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Numerical simulation of two-phase multicomponent flow in permeable media with species
transfer between the phases often requires use of higher-order methods. Unlike first-order
methods, higher-order methods may be very sensitive to problem formulation. The sensi-
tivity to problem formulation and lack of recognition have hindered the widespread use of
higher-order methods in various problems including improved oil recovery and sequestra-
tion from CO2 injection. In this work, we offer proper formulation of species balance equa-
tions and boundary conditions which overcome problems of formulations used previously
that were detrimental to the efficiency of higher-order methods. We also present proper
approximation of phase fluxes in the mixed finite element method. Our proposals remove
major deficiencies in using higher-order methods in two-phase multicomponent flow.
Numerical examples are presented to demonstrate robustness and efficiency of our
approach.

� 2009 Published by Elsevier Inc.
1. Introduction

Injection of gases such as CO2 in the subsurface has broad applications in oil recovery and in sequestration. In such injec-
tion schemes in addition to transfer of species between the phases, there can be substantial changes in density and viscosity
of the phases from solubility and vaporization of species. For CO2, there is often an increase in liquid phase density from sol-
ubility. There is also decrease in liquid viscosity. CO2 solubility may also result in swelling of the liquid phase. Depending on
the transfer of species between the phases, there may be also the opposite effects. Despite much progress in the last thirty
years in numerical simulation of gas injection schemes in the subsurface, efficient numerical simulation of compositional
effects remains a challenging task.

There are two types of numerical schemes used for compositional simulation. In one scheme, first-order finite-difference
and finite-volume methods are used. The latter is fit for unstructured grids while the former is for structured grids. One seri-
ous issue with the first-order schemes is severe numerical dispersion. Another limitation is the accuracy of flow field calcu-
lations. First-order finite-volume methods [1] have been used for two-phase flow in permeable media. Despite powerful
features, these methods have inherent limitations when applied to fractured media [2].

Higher-order methods have been used in compositional models. The two main advantageous features of these methods
are: (1) low numerical dispersion, and (2) accurate flow field calculations. Finite element method is the main approach in
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higher-order method for complex compositional modeling. Unlike the first-order methods, higher-order methods, especially
the finite element methods, are very sensitive to proper problem formulation and proper physics. This aspect is often ignored
in the literature.

In two recent papers [3,4], Hoteit and Firoozabadi have advanced the use of the combined discontinuous Galerkin (DG)
and mixed-hybrid finite element (MHFE) methods for compositional modeling. The combined algorithm provides a powerful
tool for multicomponent flow modeling of two phases in complex permeable media. In an earlier work [5], Chen et al. have
applied the combined method for the electric field and convection. In the problem of interest to us, the DG has low numerical
dispersion and the MHFE gives accurate calculation of the flow field. In further testing of the combined approach we have
found that in some cases the code crashes. We have also seen some oscillations in contour plot of the species concentration.
A close examination has shown that there may exist some fundamental issues with formulation in the literature and in our
own work [3,4]. These issues may not affect first-order finite-difference and finite-volumes methods, but can affect higher-
order methods. Proper formulation of the problem has not been discussed in the literature to the best of our knowledge.
These issues are common to any higher-order method. In this work, we will use a combination of mixed-hybrid finite ele-
ment method for the pressure equation and either discontinuous Galerkin finite element method or higher-order finite-vol-
ume (FV) scheme of the MUSCL (monotone upwind-centered scheme for conservation laws) type for the transport equations.

In this paper, for the sake of completeness, we present the formulation of two-phase flow with species transfer between
the phases in permeable media. We first provide the flow equations, and then present boundary conditions. Boundary con-
ditions in two-phase compositional flow are subtle issues. Next we derive the numerical schemes and then introduce the
numerical algorithm for computations. Upwinding of different coefficients in the equations is discussed in detail. This issue
also deserves much attention. At the end, we provide six numerical examples to demonstrate the performance of both algo-
rithms. The results reveal that proper implementation of physical concepts allows efficient calculation and robustness of the
algorithm. The work is ended with summary and conclusions.
2. Model equations

Consider two-phase (oil and gas) flow with nc-components in permeable media without capillarity and diffusion at a con-
stant temperature T. The transport of the components is described by the following molar balance equations
/
@czi

@t
þr � ðcoxoivo þ cgxgivgÞ ¼ Fi; i ¼ 1; . . . ;nc; ð1Þ
where / is the porosity, c is the overall molar density, zi is the mole fraction of ith component, co; cg ; xoi and xgi are the oil
and gas molar densities and oil and gas molar fractions, respectively, and Fi describes distribution of the sources/sinks of the
ith component. Other symbols will be defined shortly.

The above system is written in the following form for numerical implementation [3–6]
/
@czi

@t
þr � ðcoxoivo þ cgxgivgÞ ¼ Fi; i ¼ 1; . . . ;nc � 1; ð2aÞ

/
@c
@t
þr � ðcovo þ cgvgÞ ¼ F �

Xn

i¼1

Fi: ð2bÞ
The species balance equations in the form presented in (2a) and (2b) is fit for implementation in the first-order finite-differ-
ence and first-order finite-volume schemes. This is the form that all the works in the literature is based on. However, after
much examination we suspected that (2a) and (2b) give oscillation in species profile in the implementation of the higher-
order method used in our work. The problem was definitively solved when the species balance equations in the form given
by (1) was implemented. We also observed larger time steps in our implementation. Later in this work we will discuss the
reasoning behind use of (1).

The oil and gas phase velocities vo and vg are described by Darcy’s laws,
va ¼ �kaðSaÞKðrp� qagÞ; a 2 fo; gg; ð3Þ
where ka is the a-phase mobility, K is the permeable medium intrinsic permeability, p is the pressure, qa is the a-phase den-
sity, and g is the gravity acceleration vector. In (1), (2a) and (2b), t denotes the time. The viscosities hidden in the mobility
terms are estimated based on the methodology of Lohrentz et al. [7].

Using the concept of volume-balance, one can derive the following pressure equation (see [6]),
/cf
@p
@t
þ
Xnc

i¼1

v ir � ðcoxoivo þ cgxgivgÞ ¼
Xnc

i¼1

v iFi; ð4Þ
where cf is the total fluid compressibility and v i is the total partial molar volume of the ith component (see [8] for details).
The splitting of components between the phases is given by the following thermodynamic equilibrium equations
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foiðxo1; . . . ; xonc�1;p; TÞ ¼ fgiðxg1; . . . ; xgnc�1;p; TÞ; i ¼ 1; . . . ; nc; ð5aÞ
zi ¼ ð1� vÞxoi þ vxgi; i ¼ 1; . . . ;nc; ð5bÞXnc

i¼1

xoi ¼
Xnc

i¼1

xgi ¼
Xnc

i¼1

zi ¼ 1; ð5cÞ
where foi and fgi represent fugacities of the ith component in the respective phase, and v is the gas mole fraction.
The phase and volumetric behavior is modeled using the Peng–Robinson equation of state (PR-EOS) [9] in the form
qa ¼ ca

Xnc

i¼1

xaiMi; ca ¼
p

ZaRT
;

Z3
a � ð1� BaÞZ2

a þ ðAa � 3B2
a � 2BaÞZa � ðAaBa � B2

a � B3
aÞ ¼ 0;

ð6Þ
where Mi is the molar weight of the ith component, R is the universal gas constant, and Aa and Ba are the parameters of the
PR-EOS which depend on pressure, temperature and respective phase composition (see [8]).

For evaluation of the phase mobilities in (3), the phase saturations are calculated from
So ¼
c
co
ð1� vÞ; Sg ¼

c
cg

v : ð7Þ
The saturation constraint So þ Sg ¼ 1 then provides an additional condition
1� c
1� v

co
þ v

cg

� �
¼ 0; ð8Þ
from which we can evaluate c independent of the transport equation (1). Obviously, the system is over determined; we have
one more equation than the unknowns. In the computations, the value of c is determined from Eq. (1) and the constraint
equation (8) is used as a criterion for the selection of a time step.

The above equations pertain to the condition when both phases are present. When the system is only in a single-phase,
then the equation system must be modified. When only a-phase is present, the fugacity equality (5a) has no relevance and
the rest of the equations are transformed into a simpler system by identifying ca with c, zi with xai, setting Sa to one and v to
either one or zero depending on the phase identity.

3. Initial and boundary conditions

In this work we found that the implementation of boundary conditions at the horizontal impermeable walls in two-phase
was critical for successful computations. We also found that the current implementation based on literature formulation
gives inconsistent pressure in the grid cells at the horizontal impermeable walls.

To define a well-posed problem, the system of equations formulated in the previous section must be completed by appro-
priate initial and boundary conditions. The pressure equation (4) is parabolic with respect to pressure. Therefore, we have to
provide an initial condition for pressure at each point of the domain X. As we will use the total molar flux formulation (intro-
duced later), we have to provide either pressure (Dirichlet boundary condition) or normal component of total molar flux
(Neumann boundary condition) at each boundary point x 2 @X. The transport equation (1) are hyperbolic type and of the
first-order with respect to czi. It is, therefore, necessary to prescribe initial molar density and mole fractions of all compo-
nents in the mixture at all points inside the domain X. The boundary values of molar density and composition can be pre-
scribed at the inflow boundary. On the other hand, the values at the outflow boundary will be computed.

The injection/production wells can be represented by the source/sink terms, respectively. The whole boundary can then
be represented by impermeable walls. The condition for impermeable walls is specified in the literature by
va � n ¼ �kaðSaÞKðrp� qagÞ � n ¼ 0; a 2 fo; gg; ð9Þ
where n is the outer normal vector. Use of the above equation in two-phase region (where ka – 0 for both a 2 fo; gg) gives
rp � n ¼ qog � n and rp � n ¼ qgg � n: ð10Þ
Note that there are two distinct pressure gradients at the wall when the phase densities are not the same. While there is no
issue for a vertical impermeable wall due to absence of gravity term, there is a problem when (9) is used at the horizontal
boundaries. An appropriate boundary condition in two-phase state is the use of
ðcovo þ cgvgÞ � n ¼ 0; ð11Þ
which prescribes the normal component of the total molar flux to be zero. The boundary condition (11) can be readily en-
forced using the MHFE formulation to be presented in the following section. Condition given by (11) implies that if one phase
is flowing out of the domain X, the other phase is flowing in at the same point. According to the above discussion, the com-
position of the inflow phase can be prescribed, while the composition of the outflow phase is computed. The molar balance
for each component at the wall is prescribed as
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coxoivo � nþ cgxgivg � n ¼ 0: ð12Þ
The condition given by (12) states that the total molar flux of each individual component at the boundary is zero. The com-
position of the inflow phase is computed from the composition of the outflow phase so that (12) holds.

4. Numerical solution

The system of Eqs. (1)–(5c) is discretized using the implicit pressure explicit composition (IMPEC) scheme. The pressure
equation is solved using the mixed-hybrid finite element (MHFE) method of the lowest order providing accurate approxima-
tions of phase fluxes that are consequently used in transport modeling. The transport equations are treated either by the
discontinuous Galerkin (DG) method or a higher-order finite-volume scheme such as the monotonic upwind-centered
scheme for conservation laws (MUSCL, see [10–14]). Higher-order methods generally require data reconstruction using a
slope limiter that must be carried out to avoid spurious oscillations. In this section we will give details of the methods
for a 2D rectangular grid.

4.1. Discretization of the total molar flux

We use the concept of total molar flux rather than total velocity that was used in [4]. This is due to the fact that total
volumetric velocity is not preserved when composition is not the same on the two sides of the interface. Because the mobil-
ity ka can be zero at extreme saturations, the total molar flux q is introduced
q ¼ covo þ cgvg ¼ �
X
a0

ca0ka0Kðrp� qgÞ; ð13Þ
where q ¼ foqo þ fgqg , and fa ¼ caka
P

a0ca0ka0
�

. Note that unlike coefficients caka in the phase fluxes, the coefficient
P

a0ca0ka0

in (13) is always positive as at least one of the phases is mobile. We then solve (13) in terms of the pressure gradient
rp ¼ � 1P
a0ca0ka0

K�1qþ qg: ð14Þ
Eq. (14) can be substituted in Darcy’s laws given by (3) to obtain the following expression for phase molar fluxes
qa � cava ¼ faðq� GaÞ; ð15Þ
where
Ga ¼
cokoðqo � qgÞKg a ¼ g;

cgkgðqg � qoÞKg a ¼ o:

(
ð16Þ
The total molar flux is approximated using the lowest order Raviart–Thomas elements as
qK ¼
X
E2@K

qK;EwK;E; ð17Þ
where qK;E is the normal component of the total molar flux over the edge E of element K with respect to outer normal, and
wK;E denotes the RT0 basis functions (see Appendix A). The total flux can be expressed as a function of cell-average pressure
pK , traces of pressure on element faces tpK;E as follows
qK;E ¼ aK;EpK �
X

E02@K

bK;E;E0 tpK;E0 þ dK;E; ð18Þ
where aK;E; bK;E;E0 , and dK;E are coefficients which depend on the mesh geometry and on the local values of total mobility.
Evaluation of these coefficients is detailed in Appendix A. The total flux continuity leads to the following equation on edge
E ¼ K \ K 0 between neighboring elements K and K 0
qK;E þ qK 0 ;E ¼ 0; K \ K 0 ¼ E: ð19Þ
Using (18), we derive
aK;EpK �
X

E02@K

bK;E;E0 tpK;E0 þ dK;E þ aK 0 ;EpK 0 �
X

E02@K 0
bK 0 ;E;E0 tpK 0 ;E0 þ dK 0 ;E ¼ 0; ð20Þ
In this work, we use Eq. (11) to obtain the following condition for boundary edges E � @X adjacent to an element K
qK;E ¼ 0; ð21Þ
whence
aK;EpK �
X

E02@K

bK;E;E0 tpK;E0 þ dK;E ¼ 0: ð22Þ
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The system of Eqs. (20) and (22) can be rewritten in the matrix form as
RT P �MTP ¼ V ; ð23Þ
where
R 2 RNK ;NE ; RK;E ¼ aK;E; ð24aÞ
M 2 RNE ;NE ; ME;E0 ¼

X
K:E;E02@K

bK;E;E0 ; ð24bÞ

V 2 RNE ; VE ¼
X

K:E2@K

dK;E; ð24cÞ
NK denotes the number of element cells, NE number of mesh edges, P 2 RNK is the vector of cell-average pressures (indexed
by elements), and TP 2 RNE is the vector of pressure traces indexed by mesh edges.

4.2. Approximation of the pressure equation

We use (15) to rewrite the pressure equation given by (4) in terms of the total molar flux as
/cf
@p
@t
þ
Xnc

i¼1

v ir � ðmiq� siÞ ¼
Xnc

i¼1

v iFi; ð25Þ
where mi ¼ xoifo þ xgifg , and si ¼ xoifoGo þ xgifgGg . This equation is integrated over each element K of the mesh. Assuming that
the total compressibility and the total partial molar volumes are element-wise constant, we use the divergence theorem to
rewrite the last equation in the following form
/K cf ;K jKj
@pK

@t
þ
Xnc

i¼1

v i;K

X
E2@K

Z
E
ðmi;K;EqK;E � si;K;E � nK;EÞ ¼

Xnc

i¼1

v i;K Fi;K jKj; ð26Þ
where jKj is the area of element K. The flux in this equation can be eliminated using (18). The backward Euler scheme for
discretization of the time derivative is employed, in which all coefficients are evaluated explicitly using the values from pre-
vious time level. We end up with the following system
DPnþ1 � eRTPnþ1 ¼ G; ð27Þ
where the index nþ 1 denotes the time level, D 2 RNK ;NK is a diagonal matrix with diagonal components
DK ¼
/K cf ;K jKj

Dt
þ
Xnc

i¼1

v i;K

X
E2@K

Z
E

mi;K;EaK;E;
eR 2 RNK ;NE is a rectangular matrix with components
eRK;E0 ¼
Xnc

i¼1

v i;K

X
E2@K

Z
E

mi;K;EbK;E;E0 ;
and G 2 RNK is a right side vector with components
GK ¼
/K cf ;K jKj

Dt
pn

K �
Xnc

i¼1

v i;K

X
E2@K

Z
E
ðmi;K;EdK;E � si;K;E � nK;EÞ þ jKj

Xnc

i¼1

v i;K Fi;K :
All the coefficients mi;K;E and si;K;E are evaluated using the average values inside element K, i.e. we should write mi;K , and si;K

instead of mi;K;E and si;K;E, respectively. Note that no upwinding is possible here because of implicit treatment of pressure.
Moreover, the pressure equation (4) is not in the divergence form which implies that the volume-balance (which is the basis
of the pressure equation) is not satisfied exactly by the numerical solution. This should not influence the balance of total
molar flux explicitly enforced using (19).

4.3. Approximation of the phase fluxes

One of the most important issues in this work is proper approximation of the phase fluxes qa ¼ faðq� GaÞ. In this respect
we have advanced the procedure outlined in [15]. At first the system of Eqs. (23) and (27) for pressures P and traces of pres-
sure TP at a new time level must be solved. Here we can take advantage of the fact that the matrix D is diagonal with non-
zero diagonal elements, and thus invertible. Therefore, we can combine (23) and (27) to derive the following system of equa-
tions for pressure traces
ðM � RT D�1eRÞTPnþ1 ¼ RT D�1eR: ð28Þ
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Once we solve for traces of pressure TPnþ1, the cell-average pressure P can be updated using (27). Then we can evaluate the
total molar flux from (18). Eq. (19) guarantees the balance of total molar flux over the element edges. However, when eval-
uating the phase fluxes using (15), the local values of fa and Ga cannot be used as this would lead to non-matching phase
fluxes at element edges. To obtain phase fluxes that are balanced at the mesh edges, the values of qa used in Ga in (15)
are taken as an arithmetic average of the neighboring cell values, while caka, and ca0ka0 in fa are taken from the upwind side
with respect to va. In computing phase fluxes (note that qa is not available yet), we denote by a the phase for which
sgnqK;E � nK;E ¼ �sgnGa � nK;E;
where caka and ca0ka0 , are evaluated arbitrarily, e.g. by setting caka ¼ ca0ka0 ¼ 1; the primed phase a0 denotes the other phase.
The use of the above expression is always possible because the total flux has been evaluated and Ga and Ga0 (with caka and
ca0ka0 set to 1) are pointing in the opposite directions. Now we can predict the sign of qa;K;E, which has the same sign as of qK;E,
independent of the actual value of ca0ka0 , which is always non-negative, in (15). Using the known sign of qa;K;E, we can choose
the upwind value of caka used in the computation of Ga0 . We can now evaluate qa0 ;K;E and finally the actual value of ka0 is esti-
mated and then the actual value of qa;K;E can be determined. Note that this procedure is not consistent with the way we trea-
ted flux in the discretizaton of pressure equation, but it ensures the balance of phase velocities, which is important for
correct treatment of mass balance in the transport. Our suggested procedure for calculation of individual interface phase
velocities allows robust calculations and alleviates a deficiency in previous work [4].

4.4. Approximation of components transport

We discuss two methods for approximation of the components transport equations: (1) the discontinuous Galerkin finite
element method, and (2) the MUSCL-type finite-volume scheme.

4.4.1. Discontinuous Galerkin finite element method
The components transport equation (1) are discretized using the discontinuous Galerkin finite element method. On each

rectangular element K, the unknown concentration is approximated using a linear function. Note that in a rectangular ele-
ment, there is no need for 4 degrees of freedom because the interpolant is allowed to be discontinuous in DG method.
Assuming such an approximation in the form
czi;K ¼
X3

l¼1

czl
i;KuK;l; caxai;K ¼

X3

l¼1

caxl
ai;KuK;l; ð29Þ
where functions uK;l form a basis of a local approximation space (detailed in Appendix B), we multiply (1) by a test function,
integrate over the element K and integrate by parts to obtain
Z

K
/
@czi;K

@t
uK;j �

Z
K
ðxoi;K qo þ xgi;K qgÞ � ruK;j þ

X
E2@K

Z
E
ð gxoi;K;E qo þ gxgi;K;E qgÞ � nK;EuK;j ¼

Z
K

FiuK;j ð30Þ
for each j 2 f1;2;3g. In the surface integral, the gxai;K;E ða 2 fo; ggÞ denotes the value of concentration upwinded with respect
to qa defined as
gxai;K;E ¼
xai;K;E if qa;K;E � qa � nK;EjEjP 0;
xai;K 0 ;E if qa;K;E � qa � nK;EjEj < 0;

(
ð31Þ
where we assume that E ¼ K \ K 0 is a common edge between the neighboring elements K and K 0. If E is a boundary edge, then
the Dirichlet boundary conditions on the influx part of the boundary can be applied readily at this stage. Note that the values
xai;K;E and xai;K 0 ;E in (31) result from the evaluation of the two-phase flash at the element edges using the values of temper-
ature T, pressure trace TP and overall molar composition zi at that edge. The value of zi at the edge is computed from the
value of zi in the element center using the slopes provided by the DG method. On the other hand, the values xai;K in the sec-
ond integral on the left hand side of (29) is evaluated by the two-phase flash at temperature T, average element pressure P
and overall molar composition zi at the element center. This implies that five flashes must be performed on every element.

Substituting (29) into (30), we derive the following semi-discrete scheme
/K

X3

l¼1

dczl
i;K

dt
MK

j;l �
X

a2fo;gg

X3

l¼1

xai;K

X
E2@K

qa;K;EMK;E
j;l þ

X
E2@K

X
a2fo;gg

gxai;K;E qa;K;EME
j ¼

Z
K

FiuK;j: ð32Þ
The matrices MK ; ME, and MK;E are defined and their elements are evaluated in Appendix B. The matrix MK is diagonal, and
thus the forward Euler scheme leads to an explicit scheme in terms of czl

i;K with 3 degrees of freedom per element.

4.4.2. Higher-order finite-volume method of the MUSCL-type
An alternative method for the discretization of the transport equation (1) is the higher-order finite-volume method. There

are plenty of methods available (see [1]); in this paper we will discuss the monotonic upwind-centered scheme for conser-
vation laws (MUSCL) by van Leer developed in a series of papers [10–14].
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To develop the scheme, Eq. (1) are integrated over an arbitrary rectangular element K. After using the divergence theorem,
we have
Z

K
/
@cz1

i;K

@t
þ
X
E2@K

Z
E
ð gxoi;K;E qo þ gxgi;K;E qgÞ � nK;E ¼

Z
K

Fi; ð33Þ
where the gxai;K;E ða 2 fo; ggÞ denotes the value of concentration upwinded with respect to qa defined by (31). Eq. (33) de-
scribes evolution of the average values of the overall molar densities czi;K at every element. Unlike the DG scheme, the slopes
of the solution are not described by an evolution equation as in (30), but rather reconstructed by using the average values of
czi in the neighboring elements. In case of the rectangular mesh, the reconstruction carried out using central difference quo-
tients as
cz2
i;K ¼

czi;R � czi;L

4
; cz3

i;K ¼
czi;T � czi;B

4
; ð34Þ
where K denotes an element and R; L; T; B are its right, left, top, and right neighbor, respectively. The upper index
l 2 f1;2;3g in czl

i;K is used to distinguish between the central value ðl ¼ 1Þ and gradients of czi;K in the x and y direction
ðl ¼ 2;3Þ to keep the notation consistent with the one used in the derivation of the DG scheme (see also Appendix B). At
boundary elements, the slope in the direction perpendicular to the boundary is set to zero for simplicity. After the slopes
of czi have been reconstructed, the five flashes at every elements are performed to obtain equilibrium compositions xa;i;K

at element centers (using the average element pressure and overall composition) and xai;K;E at element faces (using the traces
of pressures, and overall composition evaluated at element faces evaluated in terms of the average values and reconstructed
slopes). The values xai;K;E are then used to evaluate gxai;K;E needed in (33) using upwinding (31). Finally, the resulting FV-MUS-
CL scheme reads as
/K

dcz1
i;K

dt
jKj þ

X
E2@K

X
a2fo;gg

gxai;K;E qa;K;E ¼
Z

K
Fi: ð35Þ
4.5. Slope limiter

To avoid unphysical oscillations in the numerical solution, both methods are stabilized by using an appropriate slope lim-
iter. In case of the discontinuous element-wise linear approximation on a rectangular grid, the slope limiting can be carried
out in a simple way using two 1D limiters in the directions of x and y axes. The idea of the method is to modify the solution
resulting from the DG step after each time step so that the average value of each molar concentration is not modified and the
slopes are adjusted so that the values of concentrations at any edge are between the minimum and maximum values of con-
centrations in adjacent cells. The implementation follows closely the description in Appendix B1 in [3]. As mentioned in
Appendix B, our degrees of freedom at each element are: (1) the average value of molar concentration, (2) the difference
between the value in the center of the element and the value on the right edge, and (3) the difference between the value
in the center of the element and the value on the top edge, which allows for a straightforward implementation of the limiter.
Also, the classical first-order finite-volume upwind method can be mimicked easily by setting the differences between the
two edge values and the central value to zero.

As mentioned above, the formulation given by (2) is used instead of the original system given by (1) in the literature.
When using the first-order finite-volume method, both formulations work equally well. However, there is a complication
when (2) is employed in a higher-order method, such as DG or MUSCL, that requires the use of a slope limiter. Here, the
use of the original system of Eq. (1) is more straightforward. After each step of DG method the limiter provides bounds
czi;min and czi;max for each boundary value of czi and the slope may be manipulated so that the inequalities
czi;min 6 czi 6 czi;max ð36Þ
hold for each i ¼ 1; . . . ;nc . The value of overall molar concentration is then evaluated as
c ¼
Xnc

i¼1

czi; ð37Þ
which fulfills
Xnc

i¼1

czi;min 6 c 6
Xnc

i¼1

czi;max: ð38Þ
If the alternative formulation based on (2) is used, then the limiter would provide bounds czi;min and czi;max on czi for
i ¼ 1; . . . ;nc � 1 and bounds cmin and cmax on c. The slopes of these variables would be manipulated so that
czi;min 6 czi 6 czi;max; i ¼ 1; . . . ; nc � 1;
cmin 6 c 6 cmax:

ð39Þ
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From these inequalities we can derive the following bounds on cznc
Table 1
Relative

Exam
Rela
Resid
Resid

Table 2
Relevan

Injec
Initia
Initia
Tem
Poro
Perm
Injec
cmax �
Xnc�1

i¼1

czi;min 6 cznc ¼ c �
Xnc�1

i¼1

czi 6 cmax �
Xnc�1

i¼1

czi;min; ð40Þ
which are inconsistent with the bounds given by Eq. (36) for i ¼ nc and lead to creation of unphysical oscillations in the last
component molar concentration. After several time steps, these oscillations spoil the other components profiles too. The
problem could be solved by a special version of limiter for c that would enforce the correct bounds on cznc , but this would
lead to an unnecessary complicated code which would be more difficult to debug. The straightforward solution is to use the
original system of Eq. (1).

5. Computational algorithm

The computation proceeds in the following steps:

1. Read the initial temperature and distribution of pressure and overall molar concentrations of all components. There is
only one value of temperature for the whole domain.

2. Perform the flash calculations to obtain number of phases and phase composition at the initial pressure, temperature, and
overall composition at element centers and at element faces.

3. Use the Lohrentz et al. method to evaluate the phase viscosities.
4. Repeat the following steps until a predetermined simulation time is reached.

(a) Assemble and solve the system (28) for traces of pressure TP.
(b) Evaluate cell-average pressures P locally on each element using (27).
(c) Calculate fluxes using the procedure described in Section 4.3.
(d) Compute new overall composition using one explicit Euler time step of the DG scheme (32) or FV-MUSCL scheme

(35).
(e) If the FV-MUSCL scheme was used, reconstruct the slopes of czi at every element using (34).
(f) Apply the slope limiter.
(g) Perform the phase stability analysis and flash calculation to obtain number of phases and phase composition at the

new pressure, temperature and overall composition at element centers and at element faces.
(h) Update phase viscosities.
6. Results of numerical computations

In this section, we present results of six examples that were carried out using the implementation of the method de-
scribed in this paper. All the problems were solved on a 2D rectangular domain 50 � 50 m with a rectangular grid using a
HP xw9400 RedHat WS 4 workstation with the Dual-Core AMD Opteron 2216 CPU at 2.4 GHz and 4 GB memory. The relative
permeability data for all examples are given in Table 1.

6.1. Example 1

The first problem is the displacement of propane by methane in a horizontal 2D domain (i.e. no gravity). Methane is in-
jected in the lower left corner, displacing propane that is produced in the upper right corner. The initial data of the problem
permeability used in Examples 1–6.

ples 1–4 5 and 6
tive permeability model type Linear Quadratic

ual gas saturation 0 0.0
ual oil saturation 0 0.3

t data for Examples 1 and 2.

tion fluid (mole fraction) 1:0 C1 0:0 C3

l fluid (mole fraction) 0:0 C1 1:0 C3

l pressure at the bottom (bar) 50
perature (K) 397
sity (fraction) 0.2
eability (md) 10
tion rate (m2/day) at p ¼ 1 atm; T ¼ 293 K 42.5
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given in Table 2 are chosen so that the mixture stays in single-phase gas state during whole simulation. We fix the injection
rate (given in Table 2) and the pressure in the production well at 50 bar.

Fig. 1 shows methane mole fraction at 58% of PVI computed using the MHFE/DG and MHFE/FV methods on a 40 � 40
mesh. The computation time (to 100% PVI) is 2 min for both methods. As can be seen from the figure, both methods provide
very similar results. We have carried out calculations for Example 1 and the next three examples using the first-order finite-
volume method for the transport equations. The numerical dispersion is very significant compared to the DG and higher-or-
der finite-volume method. For the sake of brevity, these results are not shown.

6.2. Example 2

The second problem is the displacement of propane by methane in a vertical 2D domain (i.e. with gravity). Methane is
injected in the lower left corner, displacing propane that is produced in the upper right corner. The data of the problem
are given in Table 2. The initial pressure is fixed in the production well. The pressure and temperature are chosen so that
the mixture stays in single-phase gas state during the whole simulation. The computation time to 100% of PVI on a
40 � 40 grid is 8 min for both methods. Fig. 2 shows methane mole fraction at 20% of PVI computed using the MHFE/DG
and MHFE/FV methods. Note the non-symmetry due to gravity effect. Again, both methods provide similar results.
Fig. 1. Methane mole fraction at PVI = 58% (0.69 years) computed on a 40 � 40 mesh by the MHFE/DG method (left) and the MHFE/FV method (right):
Example 1.

Fig. 2. Methane mole fraction at PVI = 20% (0.24 years) computed by the MHFE/DG (left) and the MHFE/FV (right) methods on a 40 � 40 mesh: Example 2.

Table 3
Relevant data for Examples 3 and 4.

Injection fluid composition (mole fraction) 1:0 C1 0:0 C3

Initial fluid composition (mole fraction) 0:0 C1 1:0 C3

Initial pressure at the bottom (bar) 69
Temperature (K) 311
Porosity (fraction) 0.2
Permeability (md) 10
Injection rate (m2/day) at p ¼ 1 atm; T ¼ 293 K 42.5
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6.3. Example 3

The third problem is the displacement of propane by methane in a horizontal 2D domain (i.e. without gravity). Methane is
injected in the lower left corner, displacing propane that is produced in the upper right corner. The relevant data are shown
in Table 3. Unlike Example 1, the pressure and the temperature are chosen so that a two-phase region develops. In this exam-
ple, methane, similar to Examples 1 and 2, is a gas but propane, unlike Examples 1 and 2, is in liquid state.

Fig. 3 shows the overall methane mole fraction at 50% of PVI computed using the MHFE/DG and MHFE/FV methods on a
40� 40 mesh. The computation time was 2 min for MHFE/DG and 3 min for MHFE/FV methods. Both methods provide re-
sults that match almost perfectly.
Fig. 3. Overall methane mole fraction at PVI = 50% (1.15 years) computed on a 40 � 40 mesh by the MHFE/DG method (left) and the MHFE/FV method
(right): Example 3.

Fig. 4. Overall methane mole fraction at PVI = 50% (1.15 years) computed on a 40 � 40 mesh by the MHFE/DG method (left) and the MHFE/FV method
(right): Example 4.

Table 4
Relevant data for Examples 5 and 6.

Injection gas composition (mole fraction) 1:0 CO2

0:0 C1

0:0 C4—C5

0:0 C11—C24

0:0 N2

0:0 C2—C3

0:0 C6—C10

0:0 C25þ
Initial fluid composition (mole fraction) 0:0086 CO2

0:4451 C1

0:0505 C4—C5

0:1660 C11—C24

0:0028 N2

0:1207 C2—C3

0:1328 C6—C10

0:0735 C25þ
Initial pressure at the bottom (bar) 276
Temperature (K) 403.15
Porosity (fraction) 0.2
Permeability (md) 10
Injection rate (m2/day) at p ¼ 1 atm; T ¼ 293 K 133.33



Table 5
Properties of the eight-component mixture in Examples 5 and 6.

Property CO2 N2 C1 C2—C3 C4—C5 C6—C10 C11—C24 C25þ

Accentric factor 0.23900 0.03900 0.01100 0.11783 0.21032 0.41752 0.66317 1.72763
Critical temperature (K) 304.14 126.21 190.56 327.81 435.62 574.42 708.95 891.47
Critical pressure (bar) 73.75 33.90 45.99 46.54 36.09 25.04 15.02 7.60
Molar weight (g/mol) 44 28 16 34.96 62.98 110.21 211.91 462.79
Critical volume (m3/kg) 0.00214 0.00321 0.00615 0.00474 0.437 0.00425 0.00443 0.00417
Volume shift parameter 0.0600 �0.2885 �0.0154 �0.0949 �0.0598 0.0466 0.1494 0.4950

Binary interaction coefficients
CO2 0
N2 0 0
C1 0.15 0.1 0
C2—C3 0.15 0.1 0.0346 0
C4—C5 0.15 0.1 0.0392 0 0
C5—C10 0.15 0.1 0.0469 0 0 0
C11—C24 0.15 0.1 0.0635 0 0 0 0
C25þ 0.08 0.1 0.1052 0 0 0 0 0

Fig. 5. Results at PVI = 50% (1.37 years) computed on a 40 � 40 mesh by the MHFE/DG method showing gas saturation, and overall mole fractions of
CO2; C1; C2—C3; C6—C10, and C25þ pseudocomponent: Example 5.
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6.4. Example 4

The fourth example, the displacement of propane by methane is studied in a vertical 2D domain (i.e. with gravity). Meth-
ane is injected in the lower left corner, displacing propane that is produced in the upper right corner. The data of the problem
are given in Table 3. The pressure in the production well is fixed at the initial pressure. Unlike in Example 2, the pressure and
the temperature are chosen so that a two-phase region develops. Fig. 4 shows the methane overall mole fraction at 50% of
PVI computed on a 40 � 40 grid. The match between the two methods is again very good. The computation time for both
methods to 100% of PVI is approximately 45 min for MHFE/DG and 47 min for MHFE/FV.

6.5. Example 5

In this example, we simulate the injection of CO2 in a domain saturated with an 8-component hydrocarbon mixture. The
initial fluid mixture is in liquid state. The domain is a vertical cross-section of size 50 � 50 m. The components, the compo-
sition of the initial and the injected fluid, and other parameters are specified in Tables 4 and 5. CO2 is injected in the upper
Fig. 6. Results at PVI = 50% (1.37 years) computed on a 40 � 40 mesh by the MFE/DG method showing gas saturation, overall mole fractions of
CO2; C1; C2—C3; C6—C10, and C25þ pseudocomponents: Example 6.



2910 J. Mikyška, A. Firoozabadi / Journal of Computational Physics 229 (2010) 2898–2913
right corner, displacing the hydrocarbon mixture towards the lower left corner. The pressure is fixed in the production well
at 276 bar. Under these conditions a two-phase region develops.

Fig. 5 shows gas saturation and overall molar fractions of selected components at 50% of PVI. It is only with the formu-
lation in this paper that the run can be performed. Without our modification the code would break down before achievement
of 100% of PVI. The computation time of the MHFE/DG method to 100% of PVI is 60 min on a 40 � 40 grid.
6.6. Example 6

In the last example, we simulate the injection of CO2 in the bottom of the vertical domain. The components, the compo-
sition of the initial and the injected fluid, and other physical parameters are the same as in the previous example (see Tables
4 and 5). The only difference is that this time the injection and production wells are interchanged, i.e. the injection well is
located at the bottom of the domain in the lower left corner, and the production is at the top in the upper right corner. The
pressure in the production well is fixed at the initial pressure.

Fig. 6 shows the gas saturation and overall molar fractions of selected components at 50% of PVI. The computational time
of MHFE/DG method to 100% of PVI is 2 h and 32 min on a 40 � 40 grid.
7. Discussion and concluding remarks

In this work, as a result of use of individual component balance equations, we have suppressed spurious oscillations in
composition that were leading to crash of the code in the previous works [3,4]. While our suggestion for the use of Eq.
(1) rather than Eq. (2) is deceptively simple, the effect on the robustness of the code is significant. This suggestion affects
only the higher-order methods, such as discontinuous Galerkin or MUSCL-type finite-volume methods, which require stabil-
ization using a slope limiter.

The use of boundary conditions for total molar flux and total individual component fluxes are also straightforward and
result in substantial improved efficiency of the code. Our suggestion in the boundary condition makes the problem formu-
lation consistent. Proper treatment of boundary conditions allows to increase time steps and leads to significant speed up of
the code in both MHFE/FV and MHFE/DG methods.

The approximation of phase fluxes described in our work is a key in MHFE method. Without our implementation we have
seen code crash.

All aspects of our suggestions relate to two-phase flows, where without them, the use of higher-order methods will not be
widespread in some applications such as CO2 injection in the subsurface.

In order to show robustness and efficiency of the proposed algorithm, we present six examples of various degree of com-
plexity. The comparison of MHFE/DG and MHFE/FV shows that both methods provide similar results. Generally, FV scheme
of MUSCL-type is considered to be cheaper than DG because of lower number of degrees of freedom per element in the case
of FV method, but our experiments show that the CPU time difference between the two methods is practically negligible. The
two methods are very similar; they only differ in the evaluation of the gradients of the concentrations at the elements. While
the DG method provides an evolution equation for the gradients, in higher-order finite-volume methods, the gradient is
reconstructed from the neighboring cells. In case of the orthogonal grid, this reconstruction is particularly simple, but this
may not be the case when more general unstructured grids are used (see e.g. [20]). The FV method is expected to be faster
because it does not include the evaluation of the integral over the element (the second term on the left hand side of (32)) as
in DG. However, this step has very little effect on the overall efficiency of the code. The explicit solution of the transport
equation requires about 5% of the CPU time while the flash and linear solver take 80–85% and 5–10% of the CPU, respectively.
These data correspond to Examples 1–4. In some cases we observed that the computation time of DG was even lower than
for FV (see Examples 2 and 3). We have used the MHFE/FV to compute results for Example 6 (results not presented for the
sake of brevity). The computation time is 2 h and 28 min which is less then 2 h and 32 min for MHFE/DG. We have presented
results of two simulations of CO2 injection in a multicomponent hydrocarbon mixture; these are new results that could not
be obtained using previous work in the literature in which inappropriate upwinding of mobility coefficients created numer-
ical problems leading to breakdown of the computation at the very beginning.
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Appendix A. Raviart–Thomas basis functions and details of the MHFE discretization

We use the lowest order Raviart–Thomas elements [16,17] for which the functions wK;E are associated with the rectangle
edges of each element K. These functions defined on a reference element K ¼ ð0; lxÞ � ð0; lyÞ read as
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wK;Bðx; yÞ ¼ 0;
y� ly
jKj

� �
; wK;Tðx; yÞ ¼ 0;

y
jKj

� �
;

wK;Lðx; yÞ ¼
x� lx

jKj ; 0
� �

; wK;Rðx; yÞ ¼
x
jKj ;0
� �

;

ð41Þ
where the B; T; L, and R denote the bottom, top, left, and right edge in the element K, respectively. These function are lin-
early independent and satisfy the following properties
r �wK;E ¼
1
jKj ; w � nK;E0 ¼

1
jEj dE;E0 ; ð42Þ
where jKj denotes the surface area of the element K and jEj stands for the length of the edge E.
Assume that the total molar flux q and the vector Kg can be represented on the element K as
qðx; tÞjK ¼
X

E02@K

qK;E0wK;E0 ðxÞ; KgjK ¼
X

E02@K

qKg
K;E0wK;E0 ðxÞ; ð43Þ
where qK;E0 ¼
R

E q � nK;E0 and qKg
K;E ¼

R
E Kg � nK;E ¼ Kg � nK;EjEj. Multiplying (14) by wK;E, integrating the result over the element

K, and using the Gauss theorem, one obtains
Z
K

wK;E � K�1qP
a0ca0ka0

¼ �
Z

K
wK;E � rpþ

Z
K
qwK;E � g ¼

Z
K

pr �wK;E �
Z
@K

pwK;E � nK;E þ
Z

K
qwK;E � K�1Kg: ð44Þ
The right side can be further simplified using the properties of basis functions (42) into
Z
K

wK;E � K�1qP
a0ca0ka0

¼ 1
jKj

Z
K

p� 1
jEj

Z
E

pþ
Z

K
qwK;E � K�1Kg: ð45Þ
Let pK and tpK;E denote the cell and edge average pressure, respectively. Assuming that the mobilities and densities are con-
stant over the element K, and using (43), (45) is approximated by
X

E02@K

qK;E0P
a0ca0 ;Kka0 ;K

AK;E;E0 ¼ pK � tpK;E þ
X

E02@K

qK qKg
K;E0AK;E;E0 ; ð46Þ
where
AK;E;E0 ¼
Z

K
wK;E � K�1

K wK;E0 : ð47Þ
By inverting the matrix AK ¼ ½AK;E;E0 �E;E02@K , the flux qK;E can be expressed as
qK;E ¼ aK;EpK �
X

E02@K

bK;E;E0 tpK;E0 þ dK;E; ð48Þ
where
aK;E ¼
X
a0

ca0 ;Kka0 ;K

X
E02@K

A�1
K;E;E0 ; ð49Þ

bK;E;E0 ¼
X
a0

ca0 ;Kka0 ;K A�1
K;E;E0 ; ð50Þ

dK;E ¼ Kg � nK;EjEj
X
a0

ca0 ;Kka0 ;Kqa;K : ð51Þ
Note that in our implementation, K is assumed to be a scalar constant over the element. If the integral on the right side is
computed exactly, we have to invert the 4 � 4-matrix which is block-diagonal with full 2 � 2 diagonal blocks that reads as
AK ¼
1
K

Z
K

wK;E �wK;E0

� �
E;E0
¼ 1

6K

2 lx
ly
� lx

ly
0 0

� lx
ly

2 lx
ly

0 0

0 0 2 ly
lx
� ly

lx

0 0 � ly
lx

2 ly
lx

0BBBBBB@

1CCCCCCA; ð52Þ
where lx and ly are the lengths of the rectangle sides parallel to x and y axis, respectively. This matrix is non-singular and can
be inverted as
A�1
K ¼ K

4 ly
lx

2 ly
lx

0 0

2 ly
lx

4 ly
lx

0 0

0 0 4 lx
ly

2 lx
ly

0 0 2 lx
ly

4 lx
ly

0BBBBBB@

1CCCCCCA: ð53Þ
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The rows and columns of both matrices correspond to the edges of the elements in the rank right, left, top and bottom. It is
known that the resulting matrix of the MHFE method is not the M-matrix which can lead to oscillations in the solution (see
[18]). Chavent and Roberts [19] have recommended to evaluate the integral in (52) using the following low-order quadrature
rule
Z
K
uðxÞdx � jKj

4

X4

j¼1

uðxiÞ; ð54Þ
where xi denotes coordinates of the element vertices. With this mass-lumping technique, the matrix AK is approximated by
AK ¼
1
K

Z
K

wK;E �wK;E0

� �
E;E0
� 1

2K

lx
ly

0 0 0

0 lx
ly

0 0

0 0 ly
lx

0

0 0 0 ly
lx

0BBBBBB@

1CCCCCCA ð55Þ
whose inversion is
A�1
K � K

2 ly
lx

0 0 0

0 2 ly
lx

0 0

0 0 2 lx
ly

0

0 0 0 2 lx
ly

0BBBBBB@

1CCCCCCA: ð56Þ
Appendix B. Basis functions and details of the discontinuous Galerkin FEM discretization

The basis functions uK;l defined on a reference element K ¼ ð0; lxÞ � ð0; lyÞ read as
uK;1ðx; yÞ ¼ 1; uK;2ðx; yÞ ¼
2
lx

x� lx

2

� �
; uK;3ðx; yÞ ¼

2
ly

y� ly

2

� �
: ð57Þ
The weighting factors czl
i;K ðl ¼ 1;2;3Þ can be then interpreted as the average value of molar concentration over the element

K, and differences between the central value and the values at the right and top edges, respectively. The matrix elements
appearing in (32) are defined by the following integrals
MK
j;l ¼

Z
K
uK;juK;l; ME

j ¼
1
jEj

Z
E
uK;j;

MK;E
j;l ¼

Z
K
uK;lwK;E � ruK;j;
where we assume that the phase fluxes fields on the element K can be approximated as
qa;K ¼
X
E2@K

qa;K;EwK;E
using the vector basis functions from the mixed-hybrid finite-elements. The integrals can be readily evaluated to obtain
MK ¼ MK
j;l

h i
¼

1 0 0
0 1

3 0
0 0 1

3

0B@
1CAjKj ð58Þ
for matrix MK . The matrices ME, where the edges E are denoted by T; B; L, and R (top, bottom, left, and right, respectively),
read as
MT ¼ MT
j

h i
¼

1
0
1

0B@
1CA; MB ¼ MB

j

h i
¼

1
0
�1

0B@
1CA; ð59Þ

MR ¼ MR
j

h i
¼

1
1
0

0B@
1CA; ML ¼ ML

j

h i
¼

1
�1
0

0B@
1CA: ð60Þ



J. Mikyška, A. Firoozabadi / Journal of Computational Physics 229 (2010) 2898–2913 2913
Using the same notation for the edges, the elements of matrices MK;E are evaluated as
MK;T ¼ MK;T
j;l

h i
¼

0 0 0
0 0 0
1 0 1

3

0B@
1CA; MK;B ¼ MK;B

j;l

h i
¼

0 0 0
0 0 0
�1 0 1

3

0B@
1CA;

MK;R ¼ MK;R
j;l

h i
¼

0 0 0
1 1

3 0
0 0 0

0B@
1CA; MK;L ¼ MK;L

j;l

h i
¼

0 0 0
�1 1

3 0
0 0 0

0B@
1CA:

ð61Þ
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