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a  b  s  t  r  a  c  t

We  develop  a new  algorithm  for the  calculation  of  phase  splitting  at constant  volume,  temperature,  and
moles. The  method  is  based  on  the direct  minimization  of  the  total  Helmholtz  free  energy  of the  mixture
with  respect  to the  mole-  and volume-balance  constraints.  The  algorithm  uses  the  Newton–Raphson
minimization  method  with  line-search  and  modified  Cholesky  factorization  of  the  Hessian  to  produce
a  sequence  of states  with  decreasing  values  of  the  total  Helmholtz  free  energy.  The  algorithm  is initial-
eywords:
wo-phase equilibrium
onstant volume flash
elmholtz free energy minimization

ized  using  an  initial  guess  that  is  constructed  using  the  results  of the  constant  volume  stability  testing.
The  speed  and  robustness  of  the  algorithm  are  demonstrated  by a number  of  examples  of two-phase
equilibrium  calculations.

© 2013 Elsevier B.V. All rights reserved.

ewton–Raphson method
odified Cholesky factorization

. Introduction

Consider a closed system of given volume V containing a mix-
ure of n components with mole numbers N1,. . .,  Nn at temperature
. The goal is to find out if the system is in single phase or splits
nto phases. If phase splitting occurs, we want to establish com-
osition, densities, and amount of the phases, and eventually, find
he equilibrium pressure. The problem of computation of phase
quilibria under constant volume, temperature, and moles (the
o-called VT-flash) is an alternative to the traditional formulation
f phase equilibria at constant pressure, temperature, and chem-
cal composition (the so-called PT-flash), which has been used in

any applications [1–3]. Although the possibility of using alter-
ative variables specifications has been known for a long time,

n most applications PT-flash has been used to solve the phase
quilibrium. To compute phase equilibria under different variables
pecifications (including VT,  PS,  and PH), Michelsen [1–4] suggested
o use the PT-flash algorithm iteratively, trying to find input tem-
erature T and pressure P for the PT-flash such that the resulting
pecification variable (volume V, entropy S, or enthalpy H, respec-
ively) attains the prescribed value. This approach was  used in
5] to find the conditions of thermodynamic equilibrium in sys-

ems subject to gravitational fields and in [6] to study segregation
n centrifugal fields. While this approach allows to reuse exist-
ng implementations of PT-flash, it is not computationally efficient

∗ Corresponding author. Tel.: +420 224358553.
E-mail address: jiri.mikyska@fjfi.cvut.cz (J. Mikyška).

378-3812/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fluid.2013.05.036
because many solutions of the PT-flash are needed before the equi-
librium pressure is found. Another limitation of this approach is
that for a pure substance at the saturation pressure, volume is
ambiguous (see Example 1 below), and therefore, the nested loop
approach must fail to provide correct volume fractions of the split
phases. Although the single-component case seems to be a trivial
exception, we  aim to develop a method that performs equally well
for pure substances and mixtures. This motivates our interest in VT-
based formulation and direct minimization of the total Helmholtz
free energy A.

Compared to PT-flash, the VT-based algorithms for the flash cal-
culation and stability testing have been discussed rarely in the
literature. Cabral et al. [7] use the direct minimization of the
Helmholtz free energy in problems with various bulk and adsorbed
phases. In the VT-flash, pressure can become negative during the
course of iterations. For this reason, Cabral et al. [7] have evalu-
ated the logarithms of fugacities and pressures using the complex
arithmetic. In the VT-formulation presented in this paper, the use
of complex arithmetic is avoided. This is achieved by expressing
the differences of the chemical potentials using the logarithms of
volume functions rather than fugacities. The framework of volume
functions was developed recently [9] to replace fugacities in the VT-
based formulations. The first algorithm for the direct calculation of
VT-flash [9] using the new framework was based on solving the
equations of phase equilibria using the succesive substitution iter-

ations (SSI). Numerical examples in [9] demonstrate that the direct
calculation of VT-flash using SSI can be performed in essentially the
same number of iterations as SSI requires in PT-flash if applied at the
equilibrium pressure. As this pressure is usually not known a-priori

dx.doi.org/10.1016/j.fluid.2013.05.036
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.fluid.2013.05.036&domain=pdf
mailto:jiri.mikyska@fjfi.cvut.cz
dx.doi.org/10.1016/j.fluid.2013.05.036
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List of notation

Symbol
A Helmholtz free energy
bi Covolume parameter of the Peng–Robinson EOS
c Molar concentration
ıX−Y Binary interaction coefficient between components

X and Y
i, j Component indices
k Iteration index
�i Chemical potential of the ith component
Mw,i Molar weight of the ith component
n Number of components
Ni Mole number of the ith component
ωi Accentric factor of the ith component
P Pressure
Pi,crit Critical pressure of the ith component
R Universal gas constant
T Absolute temperature
Ti,crit Critical temperature of the ith component
V Total volume of the system
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zi Overall mole fraction of the ith component

actually, it is one of the results of the VT-flash problem), itera-
ive version of the PT-flash would require more CPU-time to solve
he VT-flash problem. Besides its efficiency, there are also other
dvantages of the VT-flash formulation over the PT-formulation
11] stemming from the fact that VT are the natural variables of
ressure-explicit equations of state:

 As volume is specified and pressure is computed from the equa-
tion of state, there is no need to invert the equation of state.

 As the equation of state is not inverted, the problem of multiple
roots of the equation of state is avoided.

 The algorithm can describe phase splitting in the mixtures as well
as in pure components (we will show a specific example of this
issue later in this paper).

Although the SSI-algorithm for VT-flash works well in many
ases, there are several issues to resolve. First, for some problems
he SSI algorithm requires too many iterations to converge. Second,
f SSI does converge, it does not have to converge to a state corre-
ponding to (at least) a local minimum of the total Helmholtz free
nergy A. We  have found examples, in which the iterates in the SSI-
lgorithm converge to a state corresponding to the saddle point of

 rather than to the point of a minimum of A. In some cases, SSI
an converge to the trivial solution although the system should be
n two-phase. Providing good initial guesses for the SSI algorithm
s another challenge. We  have found an example of a binary mix-
ure, for which the iterates in the SSI method diverged from the
icinity of the global minimum of A no matter how close was the
nitial guess to the point of the global minimum. Recently, we have
eveloped a fast and robust method for testing single-phase stabil-

ty under constant V and T conditions [10]. This algorithm tests if a
mall volume of a trial phase with arbitrary density and composi-
ion can be split from the initial phase so that the total Helmholtz
ree energy of the 2-phase system is lower than the energy of the
ypothetical single-phase system. If the mixture is stable, the VT-
ash calculation is avoided. If the mixture splits into phases, the
T-stability provides concentrations of a trial phase, which, if taken
n a sufficiently small amount from the initial phase, leads to a two-
hase system with lower value of A than the hypothetical single
hase state. However, the SSI algorithm breaks down if the initial
uess from VT-stability is used.
quilibria 353 (2013) 101– 114

To resolve these issues, we  have developed a new method for
the computation of VT-flash which is based on constrained mini-
mization of the total Helmholtz free energy rather than equation
solving. The minimization approach allows to solve all the issues
mentioned above. As the method is based on the Newton–Raphson
iterations, its convergence is fast compared to SSI. Unlike SSI, the
new method guarantees that the total Helmholtz free energy of the
system decreases in every iteration. Therefore, the method always
converges to a state corresponding to a local minimum of A. As we
use the results of stability to initialize the iteration, once the stabil-
ity analysis decides that the system is in two-phase, convergence
towards the false trivial solution is avoided.

The paper is structured as follows. In Section 2, we formulate
the VT-flash problem and derive the equilibrium conditions using
the Helmholtz free energy. In Section 3, we describe the new com-
putational algorithm for calculation of phase-equilibria at constant
volume, temperature, and moles. In Section 4, we describe con-
struction of the initial guess using the results of VT-stability testing.
In Section 5, we summarize the essential steps of the algorithm.
In Section 6, we present numerical examples showing the perfor-
mance of the algorithm on several mixtures of different degree of
complexity. In Section 7, we discuss the results and draw some con-
clusions. In Appendix A, we summarize details of the equations of
state that were used in the computations.

2. Conditions for phase equilibrium

Consider a mixture of n components with mole numbers N1,
. . .,  Nn occupying volume V at temperature T. Let us assume the
system is unstable and splits into two phases. We  are interested
in calculating volumes of both phases V′ and V′′, mole numbers of
each component in both phases N′

i
and N

′′
i

for i = 1, . . .,  n and the
pressure of the system P.

For single-phase systems, the Helmholtz free energy is given by

AI = A(V, T, N1, . . . , Nn) = −PV +
n∑

i=1

Ni�i, (1)

where P = P(V, T, N1, . . .,  Nn) is the pressure given by a pressure-
explicit equation of state, and �i = �i(V, T, N1, . . .,  Nn) is the chemical
potential of the ith component in the mixture. For two-phase sys-
tems, the total Helmholtz free energy reads as

AII = A(V ′, T, N′
1, . . . , N′

n) + A(V ′′, T, N
′′
1, . . . , N

′′
n). (2)

The equilibrium state of the system is the one for which the total
Helmholtz free energy increase with respect to the hypothetical
single phase system,

�A  = A(V ′, T, N′
1, . . . , N′

n) + A(V ′′, T, N
′′
1, . . . , N

′′
n)

− A(V, T, N1, . . . , Nn), (3)

is minimal among all states satisfying the following (n + 1) con-
straints, which express the volume balance and mole balance

V ′ + V ′′ = V, (4)

N′
i + N

′′
i = Ni, i = 1, . . . , n. (5)

Using the Lagrange multiplier method, the system of (n + 1) neces-
sary conditions of the phase equilibria is derived

P(V ′, T, N′
1, . . . , N′

n) = P(V ′′, T, N
′′
1, . . . , N

′′
n), (6)

�i(V
′, T, N′

1, . . . , N′
n) = �i(V

′′, T, N
′′
1, . . . , N

′′
n) , i = 1, . . . , n. (7)
These equations are the basis for equation solving methods like SSI
developed in [9]. In this paper, we develop an optimization method,
which is based on direct minimization of �A  subject to the con-
straints (4) and (5). The same problem could also be formulated
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sing the minimization of A rather than �A. Obviously, the two
ormulations yield the same equilibrium states as the last term on
he right hand side of (3) is constant. There are two advantages of
sing �A.  First, while A can be evaluated up to an unknown addi-
ive constant, the expression for �A  can be evaluated readily from
he equation state. Second, �A  is used in stability testing and the
ign of �A  shows whether a given two-phase split is more stable
han the hypothetical single-phase state. This feature helps in the
nitialization of the algorithm (see Eq. (27) in Section 4).

. Numerical algorithm for computation of phase
quilibrium

We  derive a numerical procedure for computing two-phase
quilibrium at constant temperature, volume, and moles based on
inimization of the total Helmholtz free energy of the two-phase

ystem (3), which is subject to the volume and mole balance con-
traints (4) and (5).

The constraint equations (4) and (5) can be written in the matrix
orm with matrix A  ∈ R(n+1)×(2n+2), vector of unknowns x ∈ R2n+2

nd the vector of right hand side b ∈ Rn+1 as Ax = b, or

1 0 1 0

1 0 1 0

. . .
...

. . .
...

1 0 1 0

0 0 . . . 0 1 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
 ︷︷  ︸

A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N′
1

...

N′
n

V ′

N
′′
1

...

N
′′
n

V ′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸  ︷︷  ︸

x

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

N1

N2

...

Nn

V

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷  ︸

b

.

(8)

s the matrix A  has the full rank, the optimization problem
ith 2n + 2 unknowns and n + 1 linearly independent linear con-

traints can be transformed into an unconstrained problem in
n + 2 − (n + 1) = n + 1 variables. In principle, one could use the con-
traints to eliminate one set of unknowns (say V′′, and N

′′
1, . . . , N

′′
n)

nd formulate the problem as an unconstrained optimization prob-
em in the other set of variables (V′, and N′

1, . . . , N′
n). This would

ead to a non-symmetric formulation preffering one phase over the
ther one. This may  cause some problems in numerical compu-
ation if, for example, one of the phases in the two-phase system
ccurs in a very small amount. In our method we use a different
pproach based on the LQ-factorization of matrix A, which can treat
ll phases in a unified way. The symmetry of our formulation is an
dvantageous feature that makes the method robust even in these
imit situations. The reduction in dimensionality can be performed
sing two subspaces Y  and Z,  where Y  is the (n + 1)-dimensional
ubspace of R2n+2 spanned by the rows of matrix A  and Z is (n + 1)-
imensional subspace of R2n+2 of vectors orthogonal to the rows of
atrix A. As

2n+2 = Y  ⊕ Z,  (9)

ny (2n  + 2)-dimensional vector x can be uniquely written as a sum
f vectors from Y  and Z as
 = YxY + ZxZ, (10)

here Y  and Z denote matrices from R(2n+2)×(n+1) whose columns
epresent bases of subspaces Y  and Z,  respectively, the (n + 1)-
imensional vector xY is called the range-space part of x, and the
quilibria 353 (2013) 101– 114 103

(n + 1)-dimensional vector xZ is called the null-space part of x.
The solution x∗ of the constrained optimization problem, given by
x∗ = Yx∗

Y + Zx∗
Z, is feasible, therefore

Ax∗ = A(Yx∗
Y + Zx∗

Z) = b.

From the definition of the subspace Z,  it follows that AZ = 0, and

AYx∗
Y = b.

From the definition of subspace Y  it follows that the matrix AY

is non-singular, so the vector x∗
Y is uniquely determined by the

previous equation. Similarly, any feasible vector x must have the
same range-space part, that means xY = x∗

Y, and on the contrary,
any vector with range-space component x∗

Y satisfies the constraints
of the optimization problem. So the range-space part x∗

Y of the
solution is uniquely determined by the constraints, and only the
(n + 1)-dimensional part x∗

Z remains unknown.
To represent the null-space Z,  we  use the LQ-factorization of

matrix A  [12]. Let Q ∈ R(2n+2)×(2n+2) be an orthogonal matrix such
that

AQ = (L 0),  (11)

where L ∈ R(n+1)×(n+1) is a non-singular lower triangular matrix.
From this it can be seen that the matrix Y  can be chosen as the first
n + 1 columns of matrix Q and the matrix Z can be chosen as the
remaining n + 1 columns of Q,  i.e.

Q = (Y  Z). (12)

If we denote the identity matrix in Rn+1 as In+1, the matrix A  can be

written as A  = (
In+1 In+1 ). The matrices Y  and Z then read as

Y  = 1√
2
AT = 1√

2

(
In+1

In+1

)
, Z = 1√

2

(
In+1

−In+1

)
. (13)

Our algorithm for solving the optimization problem is iterative. Pro-
vided that we start from a feasible initial guess x(0), the algorithm
generates a sequence of feasible iterates x(k). In every iteration, x(k)

is updated as

x(k+1) = x(k) + ˛kd(k),

where ˛k > 0 denotes the step size and d(k) denotes the direction
vector. Assuming that x(k) is feasible, we require that x(k+1) be fea-
sible too. To satisfy this, it is necessary that the direction vector d(k)

be orthogonal to the rows of A, i.e.

Ad(k) = 0, (14)

or equivalently

d(k) = Zd(k)
Z , (15)

for a suitable (n + 1)-dimensional vector d(k)
Z . It is obvious that the

search direction d(k) is a (2n  + 2)-dimensional vector, which is con-
structed to lie in a (n + 1)-dimensional subspace Z.  The columns
of matrix Z forming an orthogonal basis of Z are given by (13), so
it remains to determine the vector d(k)

Z ∈ Rn+1. This way we have
transformed the constrained minimization problem to an uncon-

strained problem in a lower dimension.

To find the vector d(k)
Z , we use the modified Newton method,

which is based on the quadratic approximation of function �A
around the point x(k). Let us denote by g(x) the gradient of the
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unction �A. By partial differentiating of �A with respect to its
ariables, we obtain

(x) = ∇(�A)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1(V ′, T, N′
1, . . . , N′

n)

...

�n(V ′, T, N′
1, . . . , N′

n)

−P(V ′, T, N′
1, . . . , N′

n)

�1(V ′′, T, N
′′
1, . . . , N

′′
n)

...

�n(V ′′, T, N
′′
1, . . . , N

′′
n)

−P(V ′′, T, N
′′
1, . . . , N

′′
n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

ext, let us denote by H(x) the Hessian of the function �A  obtained
n the following block-diagonal form

(17)

here

B′ ∈ Rn×n, B′
ij

= ∂�i

∂N′
j

(V ′, T, N′
1, . . . , N′

n),

B′′ ∈ Rn×n, B
′′
ij

= ∂�i

∂N
′′
j

(V ′′, T, N
′′
1, . . . , N

′′
n),

C′ ∈ Rn, C′
j
= − ∂P

∂N′
j

(V ′, T, N′
1, . . . , N′

n),

C′′ ∈ Rn, C
′′
j

= − ∂P

∂N
′′
j

(V ′′, T, N
′′
1, . . . , N

′′
n),

D′ ∈ R1, D′ = − ∂P

∂V ′ (V ′, T, N′
1, . . . , N′

n),

D′′ ∈ R1, D′′ = − ∂P

∂V ′′ (V ′′, T, N
′′
1, . . . , N

′′
n)

.

Approximating the function �A  using the Taylor expansion
round the point x(k) up to the quadratic terms, the search direc-
ion d(k) = Zd(k)

Z is found as a solution of the following minimization
roblem

min
(k)∈R(2n+2)

�A(x(k) + d(k)) = min
d(k)∈R(n+1)

�A(x(k) + Zd(k)
Z )
Ad(k) = 0
Z

≈ min
d(k)
Z ∈R(n+1)

�A(x(k)) + g(x(k))
T
Zd(k)

Z + 1
2

(Zd(k)
Z )

T
H(x(k))Zd(k)

Z . (18)
quilibria 353 (2013) 101– 114

The vector d(k)
Z is the argument of minimum of a quadratic function

� defined as

�(dZ) = g(x(k))
T
ZdZ + 1

2
dT
ZZ

TH(x(k))ZdZ.

The function � has a stationary point if and only if there is a d(k)
Z ,

for which the gradient of � vanishes, i.e.

∇�(d(k)
Z ) = 0. (19)

The stationary point d(k)
Z is a solution of the following system of

equations

HZ(x(k))d(k)
Z = −gZ(x(k)), (20)

where HZ(x(k)) ∈ R(n+1)×(n+1) and gZ(x(k)) ∈ Rn+1 are the restric-
tions of the Hessian and of the gradient vector to the subspace Z
defined as

HZ(x(k)) = ZTH(x(k))Z (21)

and

gZ(x(k)) = ZT g(x(k)). (22)

Combining (13), (16), and (17), it follows from (21) and (22) that

(23)

where

B ∈ Rn×n, Bij = ∂�i

∂N′
j

(V ′, T, N′
1, . . . , N′

n) + ∂�i

∂N
′′
j

(V ′′, T, N
′′
1, . . . , N

′′
n),

C  ∈ Rn, Cj = − ∂P

∂N′
j

(V ′, T, N′
1, . . . , N′

n) − ∂P

∂N
′′
j

(V ′′, T, N
′′
1, . . . , N

′′
n)

D  ∈ R1, D  = − ∂P

∂V ′ (V ′, T, N′
1, . . . , N′

n) − ∂P

∂V ′′ (V ′′, T, N
′′
1, . . . , N

′′
n),

and

gZ(x(k)) = 1√
2

⎛⎜⎜⎜⎜⎜⎝
�1(V ′, T, N′

1, . . . , N′
n) − �1(V ′′, T, N

′′
1, . . . , N

′′
n)

...

�n(V ′, T, N′
1, . . . , N′

n) − �n(V ′′, T, N
′′
1, . . . , N

′′
n)

−P(V ′, T, N′
1, . . . , N′

n) + P(V ′′, T, N
′′
1, . . . , N

′′
n)

⎞⎟⎟⎟⎟⎟⎠ .

(24)

Note that the gradient vector in (16) depends on the values of chem-
ical potentials, which are determined up to an arbitrary constant.
Unlike in (16), the restricted gradient given by (24) is a function of
differences of the chemical potentials between two  states whose
values can be evaluated uniquely using the equation of state [9].
Unlike in [7], our formulation does not require to use the complex
arithmetics.

If d(k)
Z solves the system of the equations (20) and the matrix
HZ is positive definite, then the search direction d(k)
Z is a descent

direction. If the matrix of the projected Hessian is not positive defi-
nite, then either the quadratic approximation of the function is not
bounded from below, or a single minimum does not exist. In this
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ase, it is necessary to modify the direction d(k)
Z . If the matrix HZ is

ndefinite, then the vector d(k)
Z is found as a solution of a modified

ystem of the equations

Ẑ(x(k))d(k)
Z = −gZ(x(k)), (25)

here ĤZ(x(k)) is a positive definite matrix obtained by the
odified Cholesky decomposition of the matrix HZ(x(k)). In this

lgorithm the usual Cholesky factorization is performed to decom-
ose matrix HZ(x(k)) into the product LLT where L is a lower
riangular matrix. If a negative element appears on the diagonal
f L during the Cholesky factorization, a suitable value is added
o this element to ensure its positivity in the final decomposition.
his way we obtain the Cholesky factorization of a positive definite
atrix ĤZ(x(k)), which is used instead of matrix HZ(x(k)) in (25) to

etermine the direction d(k)
Z in the Newton method. This modifi-

ation of the Newton method ensures that the obtained direction
s a descent direction. Therefore, for a sufficiently small step size
k > 0, the decrease of �A  can be guaranteed. The following line-
earch technique can be used to find the step size ˛k. First, we
ut ˛k = 1 and test if �A(x(k) + d(k)) < �A(x(k)). If this condition is
atisfied, we set x(k+1) = x(k) + d(k). If the condition is violated, we
alve the value of ˛k until the condition �A(x(k) + ˛kd(k)) < �A(x(k))

s satisfied and then set x(k+1) = x(k) + ˛kd(k). This completes a sin-
le iteration of the Newton method. The iterations are terminated
hen a suitable stopping criterion is satisfied or the method con-

inues with the next iteration if needed. In this work, we  stop the
terations if (cf. [13])

d(k)‖2 :=

⎛⎝2n+2∑
j=1

d(k)2
j

⎞⎠1/2

≤ εtol = 10−7. (26)

. Initialization of the VT-flash algorithm

To initialize the algorithm, an initial guess x(0) is needed. We
se the VT-stability test from [10] before the VT-flash calculation
o test whether the single phase is stable or not at given volume V,
emperature T, and mole numbers N1, . . .,  Nn. Denoting by ci = Ni/V
he overall molar concentrations of all components, the VT-stability
lgorithm tests whether a trial phase with concentrations c′

i
can be

ound such that, if taken in a small amount from the initial phase,
he two-phase system will have lower total Helmholtz free energy
han the single-phase system. From this, the following criterion of
tability at constant volume, temperature, and moles can be derived
see [10] for details). The single phase is stable if

D(T, c′
1, . . . , c′

n)

= lim
V ′→0+

�A

V ′ =
n∑

i=1

[�i(1,  T, c′
1, . . . , c′

n) − �i(1,  T, c1, . . . , cn)]c′
i

−[P(1, T, c′
1, . . . , c′

n) − P(1, T, c1, . . . , cn)] ≥ 0

(27)

or all admissible states (T, c′
1, . . . , c′

n). If this condition is satis-
ed, the system is in single-phase and the VT-flash calculation is
voided (pressure can be computed using the equation of state).
n the opposite case, the mixture splits into phases and the VT-
tability algorithm provides trial phase concentrations c′

i
such that

(T, c′
1, . . . , c′

n) < 0. As D(T, c′
1, . . . , c′

n) = lim
V ′→0+

�A/V ′ < 0, we can
se the bisection method to find a small volume V′ > 0 such that
A < 0 for a state in which one phase is the trial phase with vol-

me  V′ and mole numbers N′
i
= c′

i
V ′ and the other phase properties

′′ and N
′′
i

are computed such that (4) and (5) hold. This way
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we construct a two-phase state with lower total Helmholtz free
energy than the initial single-phase state. As the VT-flash algorithm
guarantees to decrease the total Helmholtz free energy in every
iteration, the possibility of convergence toward the trivial solution
is excluded.

5. Algorithm of the modified Newton method for VT-flash

Now, we  are ready to summarize the essential steps of our algo-
rithm.

Step 1 Let N1, . . ., Nn, V and T > 0 be given. Set the number of iter-
ations k = 0. Get an initial feasible solution x(0) ∈ R2n+2 from
the VT-stability algorithm

x(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N′
1

...

N′
n

V ′

N
′′
1

...

N
′′
n

V ′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

Step 2 Assemble the Hessian HZ(x(k)) and the gradient gZ(x(k)) of
�A in the kth iteration projected to the subspace Z using
(23) and (24).

Step 3 Compute the projected step direction d(k)
Z ∈ Rn+1, and the

feasible direction d(k) ∈ R2n+2 by

HZ(x(k))d(k)
Z = −gZ(x(k)), (29)

d(k) = Zd(k)
Z . (30)

If the matrix HZ(x(k)) is not positive definite, find the vector
d(k)
Z by solving a modified system of equations

ĤZ(x(k))d(k)
Z = −gZ(x(k)), (31)

where ĤZ(x(k)) is a positive definite matrix obtained from
the modified Cholesky factorization of matrix HZ(x(k)).

Step 4 Determine the step length ˛k > 0 for the kth iteration satis-
fying

�A(x(k) + ˛kd(k)) < �A(x(k)). (32)

First, set the step length to ˛k = 1 and test if the condition
(32) holds. If not, use the bisection method to find a value of
˛k satisfying (32).

Step 5 Update the approximation as

x(k+1) = x(k) + ˛kd(k). (33)

Step 6 Test the convergence using (26). If needed, increase k by 1
and go to Step 2. If not needed, the algorithm ends up with
the solution x(k+1).

6. Numerical examples of VT-flash calculations

We have tested the algorithm in several examples for binary

and multi-component mixtures under different conditions. First,
we have tested the VT-flash algorithm on all examples of mixtures
from [9]. The new algorithm converged well in all cases and pro-
vided the same solutions as those reported in [9]. In all cases the
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Table  1
Numbers of iterations for the VT-flash algorithm developed in this paper and the
succesive substitution iteration (SSI) from [9] for five mixtures investigated in [9].
Example numbers refer to Examples in [9]. The detailed description of the mixtures
and  conditions can be found in [9].

Number of iterations VT-flash (this work) VT-flash SSI [9]

Example 1 6 46
Example 2 6 20
Example 3 6 25
Example 4 (with N2) 6 33
Example 4 (with CO2) 6 266

Table 2
Parameters of the Peng–Robinson and CPA equations of state for all components
used in all examples.

Component Ti,crit [K] Pi,crit [MPa] ωi Mw,i [kg kmol−1]

H2O 647.29 22.09 0.3440 18.01528
CO2 304.14 7.375 0.2390 44.0
N2 126.21 3.390 0.0390 28.0
C1 190.56 4.599 0.0110 16.0
C3 369.83 4.248 0.1530 44.1

n
[
T

o
u
t
r
a
r
T
f
e
s
p
D

t
d
a

F
T

nC5 469.70 3.370 0.2510 72.2
C6 507.40 3.012 0.2960 86.2
nC10 617.70 2.110 0.4890 142.28

ew method needed much less iterations than the SSI method from
9]. The numbers of iterations for both methods are summarized in
able 1.

In the following examples, we simulate isothermal compression
f a mixture in a closed cell. The VT-stability algorithm from [10] is
sed to detect the boundary between the stable single-phase and
wo-phase regions for an interval of temperatures and for the whole
ange of admissible molar concentrations c. For a selected temper-
ture T, we change the overall molar concentration c and provide
esults of the VT-flash calculations for the mixture at temperature

 and molar concentrations ci = czi. We  present six examples of dif-
erent complexity. In Examples 1–5, we use the Peng–Robinson
quastion of state. Parameters of the Peng–Robinson equation of
tate for all components used are presented in Table 2. For Exam-
le 6, we use the Cubic-Plus-Association (CPA) equation of state.
etails for both the equations of state can be found in Appendix A.
Note that in the following examples VT-flash algorithm is used
o evaluate amount and properties of the split phases, generally
enoted as phase 1 and phase 2. We  have not attempted to perform
ny phase identification or post processing of the results. Therefore,
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ig. 1. Approximate boundary between the single-phase and two-phase domains in th
 = 280 K. Equilibrium pressure as a function of the overall molar density c at T = 280 K (rig
quilibria 353 (2013) 101– 114

the numbering of the phases depends solely on the result of the
minimization procedure. In some figures we  can observe swapping
of the two-phases at certain points but this effect has no physical
significance.

Example 1

In the first example, we investigate two-phase equilibrium for
pure carbon dioxide (CO2). The approximate boundary between
the single-phase and two-phase domains in the c, T-space obtained
from VT-stability analysis is shown in Fig. 1 (left). As shown in Fig. 1
(left), at temperature T = 280 K the mixture occurs in single-phase
for low enough molar densities. During isothermal compression, at
moderate molar concentrations the mixture splits into two  phases,
while at high molar densities (higher than 20 kmol m−3) the mix-
ture becomes single-phase again. We  show the saturations (volume
fractions) of both phases and mass densities of both phases as
functions of the overall molar density c in Fig. 2. The equilibrium
pressure for each overall molar concentration c is presented in Fig. 1
(right).

Note that within the two-phase region (between points A and
B in Fig. 1 (right)), the pressure is constant and equal to the satu-
ration pressure Psat corresponding to the temperature T = 280 K. All
these states occur at the same pressure P, temperature T, and mole
number N. Therefore, PT-stability and PT-flash cannot distinguish
between these states. As these states have different volumes, the
VT-based formulation can distinguish between them. This example
shows that the variables P, T, N are not equivalent to V, T, N in the
sense that specifying the volume, temperature and moles uniquely
determines the equilibrium state of the system. This is not the case
of the P, T, N formulation in which all two-phase states and both
saturated gas (point A in Fig. 1 (right)) and saturated liquid (point
B in Fig. 1 (right)) occur at the same values of P, T, N.

There are also other advantages of the volume-based for-
mulations. Consider applying PT-stability and PT-flash to a pure
component system at temperature T and pressures P1 = Psat(T) + ε
and P2 = Psat(T) − ε, where ε > 0 is an arbitrarily small number. For
both cases, the system is in single-phase. For P1 we have an almost
saturated liquid with molar concentration c1, for P2 we have an
almost saturated gas with molar concentration c2 < c1. While the

difference of pressures P1 − P2 is very small, the difference in con-
centrations c1 − c2 may  be large, i.e. although the pressure change
is small, the volume of the system changes a lot. The discontinuous
jump in volume associated with a small change in pressure may
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e c, T-space (left). The arrow indicates the compression at constant temperature
ht). Example 1: pure CO2.



T. Jindrová, J. Mikyška / Fluid Phase Equilibria 353 (2013) 101– 114 107

c [kmol.m− 3]

sa
tu
ra
ti
o
n
[-
]

phase 1

phase 2

c [kmol.m− 3]

m
as
s
d
en
si
ty
[k
g
.m

−
3
]

phase 1

phase 2

 funct

c
s
t
u

E

f
m
i
a
T
A
i
p
d
t

d
t
i
d
p

F
T

Fig. 2. Saturations (left) and mass densities (right) of both phases as

ause convergence problems in numerical methods applied to the
olution of the PT-flash. On the other hand, in the VT-formulation,
he equilibrium pressure is a continuous function of the total vol-
me  of the system (cf. Fig. 1 (right)).

xample 2

In the second example, we investigate two-phase equilibrium
or a binary mixture of methane (C1) and normal pentane (nC5) with

ole fractions zC1 = 0.547413 and znC5 = 0.452587. The binary
nteraction coefficient ıC1−nC5 = 0.041. The approximate bound-
ry between the single-phase and two-phase domains in the c,
-space obtained from VT-stability analysis is shown in Fig. 3 (left).
s shown in Fig. 3 (left), at temperature T = 371 K the mixture occurs

n single-phase for low molar densities. During isothermal com-
ression, the mixture splits into two phases at moderate molar
ensities, while at high molar densities (higher than 9 kmol m−3)
he mixture becomes single-phase again.

The equilibrium pressure as a function of the overall molar
ensity c is presented in Fig. 3 (right) illustrating a steady rise of

he equilibrium pressure during compression, and its substantial
ncrease at molar densities 9 kmol m−3 and higher when all gas is
epleted. Saturations of both phases and mass densities of both
hases as functions of the overall molar density c are presented in
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ig. 3. Approximate boundary between the single-phase and two-phase domains in th
 = 371 K. Equilibrium pressure as a function of the overall molar density c at T = 371 K (rig
ions of the overall molar density c. Example 1: pure CO2 at T = 280 K.

Fig. 4. Mole fractions of both components in both phases for each
overall molar density c are presented in Fig. 5.

Example 3

In the third example, we investigate two-phase equilibrium
for a binary mixture of carbon dioxide (CO2) and normal decane
(nC10) with mole fractions zCO2 = 0.547413 and zC10 = 0.452587.
The binary interaction coefficient ıCO2−nC10 = 0.150. The approxi-
mate boundary between the single-phase and two-phase domains
in the c, T-space obtained from VT-stability analysis is shown
in Fig. 6 (left). As shown in Fig. 6, when compressing at con-
stant temperature T = 311 K, the mixture occurs in two-phase
from the lowest molar densities up to approximately 8 kmol m−3,
then the mixture becomes single-phase, while at molar densi-
ties higher than 9.5 kmol m−3 the mixture becomes two-phase
again.

The equilibrium pressure as a function of the overall molar
density c is presented in Fig. 6 (right) illustrating a steady rise
of the equilibrium pressure during compression, and its substan-

tial increase at molar densities 8 kmol m−3 and higher when all
gas phase is depleted. Saturations of both phases and mass den-
sities of both phases as functions of the overall molar density c
are presented in Fig. 7. Mole fractions of both components in both
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e c, T-space (left). The arrow indicates the compression at constant temperature
ht). Example 2: binary C1–nC5 mixture (zC1 = 0.547413, znC5 = 0.452587).
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Fig. 4. Saturations (left) and mass densities (right) of both phases as functions of the overall molar density c. Example 2: binary C1–nC5 mixture (zC1 = 0.547413, znC5 =
0.452587, and T = 371 K).
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ig. 5. Molar fractions of both components in both phases as functions of the ov
nC5 = 0.452587).

hases as functions of the overall molar density c are presented in
ig. 8.
Figs. 6 (left) and 7 (right) suggest that the second two-phase
egion at high molar densities and low temperatures may  corre-
pond to a liquid–liquid two-phase region.
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 = 311 K. Equilibrium pressure as a function of the overall molar density c (right) at T = 31
molar density c at T = 371 K. Example 2: binary C1–nC5 mixture (zC1 = 0.547413,

Example 4
In the fourth example, we investigate two-phase equilibrium for
a ternary mixture of methane (C1), hexane (C6) and normal decane
(nC10) with mole fractions zC1 = 0.405946, zC6 = 0.297027 and
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e c, T-space (left). The arrow indicates the compression at constant temperature
1 K. Example 3: binary CO2–nC10 mixture (zCO2 = 0.547413, zC10 = 0.452587).
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Fig. 7. Saturations (left) and mass densities of both phases as function of the overall molar density c (right). Example 3: binary CO2–nC10 mixture (zCO2 = 0.547413, zC10 =
0.452587, and T = 311 K).
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ig. 8. Molar fractions of both components in both phases as functions of the ove
C10 = 0.452587).

C10 = 0.297027. The binary interaction coefficients are presented
n Table 3. The approximate boundary between the single-phase

nd two-phase domains in the c, T-space obtained from VT-stability
nalysis is shown in Fig. 9 (left). As shown in Fig. 9 (left), at con-
tant temperature T = 420 K the mixture occurs in two-phase from
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ig. 9. Approximate boundary between the single-phase and two-phase domains in th
 = 420 K. The equilibrium pressure as a function of the overall molar density c at T = 420 K
C10 = 0.297027).
olar density c at T = 311 K. Example 3: binary CO2–nC10 mixture (zCO2 = 0.547413,

the lowest molar densities up to approximately 6.5 kmol m−3, then
it becomes single-phase.
The equilibrium pressure as a function of the overall molar
density c is presented in Fig. 9 (right) illustrating a steady rise of
the equilibrium pressure during compression, and a substantial

0 3 6 9
0

20

40

60

80

100

c [kmol.m−3]

pr
es

su
re

[M
P
a]

e c, T-space (left). The arrow indicates the compression at constant temperature
 (right). Example 4: ternary C1–C6–nC10 mixture (zC1 = 0.405946, zC6 = 0.297027,



110 T. Jindrová, J. Mikyška / Fluid Phase Equilibria 353 (2013) 101– 114

Table  3
Binary interaction coefficients for the ternary mixture used in Example 4.

Component C1 C6 nC10

C1 0 0.043 0.052

i
p
o
s
a

E

f
(
z
t
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Table 4
Binary interaction coefficients for the four-component mixture used in Example 5.

Component N2 C1 C3 nC10

N2 0 0.1 0.1 0.1
C1 0.1 0 0.036 0.052

F
z

F
z

C6 0.043 0 0
nC10 0.052 0 0

ncrease at molar densities 6.5 kmol m−3 and higher when all gas
hase is depleted. Saturations of both phases and mass densities
f both phases as functions of the overall molar density c are pre-
ented in Fig. 10. Mole fractions of all components in both phases
s functions of the overall molar density c are presented in Fig. 11.

xample 5

In the fifth example, we investigate phase equilibrium for a
our-component mixture of nitrogen (N2), methane (C1), propane
C3), and normal decane (nC10) with mole fractions zN2 = 0.2463,
C1 = 0.2208, zC3 = 0.2208, and znC10 = 0.3121. The binary interac-
ion coefficients are shown in Table 4. The approximate boundary

etween the single-phase and two-phase domains in the c, T-space
btained from VT-stability analysis is shown in Fig. 12 (left). As
hown in Fig. 12 (left), at constant temperature T = 393.15 K the
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ig. 10. Saturations (left) and mass densities of both phases (right) as functions of the 

C6 = 0.297027, zC10 = 0.297027, and T = 420 K).
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ig. 11. Molar fractions of all components in both phases as functions of the overall mol
C6 = 0.297027 and zC10 = 0.297027).
C3 0.1 0.036 0 0
nC10 0.1 0.052 0 0

mixture occurs in two-phase from the lowest molar densities up
to approximately 8.2 kmol m−3, then it becomes single-phase.

The equilibrium pressure as a function of the overall molar den-
sity c is presented in Fig. 12 (right) illustrating a steady rise of
the equilibrium pressure during compression, and a substantial
increase at molar densities 8.2 kmol m−3 and higher when the gas
phase is depleted. Saturations of both phases and mass densities
of both phases as functions of the overall molar density c are pre-
sented in Fig. 13. Mole fractions of all components in both phases
as functions of the overall molar density c are presented in Fig. 14.

Example 6
In the sixth example, we investigate phase equilibrium for a
binary mixture of water (H2O) and carbon dioxide (CO2) with
mole fractions zH2O = 0.5 and zCO2 = 0.5. The binary interaction
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Fig. 12. Approximate boundary between the single-phase and two-phase domains in the c, T-space (left). The arrow indicates the compression at constant temperature
T  = 393.15 K. Equilibrium pressure as a function of the overall molar density c at T = 393.15 K (right). Example 5: mixture of N2–C1–C3–nC10 (zN2 = 0.2463, zC1 = 0.2208,
zC3 = 0.2208, znC10 = 0.3121).
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Fig. 13. Saturations (left) and mass densities (right) of both phases as functions of the overall molar density c (right). Example 5: four-component mixture of N2–C1–C3–nC10

(zN2 = 0.2463, zC1 = 0.2208, zC3 = 0.2208, znC10 = 0.3121, and T = 393.15 K).
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Fig. 14. Molar fractions of all components in both phases as functions of the overall molar density c at T = 393.15 K. Example 5: mixture of four-components N2–C1–C3–nC10

(zN2 = 0.2463, zC1 = 0.2208, zC3 = 0.2208, znC10 = 0.3121).
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Fig. 15. Equilibrium pressure as a function of the overall molar density c at
T  = 413.15 K. Example 6: binary H2O–CO2 mixture (zH2O = 0.5, zCO2 = 0.5).
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zCO2 = 0.5, and T = 413.15 K).
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Fig. 17. Molar fractions of both components in both phases as functions of the overall 

zCO2 = 0.5).
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coefficient ıH2O−CO2 = 0.30544 (for temperature T = 413.15 K). The
cross association factor used in the CPA equation of state is sCO2 =
0.083196882 (for temperature T = 413.15 K). As ıH2O−CO2 and sCO2
are strongly dependent on temperature, we omit the computation
of the stability region for this mixture. For T = 413.15 K, the mixture
splits in two phases except from very low overall concentrations c.

The equilibrium pressure as a function of the overall molar den-
sity c is presented in Fig. 15 (right) illustrating a steady increase of
the equilibrium pressure during compression. Saturations of both
phases and mass densities of both phases as functions of the over-
all molar density c are presented in Fig. 16. Mole fractions of both
components in both phases as functions of the overall molar den-
sity c are presented in Fig. 17. Unlike in previous Examples, we see
that the mutual solubility of CO2 and water is limited.

7. Summary and conclusions

In this work, we  have developed a numerical algorithm for the
calculation of two-phase equilibria at constant volume, tempera-
ture, and moles. The algorithm uses the Newton–Raphson method

with line-search for the minimization of the total Helmholtz free
energy A of the mixture. The modified Cholesky decomposition of
the Hessian matrix ensures the decrease of A in every iteration.
The initial guess is constructed using the results of the VT-stability
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Table 5
Parameters of the CPA equation of state for the H2O and CO2 mixture (the notation
is  explained in Appendix A).

Symbol Units Value

�˛ˇ [m 3 mol−1] 1.801506043021089 × 10−6

ε˛ˇ/kB [K] 1738.393603227767
a0

w [J m−3 mol−2] 0.09627316625476
c – 1.75573246325004
T. Jindrová, J. Mikyška / Fluid P

esting. This approach guarantees that the algorithm always con-
erges to a state of local minimum of A and the possibility of
onvergence towards the trivial solution is avoided. Compared to
he SSI method developed previously in [9], the new algorithm
s fast – usually it converges in 6–10 iterations. We  have not
ncountered a case in which the algorithm would not converge.
he robustness of our algorithm is documented by the numer-
us examples provided in this paper. The algorithm was  tested
n many hydrocarbon mixtures that were described using the
eng–Robinson equation of state and on the H2O–CO2 mixture
escribed by the CPA equation of state. We believe that the same
pproach will be useful for other pressure-explicit equations of
tate as well.
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ppendix A. Equations of state

In this work we use in Examples 1–5 the Peng–Robinson equa-
ion of state [14] in the form

(V, T, N1, . . . , Nn) = NRT

V − B − A
V2 + 2BV − B2

,

here R is the universal gas constant, N =
∑n

i=1Ni is the total mole
umber, and coefficients A  and B are given by

A  =
n∑

i=1

n∑
j=1

NiNjaij,

B =
n∑

i=1

Nibi,

aij = (1 − ıi−j)
√

aiaj,

bi = 0.0778
RTi,crit

Pi,crit
,

ai = 0.45724
R2T2

i,crit

Pi,crit

[
1 + mi

(
1 −
√

Tr,i

)]2
,

Tr,i = T

Ti,crit
,

mi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.37464 + 1.54226ωi − 0.26992ω2

i
,

for ωi < 0.5,

0.3796 + 1.485ωi − 0.1644ω2
i

+ 0.01667ω3
i
,

for ωi ≥ 0.5.

n these equations ıi−j denotes the binary interaction parameter
etween the components i and j, Ti,crit, Pi,crit, and ωi are the crit-

cal temperature, critical pressure, and accentric factor of the ith

omponent, respectively.

In Example 6 we use for the binary mixture of water (H2O) and
arbon dioxide (CO2) the Cubic-Plus-Association (CPA) equation of
tate [15,16]. This equation uses the Peng–Robinson equation of
1

c2 – 0.00351802110081
c3 – −0.27463687473246

state for the physical interactions and the termodynamic pertur-
bation theory for the bonding of water molecules. We  assume that
each water molecule has four association sites of two types (mark
them  ̨ and ˇ), so each type has two sites. We  assume the same
for each molecule of carbon dioxide, whose association sites can
be marked as ˛′ and ˇ′. Let 	˛ and 	ˇ be the mole fractions of
water not bonded at site  ̨ and ˇ, respectively, and let 	˛′ and 	ˇ′
be the mole fractions of carbon dioxide not bonded at site ˛′ and
ˇ′, respectively. Assuming neither cross association nor self asso-
ciation between carbon dioxide molecules, and symmetric cross
association between the two sites of different type of water and
carbon dioxide, we obtain the following simplified expressions for
the symmetric association model

	˛ = 	ˇ = 	w = 1
1 + 2(Nw/V)	w
˛ˇ + 2(Nc/V)	c
˛ˇ′ ,

	˛′ = 	ˇ′ = 	c = 1
1 + 2(Nw/V)	c
˛ˇ′ .

In these equations the association strength between molecules of
water is given by


˛ˇ = g�˛ˇ[exp(ε˛ˇ/kBT) − 1],

where kB is the Boltzmann constant, �˛ˇ and ε˛ˇ are the bond-
ing volume and energy parameters of water, respectively, and g is
the contact value of the radial distribution function of hard-sphere
mixture that can be approximated as g = g(�) ≈ (1 − 0.5�)/(1 − �)3,
where � = B/(4V). The association strength between water and car-
bon dioxide molecules is related to the strength between water
molecules as 
˛ˇ′ = si


˛ˇ where si is the temperature-dependent
cross association coefficient which can be determined together
with the binary interaction coefficient by fitting the experimental
data. As a result, the CPA equation of state for the binary mixture
of water and carbon dioxide is given by

P(V, T, Nw, Nc) = NRT

V − B − A
V2 + 2BV − B2

+ 2RT

(
�

g

∂g

∂�
+ 1

)
×
[

Nw

V
(	w − 1) + Nc

V
(	c − 1)

]
,

where R, A  and B are the parameters from the Peng–Robinson
equation of state, Nw and Nc are the mole num-
bers of water and carbon dioxide, N = Nw + Nc , and
∂g /∂� = (2.5 − �)/(1 − �)4. The coefficients ai and bi for water read as

aw = a0
w[1.0 + c1(1 −

√
Tr,w) + c2(1 −

√
Tr,w)

2 + c3(1 −
√

Tr,w)
3
]
2
,

bw = 1.458431489141052 · 10−5,where a0
w , c1, c2, c3 are the

parameters of the equation of state given in Table 5.
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