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Ondřej Polívka, Jiří Mikyška ∗
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The paper deals with the numerical solution of a compositional model describing
compressible two-phase flow of a mixture composed of several components in porous
media with species transfer between the phases. The mathematical model is formulated
by means of the extended Darcy’s laws for all phases, components continuity equations,
constitutive relations, and appropriate initial and boundary conditions. The splitting
of components among the phases is described using a new formulation of the local
thermodynamic equilibrium which uses volume, temperature, and moles as specification
variables. The problem is solved numerically using a combination of the mixed-hybrid
finite element method for the total flux discretization and the finite volume method for
the discretization of transport equations. A new approach to numerical flux approximation
is proposed, which does not require the phase identification and determination of
correspondence between the phases on adjacent elements. The time discretization is
carried out by the backward Euler method. The resulting large system of nonlinear
algebraic equations is solved by the Newton–Raphson iterative method. We provide eight
examples of different complexity to show reliability and robustness of our approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models of gas injection into oil reservoirs play an important role in solving problems in enhanced oil
recovery or CO2 sequestration. These models have to describe transport of a mixture composed of several chemical compo-
nents in a porous medium. Depending on the local thermodynamic conditions, the mixture can remain in a single phase
or can split into two (or more) phases. In this work, we investigate models in which components splitting among the
phases is described by means of the equilibrium thermodynamics (i.e. we adopt the assumption of the local thermodynamic
equilibrium).

Let us briefly review the formulation of currently available compositional models, discuss several issues inherent to this
formulation, and common ways of solving these issues. Traditionally, compositional models are formulated using a set of
mass or mole balance equations for each component of the mixture in which phase velocities are given by the extended
version of Darcy’s law [5,13,14,24]. Phases are assumed to be compressible; their behavior is described by an equation of
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state, e.g. the Peng–Robinson [30] or other equation of state, of the general pressure-explicit form P = P (V , T , N1, . . . , Nnc ),
where P denotes the pressure, V is the volume, T is the temperature, and N1, . . . , Nnc are the mole numbers of the
nc components of the mixture. Using the assumption of the local thermodynamic equilibrium, the splitting of components
between the phases is described by the equality of chemical potentials or fugacities of every component in both phases [12].
The fugacities are considered to be known functions of P , T , and chemical composition, which can be derived from the
equation of state [12,23]. Therefore, for a given specification of P , T , and chemical composition, the stability algorithms [21,
12] can decide whether the single-phase mixture is stable or not. If the mixture is unstable, P T -flash algorithms are applied
to compute the two-phase equilibrium at given P and T [22,12]. To the best of our knowledge, all available formulations of
compositional models use this P T -based (constant pressure and temperature) approach to phase equilibrium computation.

No matter how wide-spread the use of the P T -based formulations of the phase stability and phase equilibria is, this
approach has some limitations. First, it has been already noticed in [26,16] that specification of P , T , and overall mole
numbers (or mole fractions) does not always determine the equilibrium state of the system uniquely. For example, if we
have 1 mole of pure water at P = 1 atm and T = 100 ◦C, one cannot tell whether it is a saturated liquid, a saturated gas, or
a two-phase mixture of both. Although all these states correspond to the same values of pressure, temperature, and moles,
these states are not the same as they differ in total volume of the mixture. Note that this situation can happen in the
compositional simulation if, for example, during fast injection of a pure component into a reservoir, the injected component
displaces all other components from the injection cell. It is certainly desirable to have a robust model formulation which
will not crash in this situation. Let us also mention that the problem of non-uniqueness of the equilibrium state at given
P , T , and N1, . . . , Nnc is not limited to pure components. We have observed the same problem in many multi-component
mixtures in three phases [15].

Another complication inherent to the P T -based flash equilibrium formulations is the fact that in compositional simu-
lation the pressure is not known a-priori. Actually, pressure field is one of the unknowns that has to be computed by the
simulator. Unlike concentrations, there is no balance equation describing evolution of the pressure field. Instead, pressure
is given implicitly by solving the whole system of equations. In the literature, two approaches to pressure computation in
compositional simulation are available. In the first approach of Ács et al. [1], an evolution partial differential equation for
pressure is formed by combining the evolution equations for overall concentrations in a suitable way. This extra equation
can be solved to get the pressure field. Pressure computation is then followed by the update of concentrations using the
transport equations, typically in an IMPEC (implicit pressure, explicit concentrations) manner [11,28]. As we have one more
equations than unknowns, the system is overdetermined, and we have two ways to evaluate the overall concentration of the
mixture – either by summing the updated overall molar concentrations of the components or by performing the P T -flash
on the mixture at the predicted pressure. Due to numerical discretization errors, the two values of concentration are not the
same and the mass-balance error occurs. This error can be reduced by reducing the time step. Therefore, this mass-balance
error has been used as one of the criteria for the time step selection [14,34]. Let us also mention that to assemble the pres-
sure equation, coefficients of the total two-phase compressibility and total partial molar volumes of all components have
to be evaluated [12], which requires additional algebraic manipulations. An alternative approach to pressure computation
is the approach of Young and Stephenson [35], in which pressure update is formed using the linearization of the transport
equations with respect to selected primary variables. This approach can also be adopted in the IMPEC manner and its ap-
plication also requires considerable algebraic manipulation. Moreover, the correct selection of the primary variables can be
tricky as phases can appear/disappear during the simulation.

Both issues mentioned above can be overcome by using an alternative variables specification for the stability and flash
equilibrium computations. By specifying volume, temperature, and moles (or temperature and overall molar concentrations
of all components), the equilibrium state of the system is uniquely determined [26]. This approach requires using variables
V , T , and Ni (i = 1, . . . ,nc) rather than the conventional set P , T , and composition. The reformulation of the state functions
like chemical potentials in terms of the new variables has been carried out in [26] and V T -based stability and flash algo-
rithm have been derived in [26,27,16]. Within the new framework, the problem of non-uniqueness of the equilibrium state
does not appear. The V T -based formulations can also be used for pressure computation because, once the temperature and
overall molar concentrations are specified, equilibrium pressure is one of the outcomes of the V T -flash calculation.

In this work, we develop a new formulation of the compositional model which uses the V T -stability and V T -flash
equilibrium calculation for pressure evaluation. The approach has several desirable features following from the fact that
volume, temperature, and moles are the natural variables of the equation of state. In the conventional P T -flash, pressure
has to be found a-priori using some of the above mentioned methods [1,35], and volume has to be computed by inverting
the equation of state. The cubic equations of state may have up to three roots, from which the correct one has to be selected.
Usually, the root with the lowest value of the Gibbs free energy is used [12]. In the V T -based algorithm, volume of the cell
is known a-priori and pressure can be evaluated directly without the need to invert the equation of state once the resulting
phase split has been computed using the V T -flash algorithm. The need for the root selection procedure is thus avoided.
This feature can be even more attractive when non-cubic equation of state (like the cubic plus association equation of state)
are used as in these equations number of roots is not known a-priori [18].

The approach suggested in this paper also addresses one issue not related to the V T -flash that is usually overlooked
in the literature. In all formulations used for gas injection into oil reservoirs we are aware of, one usually distinguishes
two phases – one of them labeled as gas and the other one labeled as liquid. In many situations of practical importance
this distinction can be done easily using the phase densities, viscosities or other physical properties of the fluids. When



O. Polívka, J. Mikyška / Journal of Computational Physics 272 (2014) 149–169 151
computing the phase fluxes across the cell boundaries, the gas phase properties on both sides of the interface are used
to compute the gas phase flux across the interface between the two cells. Similarly liquid properties on both sides of the
interface are used to compute the flux of the liquid phase over the interface. It is tacitly assumed that it is always possible
to find out the phase identity – i.e. decide which one of the two equilibrium phases is the gas and which one is the liquid so
that the correct pairing of the corresponding phases at the interface between the two grid cells is performed. This approach
runs into difficulties when investigating mixtures close to the critical point where both split-phases are very similar [12].
Moreover, above the critical point, the supercritical fluids have some properties similar to liquids while other properties are
similar to gases. Selection of the phase identity is then often matter of an ad-hoc procedure. It is also not clear how to
compute phase fluxes between two cells with different number of phases – e.g. with one phase on one side and two phases
on the other side – or between the cells which are both single-phase but one of them contains liquid and the other one
gas.

Therefore, we suggest a new formulation of components fluxes in the compositional model and a special version of
the upwind technique for the flux approximation which avoids the need for the phase identification. The numerical flux
proposed in this work is locally conservative, does not depend on any phase identification, and solves the problem of
connection of fluxes between the cells with different number of phases on both sides in a natural way. This method also
helps to develop a correct formulation of the boundary conditions and avoids certain complexities encountered in our
previous work [24].

The paper is structured as follows. In Section 2, the mathematical model is formulated by means of partial differential
equations representing the conservation laws, Darcy’s laws, and by means of the conditions of local thermodynamic equilib-
rium in the V T -settings. We define several fluxes and derive some relations between them. Then, the compositional model
is formulated and appropriate initial and boundary conditions are prescribed. In Section 3, the system of equations is solved
numerically using the Mixed-Hybrid Finite Element Method (MHFEM) for the Darcy’s law discretization, and the Finite Vol-
ume Method (FVM) for the components transport equations discretization. We also describe details of the numerical flux
approximation. A fully implicit scheme is derived and linearized using the Newton–Raphson iterative method (NRM). In
Section 4, we summarize the essential steps of the computational algorithm. In Section 5, we present examples of compu-
tations using the new approach. In Section 6, we summarize essential features of the method and draw some conclusions.
In Appendices A and B, we provide details of the equation of state used in the calculation, and details of the derivation of
the MHFEM.

2. Mathematical model

2.1. Transport equations

Consider two-phase compressible flow of a mixture composed of nc components in a porous medium with porosity φ [–]
at a constant temperature T [K]. Neglecting diffusion and capillarity, the transport of the components can be described by
the following molar balance equations [24]

∂(φci)

∂t
+ ∇ ·

(∑
α

cα,ivα

)
= Fi, i = 1, . . . ,nc, (1)

where
∑

α sums over all phases, ci is the overall molar concentration of component i [mol m−3], cα,i is the molar concen-
tration of component i in phase α [mol m−3], and Fi is the sink or source term [mol m−3 s−1]. The phase velocity vα is
given by the extended Darcy’s law

vα = −λαK(∇p − �αg), λα = krα

μα
, (2)

where K = K(x) is the medium intrinsic permeability [m2], p is the pressure [Pa], �α = ∑nc
i=1 cα,i Mi is the density of fluid

in phase α (Mi is the molar weight of component i [kg mol−1]), and g is the gravitational acceleration vector [m s−2]. The
α-phase mobility λα is given by the ratio of the α-phase relative permeability krα [–] and α-phase dynamic viscosity μα

[kg m−1 s−1]. The α-phase relative permeability depends on its saturation Sα [–] as

krα = krα(Sα), (3)

and

μα = μα(T , cα,1, . . . , cα,nc ) (4)

is computed using the Lohrenz–Bray–Clark method [19].
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2.2. V T -stability and phase-split calculation

Depending on the local thermodynamic conditions at each point, the mixture can be in a single phase or split into two
phases. To test whether the phase splitting occurs, we use a constant volume phase stability test described in [27]. Assuming
that temperature T > 0 and the overall molar concentrations c1, . . . , cnc are known, this algorithm tests if splitting of a small
amount of a trial phase with arbitrary concentrations c′

1, . . . , c′
nc

from the initial phase can decrease the total Helmholtz free
energy of the system. If such a trial phase cannot be found, then the single phase is stable, cα,i = ci , Sα = 1, and pressure
is given by an equation of state of the form

p = p(T , c1, . . . , cnc ). (5)

In this work, we use the Peng–Robinson equation of state, which is detailed in Appendix A.
If the V T -stability indicates that the system is in two phases, the splitting of components among the phases is given by

the following phase equilibrium conditions [26]∑
α

cα,i Sα = ci,
∑
α

Sα = 1, (6a)

p(T , cα,1, . . . , cα,nc ) = p(T , cβ,1, . . . , cβ,nc ), ∀α �= β, (6b)

μ̃i(T , cα,1, . . . , cα,nc ) = μ̃i(T , cβ,1, . . . , cβ,nc ), ∀α �= β, ∀i = 1, . . . ,nc . (6c)

Eqs. (6) express the balance of mass and volume (6a), mechanical equilibrium (6b), and chemical equilibrium (6c) in which
μ̃i denotes the chemical potential of component i. Details of relations (6b) and (6c) can be found in Appendix A.

The system of equations (6) represents a set of non-linear algebraic equations. If the temperature T and overall molar
concentrations c1, . . . , cnc are specified, solving (6) will provide molar concentrations of all components in both phases cα,i
and phase saturations Sα . Once the system (6) is resolved, the equilibrium pressure p can be determined readily using the
equation of state as

p = p(T , cα,1, . . . , cα,nc ), (7)

where α is any of the split-phases. The value of pressure does not depend on the selection of α because in equilibrium,
pressures in both phases are the same, see (6b).

2.3. Definition of several fluxes

Let us define the i-th component flux in the α-phase qα,i and the total α-phase flux qα as

qα,i = cα,ivα, (8a)

qα =
nc∑

i=1

qα,i = cαvα, (8b)

where cα = ∑nc
i=1 cα,i is the total α-phase concentration. By summing over all phases in (8), we can calculate the total

component flux qi and the total flux q as

qi =
∑
α

qα,i =
∑
α

cα,ivα, (9a)

q =
∑
α

qα =
∑
α

cαvα. (9b)

For further derivation of the numerical scheme, we need to express the phase velocity vα using the total flux q. By substi-
tuting (2) into (9b), Darcy’s law for the total flux can be formulated as

q = −
∑
α

cαλαK(∇p − �̃g), (10)

where

�̃ =
∑
α

cαλα�α∑
α

cαλα
(11)

is an average density. Note that although λα can vanish when Sα → 0, the sum
∑

α cαλα is always positive, so the division
in (11) is permissible. By inverting K (which is invertible since (B.7) holds) in (10), the pressure gradient is given by

∇p = − K−1q∑
cαλα

+ �̃g. (12)
α
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Combining (12) and (2), we have

vα = λα∑
β

cβλβ

(
q −

∑
β

cβλβ(�β − �α)Kg
)

. (13)

Then, using (8a) and (13), qα,i can be evaluated as

qα,i = cα,iλα∑
β

cβλβ

(
q −

∑
β

cβλβ(�β − �α)Kg
)

, (14)

and the total component flux (combining (9a) and (13)) as

qi =
∑
α

cα,iλα∑
β

cβλβ

(
q −

∑
β

cβλβ(�β − �α)Kg
)

. (15)

2.4. Model formulation

Let Ω ⊂ R
d (d ∈ N) be a bounded domain and I be a time interval. In Ω × I , we solve for ci = ci(x, t) the following

equations which can be obtained from the transport equations (1) and (9a)

∂(φci)

∂t
+ ∇ · qi = Fi, i = 1, . . . ,nc, (16)

where qi is given by (15), and q is given by (10). The molar concentrations cα,i and saturations Sα are related to the overall
molar concentrations ci by (6) from which we also determine the pressure (see Section 2.2). Relative permeabilities and
viscosities are given by (3) and (4). For this system of equations, we impose the following initial and boundary conditions

ci(x,0) = c0
i (x), x ∈ Ω, i = 1, . . . ,nc, (17a)

p(x, t) = pD(x, t), x ∈ Γp, t ∈ I, (17b)

qi(x, t) · n(x) = 0, x ∈ Γq, t ∈ I, i = 1, . . . ,nc, (17c)

where n is the unit outward normal vector to the boundary ∂Ω , Γp ∪ Γq = ∂Ω , and Γp ∩ Γq = ∅. Initial values of molar
concentrations are given by (17a), whereas (17b) is the Dirichlet boundary condition prescribing the pressure pD on Γp ,
and (17c) is zero Neumann boundary condition representing impermeable boundary on Γq . We assume that Γp is the
outflow boundary, so no boundary condition for concentration has to be imposed.

3. Numerical scheme

The system of equations (16), (6), and (17) is solved numerically by a combination of the MHFEM for the total flux
discretization, and the FVM for the transport equations discretization. The system is linearized using the NRM. The local
number of phases on every element is determined by testing the single-phase stability at constant temperature and overall
molar concentrations using the constant volume stability algorithm described in [27]. In two-phase elements, the splitting of
components among the phases is computed using the V T -flash algorithm from [26]. Once the phase state (i.e. single-phase
or two-phase) of every element and the phase splitting in two-phase elements have been established, pressure is computed
explicitly using the equation of state.

We consider a 2D polygonal domain Ω with the boundary ∂Ω which is covered by a conforming triangulation TΩ . Let
us denote K the element of the mesh TΩ with area |K |, E the edge of an element with the length |E|, nk the number of
elements of the triangulation, and ne the number of edges of the mesh.

3.1. Discretization of the total flux

The total flux q is approximated locally in the Raviart–Thomas space of the lowest order (RT0(K )) over the element
K ∈ TΩ [3] as

q|K =
∑

E∈∂ K

qK ,E wK ,E , (18)

where the coefficient qK ,E is the numerical flux of vector function q through the edge E on the element K with respect
to the outer normal, and wK ,E represents the piecewise linear RT0(K )-basis function associated with the edge E (see
Appendix B).
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Multiplying relation (12) by the basis function wK ,E , integrating over the element K , and using the RT0(K ) properties
described in details in Appendix B, we obtain a discrete form of Darcy’s law for the total flux (10) as follows

qK ,E =
∑

α∈Π(K )

cα,K λα,K

(
αK

E pK −
∑

E ′∈∂ K

βK
E,E ′ p̂K ,E ′ + γ K

E �̃K

)
, E ∈ ∂ K . (19)

In Eq. (19), Π(K ) denotes all phases on element K . The coefficients αK
E , βK

E,E ′ and γ K
E dependent on the mesh geometry

and on the local values of the medium permeability are detailed in Appendix B. Further, pK denotes the cell pressure aver-
age, p̂K ,E ′ is the edge pressure average, cα,K , λα,K , �̃K are the mean values of concentration and mobility of phase α, and
average density on element K . The cell-averaged quantities are functions of the overall molar concentrations and tempera-
ture at element K ; their evaluation is described in Section 3.3.

The continuity of normal component of the total flux and pressure on the edge E between neighboring elements
K , K ′ ∈ TΩ can be written as

qK ,E + qK ′,E = 0, (20)

p̂K ,E = p̂K ′,E =: p̂E . (21)

The boundary conditions (17b), (17c) are discretized as

p̂E = pD(E), ∀E ⊂ Γp, (22a)

qK ,E = 0, ∀E, K : E ⊂ Γq, E ∈ ∂ K , (22b)

where pD(E) is the prescribed value of pressure p averaged on the edge E .
The numerical flux can be eliminated by substituting qK ,E from (19) into (20) and (22b). For further derivation, let us

consider time dependent quantities at time tn+1 denoted by upper index n + 1. Then, Eqs. (19)–(22) can be transformed to
the following system of ne linear algebraic equations FE = 0, where

FE =
⎧⎨⎩

∑
K :E∈∂ K

(
∑

α∈Π(K )

cn+1
α,K λn+1

α,K )(αK
E pn+1

K − ∑
E ′∈∂ K

βK
E,E ′ p̂n+1

E ′ + γ K
E �̃n+1

K ), ∀E �⊂ Γp,

p̂n+1
E − pD(E), ∀E ⊂ Γp .

(23)

Herein, the symbol
∑

K :E∈∂ K
denotes the sum over the elements adjacent to the edge E .

3.2. Approximation of the transport equations

The transport equations (16) with the initial and boundary conditions (17) are discretized by the FVM [17]. Integrat-
ing (16) over an arbitrary element K ∈ TΩ and using Green’s theorem, we have

d

dt

∫
K

φ(x)ci(x, t) +
∫
∂ K

qi(x, t) · n∂ K (x) =
∫
K

Fi(x), i = 1, . . . ,nc . (24)

Applying the mean value theorem on (24), and denoting φK , ci,K , Fi,K , the averaged values of φ, ci, Fi (i = 1, . . . ,nc) over
the cell K , respectively, the semi-discrete form of (16) reads as

d(φK ci,K )

dt
|K | +

∑
E∈∂ K

qi,K ,E = Fi,K |K |, (25)

where qi,K ,E is a numerical approximation of
∫

E qi · nK ,E for E ∈ ∂ K . The numerical flux qi,K ,E is evaluated by the following
upwind technique

qi,K ,E =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
α∈Π(K ,E)+

qα,i,K ,E − ∑
β∈Π(K ′,E)+

qβ,i,K ′,E , ∀E /∈ ∂Ω,∑
α∈Π(K ,E)+

qα,i,K ,E , ∀E ∈ Γp,

0, ∀E ∈ Γq,

(26)

where Π(K , E)+ = {α ∈ Π(K ) | qα,i,K ,E > 0} for E ∈ ∂ K , and qα,i,K ,E is (14) written in a discrete form as

qα,i,K ,E = cα,i,K λα,K∑
β∈Π(K )

cβ,K λβ,K

(
qK ,E −

∑
β∈Π(K )

cβ,K λβ,K (�β,K − �α,K )γ K
E

)
. (27)

Notice that (26) is an approximation of (15), where we sum over the phases on the edge E taking only the outflowing
phases into account. This method ensures that no phase identification or phase interconnection between neighboring ele-
ments is necessary, and the total component fluxes are balanced on each inner edge. In (27), qK ,E is given by (19), cα,i,K
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and Sα,K are computed locally on each element by V T -flash (see Section 2.2), and from them, cα,K , λα,K , and �α,K are
evaluated.

Assuming that the porosity does not depend on time, the time derivative of ci,K in (25) is approximated by the time
difference with a time step �tn . Using Euler’s method [17], we obtain for every n, all K ∈ TΩ , and i = 1, . . . ,nc Eq. (25) in
a form FK ,i = 0, where

FK ,i = φK |K | cn+1
i,K − cn

i,K

�tn
+

∑
E∈∂ K

qn+1
i,K ,E − Fi,K |K |, (28)

where qi,K ,E is given by (26). Note that scheme (28) is fully implicit.
The initial conditions (17a) are approximated as

c0
i,K = c0

i (K ), ∀K ∈ TΩ, i = 1, . . . ,nc, (29)

where c0
i (K ) denotes the average value of c0

i on element K .

3.3. Assembling the final scheme

In Eqs. (23) and (28), we have denoted FE and FK ,i , (for the edge E ∈ {1, . . . ,ne}, element K ∈ {1, . . . ,nk}, and com-
ponent i ∈ {1, . . . ,nc}) the expressions which represent the components of a vector F . To evaluate coefficients cn+1

α,K , λn+1
α,K ,

�̃n+1
K that are needed in (23) and also other element-averaged quantities depending on phase splitting required in (26)–(28),

we perform the V T -flash calculation on element K using the cell-averaged values cn+1
1,K , . . . , cn+1

nc ,K , and temperature T . The

cell average pressure pn+1
K is also given implicitly by the result of the V T -flash at given cn+1

1,K , . . . , cn+1
nc ,K , and temperature

T as described in Section 2.2. Using the NRM, we therefore solve a nonlinear system of algebraic equations of nk · nc + ne

equations

F = [F1,1, . . . ,F1,nc , . . . ,Fnk,1, . . . ,Fnk,nc ;F1, . . . ,Fne ]T = 0 (30)

for unknown primary variables – overall molar concentrations cn+1
1,K , . . . , cn+1

nc ,K , K ∈ {1, . . . ,nk}, and pressures on edges p̂n+1
E ,

E ∈ {1, . . . ,ne}. In each iteration of the NRM, we solve the following linear system of algebraic equations

Jδ = −F . (31)

The Jacobian matrix J of system (31) is sparse and nonsymmetric. The matrix is divided into 4 blocks whose elements can
be evaluated analytically using the following relations

(JK ,K ′)i, j = ∂FK ,i

∂cn+1
j,K ′

, (JK ,E)i = ∂FK ,i

∂ p̂n+1
E

, (JE,K ) j = ∂FE

∂cn+1
j,K

, J E,E ′ = ∂FE

∂ p̂n+1
E ′

, (32)

where J E,E ′ is an element of the matrix JE,E ′ , i, j = 1, . . . ,nc ; K , K ′ = 1, . . . ,nk; E, E ′ = 1, . . . ,ne . The vector of solutions δ

contains the corrections of molar concentrations δcn+1
i,K and pressures on the edges δ p̂n+1

E , which are computed in each NRM

iteration and added to the values of cn+1
i,K and p̂n+1

E given from the previous iteration. The iteration procedure ends when
the condition

‖F‖ < ε (33)

is satisfied for a chosen ε > 0 [33]. The robustness of the NRM is increased by using the line-search technique [33]. If the
NRM cannot converge in 10 iterations or if the line-search does not lead to the reduction of ‖F‖ in 10 iterations, the time
step is restarted and the value �tn is halved. If the NRM converges in less than 4 iterations, the time step is accepted and
the next time step size is increased (�tn+1 = 1.2�tn).

Let us point out that the linearization is performed with respect to the overall molar concentrations on each element
and traces of pressure on every edge of the triangulation. These variables are persistent – i.e. well defined independently
of whether a given element is in a single phase or two phases. The derivatives in (32) are also well defined in both single
phase and two phases. Therefore, our scheme performs well in both cases and no primary variables switching is needed
for treating phase appearance/disappearance (cf. [2,6,29]). As the discretization of the transport equations is based on the
approximation of the total component flux, the connection between the elements with different number of phases is treated
in a natural way.
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Fig. 1. Structures of the computational grid in our code and P T -code.

4. Computational algorithm

Numerical solution can be computed in the following steps:

1. Initialize the geometry, physical and chemical parameters, and molar concentrations, generate a domain triangulation.
2. Calculate pressures pK on each element using the equation of state (A.1) and initial molar concentrations, then initialize

all edge pressures p̂E by averaging pK on neighboring elements.
3. Repeat until the predetermined final time is reached (tn ∈ I):

(a) Repeat the NRM iterations until the convergence criterion (33) is satisfied:
i. Perform the stability and flash calculations (see Section 2.2) to obtain a number of phases and their compositions

locally on all elements.
ii. Evaluate phase mobilities λn+1

α,K using (2), (3), and (4) on each element.

iii. For each K , compute the cell-averaged pressures pn+1
K using (5) or (6b) depending on the phase state (see

Section 2.2), and average densities �̃n+1
K using (11).

iv. Evaluate the total fluxes qn+1
K ,E using (19) and phase fluxes qn+1

α,i,K ,E using (27).

v. Assemble and solve the system (31) for corrections of molar concentrations δcn+1
i,K and pressures δ p̂n+1

E simulta-
neously.

vi. Add corrections δcn+1
i,K and δ p̂n+1

E to cn+1
i,K and p̂n+1

E , respectively, check the convergence criterion (33).
(b) Continue to the next time level (n → n + 1).

In steps i.–iii. cn+1
α,K , λn+1

α,K , �̃n+1
K , and pn+1

K are computed using the data from the last available Newton iteration. In the first
iteration, data from the previous time step are used.

5. Numerical results

In this section, we present results of compositional simulations of gas injections into reservoirs filled with different mix-
tures using the numerical scheme described above. We compute the flow in a 2D square reservoir 50 × 50 m2 with porosity
φ = 0.2 and isotropic permeability K = k = 9.87 × 10−15 m2 (i.e. 10 mD) if not specified otherwise. Structure of the com-
putational grid with 2 × 10 × 10 elements is shown in Fig. 1(a). Parameter ε from the NRM convergence criterion (33) was
chosen 10−6 for all computations. The systems of linear algebraic equations were solved using the direct solver UMFPACK
[7–10]. All our results were computed on a grid of 2 × 40 × 40 elements except for the simulations serving for the conver-
gence verification. Our calculations were performed on Six-Core AMD Opteron(tm) Processor 2427 at 2.2 GHz and 32 GB
memory. Only V T -flash calculations were performed in parallel. The rest of the computation was sequential.

In the following parts, the numerical simulations are computed for different mixtures, and validated with results com-
puted using an other code. The other code uses the method of Ács et al. [1] to decouple pressure computation and the
update of concentrations. While the pressure equation is treated semi implicitly using the MHFEM, the update of concentra-
tions is performed explicitly using the first order FVM upwind scheme. The phase splitting is solved using the conventional
P T -flash, and the phase identification is performed using the densities of the split phases. Details of the scheme can be
found in [13,14,24]. In the following, we denote this code as P T -code. Note that in [24] a higher order scheme is used for
computations. In this paper, we compare our results with those obtained by the first order (MHFEM–FVM) variant of the
scheme [24] on a rectangular grid with structure shown in Fig. 1(b). Examples 1 and 2 correspond to Examples 3 and 4
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Fig. 2. Outlines of the simulated reservoirs for Examples 1–4.

Table 1
Relevant parameters of the Peng–Robinson equation of state (A.1) for Examples 1 and 2. Volume translation is not used.

i (component) pc i [MPa] Tc i [K] V c i [m3 mol−1] Mi [g mol−1] ωi [–] δi1 [–] δi2 [–]

1 (C1) 4.58373 189.743 9.897054 × 10−5 16.2077 1.14272×10−2 0 0.0365
2 (C3) 4.248 369.83 2 × 10−4 44.0962 0.153 0.0365 0

in [24]. Examples 3 and 4 are inspired by Example 2 in [25]. Examples 6 and 7 correspond to Examples 6 and 5 in [24].
Example 8 demonstrates a case in which the traditional P T -based approach fails.

5.1. Injection of methane into propane

Let us consider a cut through a propane reservoir at initial pressure p = 6.9 MPa and temperature T = 311 K. In the left
bottom corner of the reservoir, methane is injected, and in the right upper corner, the mixture of methane and propane is
produced (Fig. 2(a)). The injection rate of methane is 42.5 m2/day at pressure 1 atm (0.101325 MPa) and temperature 293 K.
The parameters of the Peng–Robinson equation of state for both components of the mixture are summarized in Table 1. In
these settings, both methane and propane are single-phase but when mixed, the mixture can split into two phases. The
boundary of the domain is impermeable except for the outflow corner where pressure p = 6.9 MPa is maintained. Relative
permeability depends linearly on saturation as krα(Sα) = Sα for each phase α.

Example 1. First, we simulate injection of methane into a horizontal reservoir (i.e. with zero gravity) originally filled with
propane. Isolines of methane overall molar fraction c1/(

∑2
i=1 ci) at three different times are shown in Fig. 3. The value of

molar fraction nearest to the injection corner is 0.95, and with each isoline towards the outflow corner the value decreases
by 0.1. The mixture stays in the single phase in the major part of the domain, but, in the mixing zone, the two-phase
region develops (visualized by gray color). The computation to t = 1.71 years lasted 13.1 hours. To validate our results, the
problem was computed also by the P T -code. The obtained result at t = 1.14 years is depicted in Fig. 3(d) (indication of the
two-phase region was unavailable in the P T -code). The result is similar to the one in Fig. 3(b).

In this example, we also verify convergence of the numerical scheme. In the single-phase case, an analytical solution
for a special problem is available. The experimental convergence analysis of the MHFEM–FVM for this problem can be
found in [32]. As, to the best of our knowledge, there is no analytical solution for the two-phase case available, we use a
pseudoanalytical solution, i.e. the numerical solution computed on the finest grid of 8192 elements, for the convergence
analysis. Experimental orders of convergence (EOC) are computed between neighboring grids m = 2 × 2 × 2, 2 × 4 × 4,
2 × 8 × 8, 2 × 16 × 16, and 2 × 32 × 32 using the L1 and L2 consistent norms for errors Em of methane concentrations
and cell-averaged pressures in comparison with the solution obtained on the grid 2 × 64 × 64. The errors are computed on
the finest grid by projecting the solutions from the coarser grids to the finest grid. The time step for the pseudoanalytical
solution is chosen constant �t = 195.3125 s. For the solutions on coarser grids, �t is 4 times larger with each mesh
refinement (�t ∼ m−1), i.e. �t = 781.25 s for the solution computed on 2048 elements, �t = 3125 s for 512 elements,
�t = 12 500 s for 128 elements, �t = 50 000 s for 32 elements, and �t = 200 000 s for 8 elements. The EOC in a norm ‖.‖ν

is given by

EOCν = ln ‖Em1‖ν − ln‖Em2‖ν
,

lnm2 − lnm1
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Fig. 3. Isolines of methane overall molar fraction and the two-phase region (gray color) at different times. Contours are distributed uniformly between the
two printed values. The solution is computed on the triangular grid 2 × 40 × 40; (d) is computed on 40 × 40 rectangles using the P T -code (the two-phase
region is not indicated here): Example 1.

Table 2
Experimental orders of convergence and errors of methane concentration c1 at time t =
0.48 years for grids of m elements compared with the numerical solution on the grid of
8192 elements and the time step �t = 195.3125 s. On coarser grids, �t ∼ m−1.

m ‖Em‖1 EOC1 ‖Em‖2 EOC2

8 7.3988 × 105
0.4588
0.6912
0.4082
0.6679

3.3186 × 104
0.2532
0.5809
0.1114
0.3603

32 5.3833 × 105 2.7844 × 104

128 3.3342 × 105 1.8615 × 104

512 2.5125 × 105 1.7232 × 104

2048 1.5814 × 105 1.3424 × 104

where Em1 and Em2 are the numerical solution errors for the grids containing m1 and m2 elements, respectively. The
EOC and L1 and L2 errors of methane concentrations and cell-averaged pressures for the situation at time t = 0.48 years
are included in Table 2 and Table 3. EOC of concentrations in L1 norm are approximately 0.5, which is expected for the
first order upwind FVM on hyperbolic problems with discontinuous solutions [17]. A comparison of the solutions on the
individual grids using methane overall molar fractions at this time is depicted in Fig. 4.

Example 2. In the next example, we simulate the methane injection into a vertical reservoir (i.e. with gravity) originally
filled with propane. In Fig. 5 isolines of methane overall molar fraction c1/(

∑2
i=1 ci) at different times are depicted. The

value of molar fraction nearest to the injection corner is 0.95, and with each isoline towards the outflow corner the value
decreases by 0.1. As in Example 1, the fluid is in the single phase in the whole reservoir except for the mixing zone where
the mixture occurs also in two phases as indicated by gray color. The computation to t = 1.14 years lasted 13.2 hours.
To validate our results, the problem was computed also by the P T -code. The obtained result at t = 1.14 years is depicted
in Fig. 5(d) (indication of the two-phase region was unavailable in the P T -code). The result differs slightly from ours in
Fig. 5(c). The zone between 0.95 and 0.05 isoline is narrower in Fig. 5(d), however, we observed an incorrect pressure in the
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Table 3
Experimental orders of convergence and errors of pressure pK at time t = 0.48 years for grids
of m elements compared with the numerical solution on the grid of 8192 elements and the
time step �t = 195.3125 s. On coarser grids, �t ∼ m−1.

m ‖Em‖1 EOC1 ‖Em‖2 EOC2

8 3.0257 × 108
0.1283
0.3544
0.6859
1.0166

6.0661 × 106
0.1301
0.3550
0.6866
1.0166

32 2.7682 × 108 5.5430 × 106

128 2.1652 × 108 4.3339 × 106

512 1.3459 × 108 2.6928 × 106

2048 6.6528 × 107 1.3310 × 106

Fig. 4. Isolines of methane overall molar fraction and the two-phase region (gray color) computed on different grids at time t = 0.48 years. Contours are
distributed uniformly between the two printed values. Solutions are computed on the triangular grid: Example 1.
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Fig. 5. Isolines of methane overall molar fraction and the two-phase region (gray color) at different times. Contours are distributed uniformly between the
two printed values. The solution is computed on the triangular grid 2 × 40 × 40; (d) is computed on 40 × 40 rectangles using the P T -code (the two-phase
region is not indicated here): Example 2.

Table 4
Relevant parameters of the Peng–Robinson equation of state (A.1) for Examples 3, 4, and 8. Volume translation is not used.

i (component) pc i [MPa] Tc i [K] Vc i [m3 mol−1] Mi [g mol−1] ωi [–] δi1 [–] δi2 [–]

1 (CO2) 7.375 304.14 9.416 × 10−5 44 0.239 0 0.15
2 (C3) 4.248 369.83 2 × 10−4 44.0962 0.153 0.15 0

outflowing element in the right upper corner of the domain in this result. Instead of a value close to 6.9 MPa (at the corner
edges, there is prescribed exactly 6.9 MPa), which was observed in our result, there was 6.68 MPa in the result obtained by
the P T -code. The lower pressure in the outflowing corner implies higher velocities, which can explain the difference in the
molar fractions.

5.2. Injection of CO2 into propane

Let us consider a cut through a propane reservoir at initial pressure p = 2.5 MPa and temperature T = 311 K. In the
left bottom corner of the reservoir, CO2 is injected, and in the right upper corner, the mixture of CO2 and propane is
produced (Fig. 2(b)). The injection rate of CO2 is 42.5 m2/day at pressure 1 atm and temperature 293 K. The parameters
of the Peng–Robinson equation of state for both components of the mixture are summarized in Table 4. In these settings,
the mixture can stay in the single phase or split into two phases. The boundary of the domain is impermeable except
for the outflow corner where pressure p = 2.5 MPa is maintained. Relative permeability depends linearly on saturation as
krα(Sα) = Sα for each phase α.

Example 3. In Fig. 6, a simulation of CO2 injection into a horizontal reservoir originally filled with propane is shown. Isolines
of CO2 overall molar fraction c1/(

∑2
i=1 ci) are distributed uniformly between the two displayed values of 0.95 and 0.05. The

mixture stays in the single phase in the majority of the domain, only in the zone where the molar fractions are greater than
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Fig. 6. Isolines of CO2 overall molar fraction and the two-phase region (gray color) at different times. Contours are distributed uniformly between the two
printed values. The solution is computed on the triangular grid 2 × 40 × 40; (d) is computed on 40 × 40 rectangles using the P T -code (the two-phase
region is not indicated here): Example 3.

0.05 and less than 0.95, the two-phase region (colored in gray) appears. The computation to t = 0.79 years lasted 6.4 hours.
To validate our results, the problem was computed also by the P T -code. The zone between 0.95 and 0.05 isolines in the
obtained result at t = 0.48 years depicted in Fig. 6(d) (indication of the two-phase region was unavailable in the P T -code)
is slightly wider than the one in Fig. 6(b) computed by our code.

Example 4. In this example, we simulate the CO2 injection into a vertical propane reservoir. Uniformly distributed contours
of CO2 overall molar fractions c1/(

∑2
i=1 ci) between 0.95 and 0.05 are visualized in Fig. 7. The single-phase mixture occupies

a major part of the domain during the simulation but in the mixing zone a two-phase domain (gray color) also develops.
At time t = 0.55 years, we observed that there were the most two-phase elements of the whole simulation. Afterwards,
the number of two-phase elements decreases. The computation to t = 0.79 years lasted 8.8 hours. To validate our results,
the problem was computed also by the P T -code. The obtained result at t = 0.48 years is depicted in Fig. 7(d) (indication
of the two-phase region was unavailable in the P T -code). The result differs from ours in Fig. 7(b), however, we observed
an incorrect pressure in the outflowing element in the right upper corner of the domain in this result. Instead of a value
close to 2.5 MPa (at the corner edges, there is prescribed exactly 2.5 MPa), which was observed in our result (2.51 MPa),
there was 2.27 MPa in the other result. The lower pressure in the outflowing corner can cause different velocities, which
explains the difference in the molar fractions. In the injection corner, the pressure was 2.53 MPa in the result obtained by
the P T -code, while we observed 2.97 MPa in our result.

5.3. Injection of CO2 into oil

In the third problem, let us consider a cut through an oil (8-component hydrocarbon mixture) reservoir at initial pressure
p = 27.6 MPa and temperature T = 403.15 K. The initial overall molar fractions in the reservoir can be found in Table 5. CO2
is injected in one corner of the reservoir, and the mixture of CO2 and oil is produced in the opposite corner. The injection
rate of CO2 is 133.33 m2/day at pressure 1 atm and temperature 293 K. The parameters of the Peng–Robinson equation of
state for all components of the mixture are summarized in Table 6. In these settings, the mixture can stay in the single
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Fig. 7. Isolines of CO2 overall molar fraction and the two-phase region (gray color) at different times. Contours are distributed uniformly between the two
printed values. The solution is computed on the triangular grid 2 × 40 × 40; (d) is computed on 40 × 40 rectangles using the P T -code (the two-phase
region is not indicated here): Example 4.

Table 5
The initial overall molar fractions in the reservoir.

Component CO2 N2 C1 C2–C3 C4–C5 C6–C10 C11–C24 C25+
Overall molar fraction 0.0086 0.0028 0.4451 0.1207 0.0505 0.1328 0.1660 0.0735

Table 6
Relevant parameters of the Peng–Robinson equation of state (A.1) for Examples 5, 6, and 7. Volume translation is not used.

i (component) pc i [MPa] Tc i [K] V c i [m3 mol−1] Mi [g mol−1] ωi [–] δi1 [–] δi2 [–] δi3 [–] δi4 [–] δi5 [–] δi6 [–] δi7 [–] δi8 [–]

1 (CO2) 7.375 304.14 9.416 × 10−5 44 0.239 0 0 0.15 0.15 0.15 0.15 0.15 0.08
2 (N2) 3.39 126.21 8.988 × 10−5 28 0.039 0 0 0.1 0.1 0.1 0.1 0.1 0.1
3 (C1) 4.599 190.56 9.84 × 10−5 16 0.011 0.15 0.1 0 0.0346 0.0392 0.0469 0.0635 0.1052
4 (C2–C3) 4.654 327.81 1.6571 × 10−4 34.96 0.11783 0.15 0.1 0.0346 0 0 0 0 0
5 (C4–C5) 3.609 435.62 2.7522 × 10−4 62.98 0.21032 0.15 0.1 0.0392 0 0 0 0 0
6 (C6–C10) 2.504 574.42 4.6839 × 10−4 110.21 0.41752 0.15 0.1 0.0469 0 0 0 0 0
7 (C11–C24) 1.502 708.95 9.3876 × 10−4 211.91 0.66317 0.15 0.1 0.0635 0 0 0 0 0
8 (C25+) 0.76 891.47 1.9298 × 10−3 462.79 1.7276 0.08 0.1 0.1052 0 0 0 0 0

phase or split into two phases. The boundary of the domain is impermeable except for the outflow corner where pressure
p = 27.6 MPa is maintained. Relative permeability depends quadratically on saturation as krα(Sα) = S2

α for each phase α.
To validate our results, the following examples were computed also by the P T -code as in the previous simulations, but

we have not included the results obtained by the P T -code for the sake of brevity.

Example 5. In Fig. 9, a simulation of CO2 injection in the left bottom corner of a horizontal reservoir originally filled with
oil is shown. In the right upper corner, the mixture is produced. The reservoir is outlined in Fig. 8(a). In each of the 6
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Fig. 8. Outlines of the simulated reservoirs for Examples 5–7.

plots, isolines of the overall molar fraction ci/(
∑8

i=1 ci) are visualized for 1 of the 8 components at time t = 1.36 years.
Contours are distributed uniformly between the displayed values. In each figure the two-phase region is colored in gray
color. In comparison with Examples 1–4, the two-phase region occupies a major part of the domain. The computation to
t = 1.36 years lasted 57.8 hours.

Example 6. This example is similar to Example 5, but this time we simulate injection of CO2 into a vertical oil reservoir. CO2
is injected in the left bottom corner and the mixture is produced in the right upper corner (as outlined in Fig. 8(a)). Results
of the simulation at time t = 1.36 years are shown in Fig. 10 using the isolines of the overall molar fractions ci/(

∑8
i=1 ci)

of 6 selected components, and the two-phase region is colored in gray. As in Example 5, also here, the two-phase region
occupies a large part of the reservoir. The computation to t = 1.36 years lasted 96.7 hours.

Example 7. In this example, we compute the injection of CO2 in the right upper corner of the vertical reservoir, whereas
the mixture outflows in the left bottom corner (see Fig. 8(b)). Fig. 11 shows results of the simulation at time t = 1.36 years.
Isolines of the overall molar fraction ci/(

∑8
i=1 ci) are visualized for the same components as in Examples 5 and 6. Again,

the gray-colored two-phase region is spread over a significant part of the reservoir. The computation to t = 1.36 years lasted
75.3 hours.

5.4. CO2 close to the saturation pressure

Example 8. In the last example, we simulate an isothermal injection of CO2 into a reservoir that is filled with pure gas
CO2 at temperature T = 280 K and p = 4 MPa. Note that the saturated vapor pressure of CO2 at 280 K is 4.13 MPa. CO2 is
injected in the left bottom corner of the reservoir and produced in the right upper corner. The injection rate is 42.5 m2/day
at pressure 1 atm and temperature 293 K. The parameters of the Peng–Robinson equation of state for CO2 are summarized
in Table 4 (first line). The medium has a low permeability K = k = 9.87 × 10−17 m2 (i.e. 0.1 mD) and porosity φ = 0.2. The
boundary of the domain is impermeable except for the outflow corner where pressure p = 4 MPa is maintained. Relative
permeability depends linearly on saturation as krα(Sα) = Sα for each phase α.

Due to the injection, the pressure in the vicinity of the injection point rises above the value of the saturation pressure
and the liquid CO2 phase should appear. Fig. 12 shows the result of our code at four different times. The computation
to t = 10.14 years lasted 4.6 hours. The liquid CO2 with density approximately 873 kg m−3 displaces the vapor with den-
sity approximately 118 kg m−3. The two-phase elements (gray) correspond well with the dashed isoline of the saturation
pressure (see Fig. 12). The P T -code (based on [13,14,24]) used for this simulation crashes due to the problem with the
phase identification. This problem shows the advantages of the V T -based formulation which does not require the phase
identification.

6. Summary and conclusions

We have developed a new formulation of the compositional model for the reservoir simulation. The new feature of the
model is that it uses computation of phase equilibria at constant temperature and volume rather than pressure. Compared
to the traditional P T -based formulation, the new formulation in terms of V T is not only more robust, but also provides a
convenient and natural way for the pressure computation. In the new formulation, the equation of state does not have to be
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Fig. 9. Isolines of the overall molar fractions and the two-phase region (gray color) at t = 1.36 years. Contours are distributed uniformly between the two
printed values. The solution is computed on the triangular grid 2 × 40 × 40: Example 5.

inverted, and thus the root selection problem does not appear. We have tested the model on eight examples involving binary
and multicomponent mixtures described by the Peng–Robinson equation of state. We expect that the same approach can be
used for other pressure-explicit equations of state as well. Moreover, we expect that the advantage of the fact that there is
no need for inversion in the equation of state will appear to be beneficial for simulations using non-cubic equations of state.
These equations of state can describe correctly association in the mixtures involving polar components (e.g. CO2 + H2O)
and, thus, have important applications in problems related to carbon sequestration [18,16]. Extension of our approach to
these equations of state is a subject of current research.

We have discretized the model using a combination of the MHFEM and FVM for the computation of two-phase com-
pressible flow of a mixture in porous media in 2D. In comparison with the traditional approaches, our approximation of the
component flux between elements does not depend on the phase identification and pairing of phases between elements.
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Fig. 10. Isolines of the overall molar fractions and the two-phase region (gray color) at t = 1.36 years. Contours are distributed uniformly between the two
printed values. The solution is computed on the triangular grid 2 × 40 × 40: Example 6.

This feature of the model will be also advantageous in problems related to carbon sequestration as typically CO2 is injected
into the reservoir in the supercritical state.

Our method is fully coupled, fully implicit and is therefore much more expensive in comparison with the decoupled
(sequential) IMPEC approaches. In this work, we focused on the robustness of the formulation rather than the CPU costs.
We believe that the robustness of the V T -flash and flux evaluation which does not depend on the phase identification can
be exploited also in the sequential schemes. Development of such schemes is another subject of our current research.

Many questions related to the new formulation remain open, e.g. how to include diffusion or capillarity in the V T -based
model. For example, capillarity in the compositional simulation has traditionally been formulated using the extension of the
concepts developed in the immiscible flow. Here, the V T -based formulation seems to be of great advantage with respect
to P T , but currently available theories of capillarity rely heavily on the phase identification. We believe that the model



166 O. Polívka, J. Mikyška / Journal of Computational Physics 272 (2014) 149–169
Fig. 11. Isolines of the overall molar fractions and the two-phase region (gray color) at t = 1.36 years. Contours are distributed uniformly between the two
printed values. The solution is computed on the triangular grid 2 × 40 × 40: Example 7.

concept proposed in this paper can be extended to include capillarity and diffusion, although this may require a non-trivial
revision of basic concepts and the way we usually describe these phenomena. Development of such extensions is subject of
our future research.
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Fig. 12. Isolines of the cell-averaged pressure pK and the two-phase elements (gray color) at different times. Solid contours are distributed uniformly
between the two printed values. Dashed contours represent the saturation pressure and separates the liquid and gas zones. The solution is computed on
the triangular grid 2 × 40 × 40: Example 8.

Appendix A. Details of the constitutive relations

Pressure in (6b) is given by the Peng–Robinson equation of state [30,12,26,27] as

p(T , c1, . . . , cnc ) =
RT

nc∑
i=1

ci

1 −
nc∑

i=1
bici

−

nc∑
i=1

nc∑
j=1

aijcic j

1 + 2
nc∑

i=1
bici − (

nc∑
i=1

bici)
2

. (A.1)

In Eq. (A.1), R = 8.314472 J K−1 mol−1 is the universal gas constant and

aij = (1 − δi j)
√

aia j, ai = 0.45724
R2Tc i

2

pc i

[
1 + mi(1 − √

Tri)
]2

,

mi =
{

0.37464 + 1.54226ωi − 0.26992ω2
i for ωi < 0.5,

0.3796 + 1.485ωi − 0.1644ω2
i + 0.01667ω3

i for ωi ≥ 0.5,

Tri = T

Tc i
, bi = 0.0778

RTci

pc i
, (A.2)

where δi j is the binary interaction coefficient [–]; Tc i , pc i , ωi , Tr i are the critical temperature [K], critical pressure [Pa],
acentric factor [–], reduced temperature [–], respectively – all corresponding to the i-th component.

The condition of chemical equilibrium (6c) can be rewritten in terms of the volume function coefficients, which were
introduced in [26] to replace fugacities in the V T -based formulations. The equivalent condition to (6c) reads as

cα,i

ϕ (T , c , . . . , c )
= cβ,i

ϕ (T , c , . . . , c )
, ∀α �= β, ∀i = 1, . . . ,nc, (A.3)
i α,1 α,nc i β,1 β,nc
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where the volume function coefficient ϕi for the Peng–Robinson equation of state reads as

lnϕi(T , c1, . . . , cnc )

= ln

(
1 −

nc∑
j=1

b jc j

)
−

bi

nc∑
j=1

c j

1 −
nc∑

j=1
b jc j

+
bi

nc∑
j=1

nc∑
k=1

a jkc jck

RT
nc∑

j=1
b jc j(1 + 2

nc∑
j=1

b jc j − (
nc∑

j=1
b jc j)

2)

− 1
√

2RT
nc∑

j=1
b jc j

⎛⎜⎜⎜⎝
bi

nc∑
j=1

nc∑
k=1

a jkc jck

2
nc∑

j=1
b jc j

−
nc∑

j=1

aijc j

⎞⎟⎟⎟⎠ ln

∣∣∣∣∣∣∣∣∣
1 + (1 + √

2)
nc∑

j=1
b jc j

1 + (1 − √
2)

nc∑
j=1

b jc j

∣∣∣∣∣∣∣∣∣ . (A.4)

Details of the definition and basic properties of the volume functions and volume function coefficients as well as derivation
of the last formula can be found in [26].

Appendix B. Raviart–Thomas basis functions and details of the MHFEM

In this part, we describe details of derivation of discrete Darcy’s law (19) using the Raviart–Thomas space [3,4,31,24].
The Raviart–Thomas space of the lowest order RT0(K ), over an element K from a triangulation TΩ (consisting of triangles)
of the domain Ω , is generated by the basis functions

wK ,E(x) = 1

2|K | (x − NK ,E), ∀x ∈ K , E ∈ ∂ K , (B.1)

where NK ,E ∈ K is a node against edge E . The basis functions (B.1) satisfy the following properties

∇ · wK ,E(x) = 1

|K | , wK ,E(x) · nK ,E ′ = δE,E ′

|E| . (B.2)

Multiplying (12) with the basis function wK ,E , and integrating over element K , we can write∫
K

∇p · wK ,E ′ = −
( ∑

α∈Π(K )

cα,K λα,K

)−1 ∑
E∈∂ K

qK ,E

∫
K

K−1wK ,E · wK ,E ′ + �̃K

∫
K

g · wK ,E ′ , (B.3)

where we have used (18), the mean value theorem, and Π(K ) denotes all phases on element K . On the other hand, using
the Green theorem, the mean value theorem, and properties (B.2), we obtain∫

K

∇p · wK ,E ′ =
∑

E∈∂ K

∫
E

pwK ,E ′ · nK ,E −
∫
K

p∇ · wK ,E ′ = 1

|E ′|
∫
E ′

p − 1

|K |
∫
K

p. (B.4)

Denoting

AK ,E,E ′ =
∫
K

K−1wK ,E · wK ,E ′ , G K ,E ′ =
∫
K

g · wK ,E ′ ,

p̂K ,E ′ = 1

|E ′|
∫
E ′

p, pK = 1

|K |
∫
K

p, (B.5)

we combine (B.3) and (B.4) into( ∑
α∈Π(K )

cα,K λα,K

)−1 ∑
E∈∂ K

qK ,E AK ,E,E ′ = pK − p̂K ,E ′ + �̃K G K ,E ′ . (B.6)

Assuming that K is a uniformly positive-definite tensor (see [20]), i.e.

∃α0 > 0: α0

d∑
i=1

ξ2
i �

d∑
i, j=1

[
K(x)

]
i, jξ iξ j, ∀ξ ∈R

d, (B.7)

for almost all x ∈ Ω , it is possible to invert the matrix AK = (AK ,E,E ′ )E,E ′∈∂ K . Multiplying (B.6) in a vector form by A−1
K , we

obtain for K ∈ TΩ and E ∈ ∂ K
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qK ,E =
∑

α∈Π(K )

cα,K λα,K

(
αK

E pK −
∑

E ′∈∂ K

βK
E,E ′ p̂K ,E ′ + γ K

E �̃K

)
, (B.8)

which is Darcy’s law (19) with coefficients αK
E , βK

E,E ′ , and γ K
E given by

αK
E =

∑
E ′∈∂ K

A−1
K ,E,E ′ , βK

E,E ′ = A−1
K ,E,E ′ , γ K

E =
∑

E ′∈∂ K

A−1
K ,E,E ′ G K ,E ′ , (B.9)

where A−1
K ,E,E ′ is the element of the inverse matrix A−1

K .
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