the integrand in Eq. (12) as

D (s)
F(8) — fu(8)

allows Eq. (12) to be rewritten in a suitable way,

G(s) = (16)
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S
[(s—Sw)G(sys
P =)+ g =1-5 ()
e [(s—S)G(9ds
S

We then can use two variants of iterative schemes.
The variant A is given by

Gk+1 (Sw) s D(SW) + GF\‘.(S\\')

ji_' (5 — SW) Gk(.’:‘)ds

x | falSu) + 5 (18)
[ (s — i) Gk (s) ds
Si

and the variant B is given by

Gr41(Sw) = [D(Sw) + Gr(Sw) fn (Sw)]
' =
j. (S - ng) Gk(s)ds
Sw
‘:f (s — Si)Gi(s)ds

x |1

(19)

According to Fuéik et al. (2007), it is recommended
1o set
D
Gi(s) = 1509 (20)
as the first iteration. The integrals in Eqgs. (18) and
(19) are evaluated numerically by means of the
Newton—Cotes numerical integration formulae with
the mesh size indicated in the figure captions. The
schemes (18) and (19) exhibit convergence in all sit-
uations, except of values Sy and R close to 1, as it
is demonstrated in Figs. 1 and 2 where we have used
the model 1 functions (see Appendix A for model
description and for the particular values used). The
iteration process is stopped when the difference be-
tween successive estimates of F' is less or equal to
5 x 1078, The schemes given by Eqs. (18) and (19)
extend the possibility of semianalytical treatment of
of Eq. (6) in comparison to the scheme given by
Eq. (14), as discussed in Fucik et al. (2007).
Figure 1 demonstrates that the solutions of Eq. (6)
for R = 0 and R = 1 have similar shape for lower

values of Sy but they differ for values of Sy close
to Sy. This fact can be observed for all models
used. However, for fixed Sy, similarity of saturation
profiles for R = 0 and R = 1 can differ for different
capillarity models, as they influence the relationship
of diffusion and advection terms in a different way.
In the case of Sy being close to Sy, the scheme
given by Eq. (14) exhibits instabilities as discussed in
Fuéik et al, (2007). They occur due to the sensitivity
of Eq. (14) to the model functions and parameters,
namely, in the case of real fluids (model 1). For model
2 used in McWhorter and Sunada (1990), but less
related to real situations, they do not occur even if
the value of Sy is equal to Sy,. Figure 2 compares
the shape of solutions of Eq. (6) with capillary forces
and of Eq. (8) without them. When the capillarity is
much smaller than the advective term, the solution
of (6) has a shape close to the Buckley-Leverett
function,

The CPU usage of the benchmark implementation
is given by the number of iterations (see Table 5 in
Fudik et al., 2007). The iteration number increases
when setting the values of Sy and R close to 1. For
details, see Table 1.

2.3, Numerical Solution of the Transport Equation

The above-described treatment of Eq. (6) led to the
implicit formula (12) which had to be solved nu-
merically anyway. This fact motivates us to propose
another straight method of obtaining the solution of
Eq. (6), so we derive a simple numerical scheme solv-
ing Eq. (6). It is based on the finite-difference method
discretizing the spatial derivatives and subsequent so-
lution of an ordinary differential equation system. In
this case, we consider the following initial-boundary-
value problem:

(Dd'sw o df{bw)dﬂ + i (D(SW)-(;—.S&)
L

ot K dSy: O dr
S (t,0) =8¢ Sw(t,L) =35 (21

Sy (0,2) = S;
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Figure 1. Graphs of the function Sy = Sy (t,z) as a solution of Eq. (6) at time £ = 10,000s obtained by the schemes
(14) (first type) and (19) (second type). The scheme (18) yields identical values as the scheme (19). Number of mesh nodes is
1000, and model 1 provides the capillarity and permeability properties

for t € [0,T] and z € (0, L), where L is length of the with the mesh size h = L/M covering the interval
spatial interval and T is the final time considered. We (0, L). We denote nodal values of the function Sy as
discretize (6) on a uniform spatial grid of M +1 nodes {Sw; (1) 17 =0,... M} [ie., Sw;j(t) = Sw(t, Jih)l.
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Table 1

Values of CPU time used in analytical computation by Eq. (18) with M =1000 spatial nodes and iteration tolerance

e = 107" (0 get the selected time level directly, and in numerical computation with M =100, 200 spatial nodes and time

step T = 0.1, 0.01 to get all successive time levels prior to the selected time. The entry flux is given by g(t) =t~/ For
computations, the processor Core 2 6600 with the CPU clock 2.40GHz and the cache 4096 kB were used

g R Analytical solution Numerical solution
i M =1000,¢=10""° | M =100, =01 M = 400, T = 0.01
0.5 0 | 20 ms 1 min, 29 s, 110 ms 13 min, 17 s, 270 ms
I | 20 ms 1 min, 27 s, 770 ms 12 min, 38 s, 320 ms
0.7 0 | 20 ms 1 min, 33 s, 930 ms 12 min, 47 s, 290 ms
| 30 ms I min, 36 s, 480 ms 14 min, 18 s, 620 ms
0.9 0 | 30 ms I min, 30 s, 30 ms 13 min, 3 s, 440 ms
| 140 ms 1 min, 42 s, 880 ms 15 min, 9 s, 140 ms
099 | 0O | 20ms 1 min, 30 s, 350 ms 13 min, 5 s, 560 ms
1 | 4s0ms 1 min, 37 s, 790 ms 14 min, 26 s. 750 ms
Madel 1, S, =0.70000 Model 1, 8, = 0.90000
. : . : 0.9 : . : : : :
b % [ —— McWhorter-Sunada R=0 ; McWhorter-Sunada R=0
0.6 \'\. McWhorter-Sunada R=1|] . 08 : McWhorter-Sunada R=1/|
X S | = = - Buckley-Leverett = orl _— ~ ~ Buckley-Leverett
fJ'J; -\ ot X PPt WP T T : d wz I N { i
% 0.5 ! ey 2L ‘_: o -'.“ i -‘--'- g 0.6 \\;“;
g 0.4 FHea T .§ 0.5 S i -
2 03 $ 04 T
£ |
-§ s é, 03
@ 0.2+
S
= oaf 01f ]
% 01 02 03 04 05 0.7 % ®s 1 15 2 25 3§ BE 4
x[m] % [m]

Figure 2. Graphs of the function Sy, = S, (¢,a) as a solution of Eq. (6) at time = 10,000s obtained by the schemes
(14) (first type) and (19) (second type). The scheme (18) yields identical values as the scheme (19). Number of mesh nodes is
1000, and model 1 provides the capillarity and permeability properties

The second-order differential operator is discretized
by the central-difference formula with second-order

and the advection term is discretized by means of the
upwind approach (see LeVeque, 1990) with first-order

accuracy, dccuracy
a aSw\| _ Sw,j+1 + Swj
% (P65) - [D (T U(Su) Ou| _ f(Sus) = f(Swm) 0
dSy Oz |, h ’

wj Sw i—
% (Biia = S) — D (SL__J‘)

2

X (Swj — Sw,j-l)J /[R?] (22)

The solution {Sy; (t)|j =0,...,M} is found from
the semidiscrete scheme representing a system of
M — 1 ordinary differential equations in the form
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dSy; f(Swj) — F(Swj-1)

= —q (t 24

¢ It qt (t) h (24)
Sw,j 41 + Sw' -

+ [D (—‘2—3) (Swig+1 — Swy)

Bl 8, ) ,
- D (_J‘%;') (S — bw,j—1)]/lr'12]

for j =1,+- , M — 1, with Syo(t) = Sp
Swm(t)=S; and Sy;(0)=8i, j=%...,M—1

System (24) is numerically resolved by means of the
Runge—Kutta fourth-order method with a fixed time
step T > 0 (see Schiesser, 1991).

Similarly, we can treat the Buckley—Leverett Eq. (8)
proposing the semidiscrete scheme

dSy; f(SW_‘;') . f(sw_?'—l)
CI) dt rF Gt (t) h,
forj=1,---, M, with ug(t) = Sp
and Sy (0) =85, j=1,..., M (25)

In the following section, we demonstrate the agree-
ment of this approach with the analytical method
described in section 2. However, schemes given by
Egs. (24) and (25) are applicable in a more general
framework — there is no restriction on the function
(i (t) other than continuity with respect to t. The
CPU usage of this approach is low (order of tens
of seconds) in all situations. Equation (21) becomes
close to hyperbolic for Sy and R close to 1. This is
compensated by the upwind character of scheme (24)
(for details, see Table 1). Computational complexity
of formulas in capillary and permeability models can
slightly increase the CPU time, as they are used by
the multistage time solver treating Eq. (24).

3. COMPUTATIONAL STUDIES

3.1. Comparing Analytical and Numerical
Approaches

In Figs. 1 and 2 we used artificial test values and ma-
terial dependencies for the sake of comparison of our
results with those of McWhorter and Sunada (1990).
In this section we demonstrate the reliability of our

1
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analytical (18)/(19) and numerical (24) approaches
using coefficients and dependencies describing real
medium and real non-wetting phase (the so-called
NAPL—nonaqueous phase liquid—see Appendix A
for particular values) together with a real capillarity
model. Figure 3 shows how the two approaches agree.
Each graph contains both the concurrent and counter-
current flow profiles. The value of A is given by the
choice of the parameters Sy and R and by formula
(15). It follows that A = 103,

3.2. Generalization of the Entry Flux

The algorithm (24) solving the problem (21) is appli-
cable for any continuously time-dependent entry-flux
profile qo (t) = Ag(t). Analogous to the previous
case, we set A = 10~2 and choose various functions
g(t) satisfying g(0) = 1. Results of such computations
are shown in Figs. 4-7. Figure 8 contains comparison
for the entry flux Eq. (10). They were computed us-
ing the model 1 and model 3 parameter settings (see
Appendix A for model functions and for particular
values). The corresponding number of spatial nodes
and the time step are indicated in the figure captions.

In Figs. 4-8 the computational results for two-
phase flow with a general entry flux are presented.
The solutions are compared using two different
choices of numerical parameters. The scheme given
by Eq. (24) obeys the usual stability condition for ex-
plicit schemes (Dmax/®) (t/h?) < 1/2, where Dy
is the upper bound for values of the function D(S,,)
in formula (3). From the figures it can be seen that
the numerical solution converges to the semianalytical
one, even in places where it is steep, that is, where
it has a large gradient. Obviously, this requires use of
enough spatial grid points.

The analytical (18)/(19) and numerical (24) ap-
proaches are also compared with respect to the com-
putational efficiency. Table 1 summarizes the CPU
times in a given environment necessary to obtain the
presented results. Computational complexity of the
schemes given by Egs. (18)/(19) increases for val-
ues Sy and R approaching 1. The indicated time is
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Model 2, SD =0.70,t=1000s
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Figure 3. Results using the model 2 equations (see Appendix A), time ¢ = 1000 s. The algorithm (18)/(19) is used to obtain
the analytical solution using 1000 spatial nodes. Each numerical solution is dependent on the analytical solution through the
value of the parameter A, Numerical results were obtained using a grid of 100 nodes, with the Runge-Kutta time step 0.1 for

(24)
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Figure 4. Input flux function g(t) = 1, numerical solution evaluated at time ¢ = 1000 s. The Runge—Kutta time step for (24)
is 0.1 for 100 spatial nodes and 0.01 for 400 spatial nodes
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Model 1, gij=1/(1+1)
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x[m]

0.4 0.5 0.6

Figure 5. Input flux function g(t) = 1/1 + ¢, numerical solution evaluated at time ¢ = 1000 s. The Runge—Kutta time step
for (24) is 0.1 for 100 spatial nodes and 0.01 for 400 spatial nodes
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Figure 6. Input flux function g(t) = exp(sin 1%5), numerical solution evaluated at time ¢ = 1000 s. The Runge-Kutta time
step for (24) is 0.1 for 100 spatial nodes and 0.01 for 400 spatial nodes

Model 1, glt}=(1+sin(t'10))/(1+]sin(t/10)])

Model 3, git)=(1+sin(t"10))/(1+|sin{t/10)])
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Figure 8. Input flux function g(t) =t~ % numerical solution evaluated at time ¢ = 1000 s. The Runge-Kutta time step for

(24) is 0.1 for 100 spatial nodes and 0.01 for 400 spatial nodes

needed to gel the stationary profile /' = F'(S,,) from
which the selected time level of the function S, is di-
rectly obtained. The computational complexity of the
scheme given by Eq. (24) depends on the numerical
parameters h and 7. It indicates the CPU time needed
to get all successive time levels of S, prior to the
selected time. The numerical approach is therefore
slightly more time demanding (under given implemen-
tation) but it allows a general class of entry fluxes to
be treated.

3.3. Secondary Variables

Both the semianalytical and the numerical approaches
to Eq. (6) provide the values of the function Sy
as of the primary variable. For practical purposes, it
may be convenient to have other quantities available.
For example, the non-wetting phase saturation is then
obtained as a secondary variable from S, as S, =
1 — S, For pressure drops, Egs. (1)-(4) can be used

k,,)_‘
+ —t
i) %

Opn SO | ¢ TR .
e — o (S8 G- (2 ) g
4 W n

to obtain the relations

Opw _ o (§) 25w _ (Kw
% — (w (80) - Dt T~ (=

Jx (26)

which use the derivative 95, /dz. Examples of pro-
files for these quantities are presented in Fig. 9.

4. CONCLUSIONS

In the article we presented two types of benchmarks
for one-dimensional two-phase flow. One of them is
the semianalytically obtained wetting-phase saturation
solution of the flow equation. This was done under
the assumption of a special form of the boundary
flux condition. If any other form of this condition is
required, the second benchmark can be used which is
based on the numerical solution of the flow equation
by means of the finite-difference method of lines. The
two benchmarks were compared in situations when
it was possible. The semianalytical approach provides
accurate values of the wetting-phase saturation but
becomes computationally more expensive for values
Sp and R close to to 1. However, the fully numerical
approach can work with rather general boundary flux
conditions and is computationally efficient.

Respecting the demands of testing with respect
to heterogeneous media, a benchmark for two-phase
flow across a simple discontinuity can be designed
using both approaches, as shown in Fucik et al
(2008).
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APPENDIX A
MODELS OF CAPILLARITY AND
PERMEABILITY

Throughout the article we have used models described
in McWhorter and Sunada (1990). This choice allows
comparison of our results with the results obtained
in this reference and in related references. The Van
Genuchten capillarity model reads as

1 1—m i
pe (Sw) =po (Sw "o 1) , forp. >0 (27)

or the Brooks—Corey capillarity model (Helmig, 1997)

_ 1
Pe (Sw) = pDSW % , for pe = po (28)

The permeability functions were described by the
Mualem model (Mualem, 1976)

ko (S,) = koS3 (1- (1 —S?)m)z
k(S)=h(1-Sot (1-sF)" @9

or by the Parker model (Parker et al., 1987)

b (Se) = koS¢ (1- (1 g S—))z

b (S) =k (1-S9F (1-sF) " @0

The Burdine model for permeability (as in Helmig,
1997) reads as

i 24-3A
kw (Se) = koSe ™
ku (Se) = ko (1 — Se) (1—15(3 ) (31)
The above formulas depend on the effective saturation

S. defined by

. Sw . Swr = Sw - Swr
2 li= Swr - Sm . Sm - Snr

Se(Sw) (32)

where Sy, and Sy, are residual saturations of respec-
tive phases.

We couple the above given formulas into the fol-
lowing configurations:

e Model 1 considering the formula (28) for capillarity
and (31) for permeability.

e Model 2 considering the formula (27) for capillarity
and (30) for permeability.

e Model 3 considering the formula (27) for capillarity
and (29) for permeability.

We have used the parameter values shown in Table A—
1. The setting for models 1 and 2 corresponds to the
values selected in such a way that the ratio py/py
is larger and allows testing the behavior of the model
in extreme situations. Model 3 uses the parameters of
real liquids [w = water, n = NAPL liquid 1,2 DCE,
see Grant and Gerhard (2004), p. 62].
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