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We  derive  a criterion  for phase  stability  under  constant  temperature,  moles,  and  volume  using  the
Helmholtz  free  energy.  Using  the  volume-based  formulation,  we  develop  a numerical  algorithm  to  inves-
tigate single-phase  stability  based  on the  Newton  method.  We  demonstrate  robustness  and  efficiency  of
the  new  method  in  a  number  of  examples  in  single-phase  stability  testing.
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. Introduction

Consider a mixture of n components with mole numbers N1, . . .,
n in a closed system of constant volume V at temperature T. We  are

nterested to know whether the mixture is in single-phase or splits
nto two or more phases. This is the problem of phase stability under
onstant temperature, moles, and volume (VT-stability). The goal
f the constant volume stability analysis is to determine whether

 phase is stable at specified volume, temperature, and mole num-
ers. If the phase is unstable, this procedure may be followed by
he equilibrium calculation at constant temperature and volume, in
hich the final pressure of the mixture in the cell is to be computed

ogether with the compositions and amounts of the split-phases.
he latter is the problem of the two-phase phase-split (also called
ash) at constant temperature, moles, and volume (VT-flash). The
roblem has been formulated in a recent paper [1],  where a simple

terative algorithm is developed to compute the two-phase equilib-

ium under constant temperature, volume and moles. VT-stability
rocedure can be developed to simplify the VT-flash calculation.
s the VT-stability algorithm is simpler than VT-flash, it can be
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performed first. If single-phase is stable, the VT-flash calculation is
avoided. This paper is focused on the problem of testing VT-stability
only. The application of the VT-stability to provide initial guesses
for the VT-flash is an important problem which is currently under
investigation.

The phase stability at constant pressure and temperature (PT-
stability) is addressed in many references [2–5]. In this approach,
pressure, temperature and overall chemical composition are given.
Trial phases of various compositions are tested to find if there is a
composition for which transfer of a small amount of the trial phase
from the initial phase leads to a decrease of the Gibbs free energy.
This is usually formulated using the so-called tangent plane dis-
tance function D. If a trial phase composition is found for which
the function D is negative, the mixture is unstable and the trial
phase composition can be used as an initial guess in the two-phase
PT-flash [7].  If for all trial phase compositions the value D is non-
negative, the mixture is in single-phase. For numerical efficiency,
the search for the global minimum of function D [5] in the com-
positional space is replaced by local minimization using multiple
initial guesses [2–4]. Many methods have been developed to locate
the minima of function D in the literature cited above and in other
papers.
The methods developed for PT-stability may  not be correspond-
ing to the VT-flash, in which the pressure is not known a-priori.
Michelsen [3] suggested to use the PT-stability algorithm for inves-
tigation of the phase stability in other variables specifications (P, S

dx.doi.org/10.1016/j.fluid.2012.01.026
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
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r P, H). While these methods should provide the same results, in
ome special cases, as we will discuss later in the paper, they may
ot. They may  be also differences in numerical efficiency. We have

ound out that the numerical implementation of the VT-stability
sing the PT-algorithm at the pressure given by the equation of
tate may  fail to provide correct results. We  will show two  exam-
les to illustrate this issue. An alternative to the PT-stability will
lso provide a new option. Therefore, we develop a new ‘volume-
ased’ formulation of the phase stability criterion and present a
umerical algorithm for testing single-phase stability at constant
emperature and volume. Although the VT-stability criterion can
e found in Refs. [3,6,8],  the working equations for phase stability
t constant temperature and volume, to the best of our knowledge,
ave not appeared in the scientific literature.

The paper is structured as follows. In the first section, we derive
onditions for single-phase stability at constant temperature and
olume. Then, we reformulate this condition in terms of the volume
unctions that were introduced previously [1].  A numerical algo-
ithm is suggested for testing VT-stability, and, finally, we present
xamples of phase stability testing based on the new formulation
or a number of mixtures under different conditions.

. Conditions for phase stability

Consider a mixture of n components with mole numbers N1, . . .,
n occupying volume V at temperature T. The question is whether

he system stays in a single phase or splits into two phases. The
elmholtz free energy of a phase is given by

 = −PV +
n∑

i=1

Ni�i, (1)

here P = P(V, T, N1, . . .,  Nn) is the pressure given by a pressure-
xplicit equation of state, and �i = �i(V, T, N1, . . .,  Nn) is the chemical
otential of the i-th component in the mixture. If the system is in
ingle-phase, then the total Helmholtz free energy of the mixture
eads as

I = A(V, T, N1, . . . , Nn), (2)

hile in the two-phase

II = A(V ′, T, N′
1, . . . , N′

n) + A(V − V ′, T, N1 − N′
1, . . . , Nn − N′

n). (3)

n Eq. (3) the prime represents the variables of the trial phase. Note
hat the chemical composition of the trial phase can be quite dif-
erent from that of the initial phase. Let us assume that if the single
hase is unstable, then an arbitrarily small perturbation can turn
he system into two-phase. Using the Taylor expansion of the sec-
nd term of the right hand side of (3) around the point (V, T, N1, . . .,
n), we derive

(V − V ′, T, N1 − N′
1, . . . , Nn − N′

n) = A(V, T, N1, . . . , Nn)

− ∂A

∂V
(V, T, N1, . . . , Nn)V ′ −

n∑
i=1

∂A

∂Ni

(V, T, N1, . . . , Nn)N′
i

+ R1(V ′, T, N′
1, . . . , N′

n), (4)

here R1(V ′, T, N′
1, . . . , N′

n) denotes the reminder in the Taylor
olynomial expansion after the first-order terms. Combining the

ast equation with (2),  and using

∂A ∂A
∂V
= −P,

∂Ni

= �i, (5)

e rewrite the change of the Helmholtz free energy from the single-
hase to the two-phase state as
hase Equilibria 321 (2012) 1– 9

�A  = AII − AI = A(V ′, T, N′
1, . . . , N′

n) + P(V, T, N1, . . . , Nn)V ′

−
n∑

i=1

�i(V, T, N1, . . . , Nn)N′
i+R1(V ′, T, N′

1, . . . , N′
n).

(6)

Using Eq. (1),  the last equation can be rewritten as

�A  =
n∑

i=1

[�i(V
′, T, N′

1, . . . , N′
n) − �i(V, T, N1, . . . , Nn)N′

i

− [P(V ′, T, N′
1, . . . , N′

n) − P(V, T, N1, . . . , Nn)]V ′

+ R1(V ′, T, N′
1, . . . , N′

n). (7)

For sufficiently small perturbations (V ′, T, N′
1, . . . , N′

n) the remain-
der term cannot change the sign of �A, which implies that the single
phase is stable if (c.f. [6])

n∑
i=1

[
�i(V

′, T, N′
1, . . . , N′

n) − �i(V, T, N1, . . . , Nn)
]

N′
i

− [P(V ′, T, N′
1, . . . , N′

n) − P(V, T, N1, . . . , Nn)]V ′ ≥ 0 (8)

for all admissible states (V ′, T, N′
1, . . . , N′

n).

3. Different forms of the phase stability criterion

We will rewrite (8) into a more convenient form. Let us intro-
duce the overall molar concentration c = N/V, the trial phase molar
concentration c′ = N′/V′, overall mole fractions zi = Ni/N, and trial
phase mole fractions xi = N′

i
/N′, where N =

∑n
i=1Ni and N′ =∑n

i=1N′
i
. Dividing (8) by V′ and using the fact that pressure and

chemical potentials are homogeneous functions of degree zero in
volume and moles, the single-phase is stable if and only if the tan-
gent plane distance function D defined by

D(T, c′x1, . . . , c′xn) =
n∑

i=1

[�i(1,  T, c′x1, . . . , c′xn)

− �i(1,  T, cz1, . . . , czn)]c′xi

− [P(1, T, c′x1, . . . , c′xn)

− P(1, T, cz1, . . . , czn)]

(9)

is nonnegative for all admissible concentrations (c′x1, . . .,  c′xn) at
temperature T. To see whether a state with a negative value of D
exists, it is sufficient to investigate the values of D in the minima.
The stationary points of function D are given by

∂D

∂(c′xj)
= �′

j − �j +
n∑

i=1

∂�′
i

∂N′
j

c′xi − ∂P ′

∂N′
j

= 0, j = 1, . . . , n. (10)

In the equations above, the pressure and chemical potentials

are understood as functions of independent variables V′, T, and
N′

1, . . . , N′
n; therefore, the partial derivatives are denoted as

∂�′
i
/∂N′

j
, and ∂P ′/∂N′

j
, respectively. We  use the convention that

the primed pressure, chemical potentials and their derivatives are
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valuated at (1, T, c′x1, . . .,  c′xn), while the unprimed ones are eval-
ated at (1, T, cz1, . . .,  czn). From the reciprocity relations

∂�′
i

∂N′
j

=
∂�′

j

∂N′
i

, and
∂P ′

∂N′
j

= −
∂�′

j

∂V ′ , (11)

e obtain

∂D

∂(c′xj)
= �′

j − �j +
n∑

i=1

∂�′
j

∂N′
i

c′xi +
∂�′

j

∂V ′ = 0, j = 1, . . . , n. (12)

ote that the chemical potentials satisfy

i(˛V ′, T, ˛N′
1, . . . , ˛N′

n) = �i(V
′, T, N′

1, . . . , N′
n) (13)

or all admissible states (V ′, T, N′
1, . . . , N′

n) and  ̨ > 0 (i.e. �i is
 homogeneous function of degree zero in variables V′ and
′
1, . . . , N′

n). Therefore,

n

i=1

∂�′
j

∂N′
i

c′xi +
∂�′

j

∂V ′ = 0, (14)

nd the stationarity conditions (12) simplify to

∂D

∂(c′xj)
= �′

j − �j = 0, j = 1, . . . , n, (15)

hich means that in every stationary point of function D, the initial
hase and the trial phase are in chemical equilibrium (the chemi-
al potentials of each component in the trial phase and the initial
hase are equal). Substituting (15) into (9),  the value of D at the sta-
ionary point is equal to P − P′. If the global minimum of function

 is negative, the trial phase will be in chemical equilibrium with
he initial phase, but not in mechanical equilibrium. When the trial
hase will have higher pressure than the initial phase, the phase
plit will occur. If the global minimum of function D is zero (trivial
olution has zero value of D, so the global minimum of D cannot
ave a positive value), then the mixture remains in single-phase.

In the development above, the stability criterion (8) was  nor-
alized to unit volume of the trial phase, however, it is interesting

o mention that other reformulations are also possible. The crite-
ion (8) can also be normalized to unit moles of the trial phase. In
his case we define a modification of the D function by

∗(T, c′x1, . . . , c′xn) = D(T, c′x1, . . . , c′xn)
c′ . (16)

he condition for stationary points of the function D* reads as

∂D∗

∂(c′xj)
=

(�′
j
− �j)c′ − D

c′2
= 0, j = 1, . . . , n, (17)

rom which it follows that

′
j − �j = D

c′ = K, j = 1, . . . , n, (18)

.e. the difference between chemical potentials in the trial and initial
hases has the same value K for all components. Combining (18)
ith (16) and (9),  it can be shown readily that the D* function in

ny stationary point is equal to the value K and that the pressures
f the trial phase and the initial phase are equal.

As both functions D and D* have the same signs in any point, the
esults of stability analysis have to be the same for both functions.
owever, the locations of minima for the D function are very differ-

nt from those for D*. The meaning of stationary point depends on
hich function is used for stability analysis. This indicates that any

ecommendation on using the global minimum of any of them as
n initial guess for the flash calculation can be considered ad hoc.
hase Equilibria 321 (2012) 1– 9 3

4. Limitations of the PT-stability analysis

The discussion above could lead us to the conclusion that to
test the single phase stability of a mixture at constant V an T, it
is sufficient to perform the conventional PT-stability testing of the
mixture using the pressure given by the equation of state for the
single phase. Although the conclusion, which has been mentioned
in the literature [3],  is theoretically correct, we have found out that
the common numerical implementations of this approach may  not
provide correct results. To be specific, the mixtures from Examples
3 and 4 are not VT-stable at certain conditions (see Examples 3
and 4 below), but the PT-stability indicates stability. The reason
is that the pressure computed from the equation of state is neg-
ative. When P is negative, one cannot use the Wilson correlation
to obtain initial guess of K values. Even when we  used other ini-
tial guesses by assuming various values of positive pressures in the
Wilson correlation, the PT-stability predicted that the system is sta-
ble. Without good initial guesses, the PT-stability algorithm [2–4]
can miss the global minimum of function D and indicate single-
phase instead of two-phase. One may  argue that if the pressure is
negative, the system is unstable without performing flash calcula-
tions. Our algorithm would determine phase stability whether the
pressure is positive or negative.

Another example when the conventional PT-stability analysis
will fail is the situation in which the PT-stability testing is per-
formed on a trivial mixture composed of a single component. In
this situation, if the pressure P is higher than the saturation pres-
sure Psat(T) at a given temperature T, the ‘mixture’ is stable liquid.
If pressure P is lower than Psat(T), the ‘mixture’ is stable gas. Only
if P = Psat(T), the ‘mixture’ can be in two-phase but also in single-
phase (saturated liquid or saturated gas). Note that all the latter
states are indistinguishable in terms of P and T variables, but can
be distinguished using the volume V. Although this issue is typical
for pure components only, we would like to have a theory that will
treat the real mixtures and the pure components in a unified way.
These issues and desirability of an alternative approach to stability
have lead us to develop a new ‘volume-based’ formulation of the
phase stability that can address VT-stability directly.

5. Numerical algorithm for testing phase stability

We will derive a numerical procedure for testing single-phase
stability at constant temperature, volume, and moles based on the
function D. Using the volume functions, which are introduced pre-
viously [1],  the stationarity conditions (15) for function D can be
rewritten as

ln
c′xi

czi
+ ln ˚i(cz) − ln ˚i(c

′x) = 0, i = 1, . . . , n, (19)

where ˚i is the volume function of the i-th component and cz and
c′x denote vectors with components cz1, . . .,  czn and c′x1, . . .,  c′xn,
respectively.

It is tempting to solve the system (19) by the successive substi-
tution method (SSI) defined by

c′xk+1
i

= czi
˚i(c′xk)
˚i(cz)

, (20)

where c′x0 is an initial guess. However, we have found that this
approach does not work for the following reasons:

1. The sequence given by (20) does not converge in many cases.

Frequently, after several iterations the iterate jumps out of
the feasible region (i.e. c′xi < 0 for some i ∈ {1, 2, . . .,  n} or∑n

i=1bic
′xi ≥ 1, where bi denotes the covolume parameter of the

i-th component in the Peng–Robinson equation of state).
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. Even if the sequence (20) converges to a limit, it is not guaranteed
that the limit is the correct solution – the global minimum of
function D. This is a common problem in local methods which
is usually solved by proper initialization of the algorithm, but in
case of the SSI method, this does not solve the problem (see the
next point).

. We  have seen the cases where the iterates diverge from the cor-
rect solution no matter how close the initial guess is to the correct
solution. It thus happens that the correct solution is a fixed point
of the iteration (20), but the iterates diverge from it rather than
converge. In many cases, the algorithm converges to a saddle
point of function D rather than (at least local) minimum.

. The convergence of SSI (if it is achieved) is typically slow. Unlike
in PT-stability, the slow convergence is not compensated by the
robustness of the method.

. It is not clear how to choose a stopping criterion. If the itera-
tions are stopped whenever the norm of the increment �c′x =
c′xk+1 − c′xk in an iteration is lower than a certain tolerance
εTOL > 0 or if the decrease of the value of D in an iteration is small,
there is no guarantee that the error of approximation of c′x is
small.

Therefore, the system of equations (19) is solved using the
ewton–Raphson iterative method. Starting with an initial guess

′x0, in each iteration we find a direction �c′xk by solving the sys-
em

(c′xk)�c′xk = −F(c′xk), (21)

here the vector F has the elements

i(c
′x) = ln

c′xi

czi
+ ln ˚i(cz) − ln ˚i(c

′x), i = 1, . . . , n, (22)

nd J is the Jacobian matrix with elements

i,j(c
′x) = ∂Fi

∂(c′xj)
(c′x) = ıi,j

c′xj
− ∂ ln ˚i

∂(c′xj)
(c′x), i, j = 1, . . . , n, (23)

here ıi,j = 1 for i = j and ıi,j = 0 for i /= j. After solving for the direc-

ion �c′xk, the approximation is updated as

′xk+1 = c′xk + �k�c′xk, (24)

here �k ∈ (0 ; 1〉 is a dumping factor. We  set �k = 1 for the first trial.
f c′xk+1 is outside of the feasible domain, �k is halved until the new
pproximation stays in the feasible domain. This modification of
he Newton method (the so-called line search) avoids overshooting
nd enables to achieve global convergence in the Newton method.
his means that the approximations will converge to a station-
ry point of function D for any initial guess. It should be noted
hat the property of global convergence is different from the con-
ergence to the global minimum of function D, which, of course,
annot be guaranteed neither by using Newton-Raphson, nor any
ther local minimization method. The approximations converge to

 stationary point, including the local maxima or saddle points.
e have observed in many cases that with poor initial guesses

he approximations in the Newton–Raphson method converge to a
addle point. Unlike in SSI, the Newton–Raphson iterations always
onverge to a stationary point if the initial guess is close enough,
.e. there exist basins of attraction around all stationary points.
o ensure convergence toward the global minimum of function D,
roper initial guesses must be provided.

In PT-stability for vapor-liquid systems, Wilson’s correlation
10] usually provides reasonable initial guesses. In VT-stability, this

orrelation cannot be used directly, because the initial pressure is
nknown. One idea could be to use pressure given by equation of
tate for the initial phase. In some cases, this initial pressure can be
egative. Therefore, we propose a robust method for initialization
hase Equilibria 321 (2012) 1– 9

of VT-stability algorithm based on the saturation pressure Psat
i

(T) of
each component i at temperature T. We  will discuss two  situations
depending on whether the initial phase is considered as liquid- or
vapor-like. If the initial phase is liquid-like, then the vapor phase
pressure Pini is estimated as

Pini =
n∑

i=1

Psat
i (T)zi, (25)

and the trial (vapor) phase composition is estimated as

x0
i = Psat

i

Pini
zi, i = 1, . . . , n. (26)

If the initial phase is vapor-like, then we  estimate the trial (liquid)
phase composition as

x0
i =

zi
Psat

i∑n
j=1

zj

Psat
j

, i = 1, . . . , n, (27)

and the initial trial (liquid) phase pressure Pini is given by

Pini =
n∑

i=1

Psat
i (T)x0

i . (28)

As we  do not know a-priori whether the initial phase is vapor- or
liquid-like, both possibilities are tested. The initial concentration
c

′0 of the trial phase is evaluated from the equation of state using
the estimated trial phase composition x0

i
(i = 1, . . . , n) and initial

pressure Pini. For multiple roots in the equation of state, we obtain
different initial guesses. In case of three different roots, only two  of
them are accepted and the middle one is disregarded. This way we
obtain up to four initial guesses for the Newton method. We  have
tested this strategy on a number of mixtures (see the Examples) and
we have not seen a case for which the global minimum of function
D would be missed.

The iterations are stopped when the maximal number of itera-
tions is achieved (500) or when the Euclidian norm of the direction
vector is less than a prescribed limit. We use ‖�c′xk‖ < 10−7 as a
stopping criterion in all examples below. For the Newton–Raphson
method (and also for any other quadratically convergent method,
see e.g. [11]), the norm of the error of c′x is approximately equal
to the norm of increment ‖�c′xk‖ in the vicinity of the stationary
point. This is not the case for SSI (and other methods that converge
only linearly), in which the small increment does not generally
imply a small error of approximation.

6. Numerical examples of VT-stability testing

We have tested the algorithm in several examples of VT-stability
testing for binary and multi-component mixtures under different
conditions. In all numerical experiments we  investigate stability
of an n-component mixture with prescribed chemical composition
z1, . . .,  zn as a function of temperature T and overall molar con-
centration c. The c, T-space is discretized by a grid with 50 × 50
vertices. For each point (c, T) of the grid we perform the stability
analysis. We  provide plots of the value of the global minimum as
a function of c and T which allows to detect two-phase stability
boundaries. Parameters of the Peng–Robinson equation of state for
all components used are presented in Table 1. In most examples we
investigate VT-stability of mixtures whose phase-splitting at con-
stant temperature, volume and moles has been investigated in our

previous work [1].

Example 1. In the first example we investigate VT-stability for
a binary mixture of methane (C1) and propane (C3) with mole
fractions zC1 = 0.547413 and zC3 = 0.452587 for temperatures
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ig. 1. Global minimum of function D as a function of the overall molar density c an
,  T-space (right). Example 1: binary C1–C3 mixture.

 ∈ 〈250 ; 330〉 K and the whole range of feasible molar densities.
he binary interaction coefficient ıC1−C3 = 0.0365. The minima of
unction D for each point and the approximate boundaries of the
wo-phase region in the c, T-space are presented in Fig. 1.

xample 2. In the second example we investigate VT-stability
or a binary mixture of methane (C1) and normal penthane (nC5)
ith mole fractions zC1 = 0.547413 and znC5 = 0.452587 for tem-
eratures T ∈ 〈320 ; 430〉 K and the whole range of feasible molar
ensities. The binary interaction coefficient ıC1−nC5 = 0.041. The
inima of function D for each point and the approximate bound-

ries of the two-phase region in the c, T-space are presented in
ig. 2.

xample 3. In the third example we change the mole fractions
n Example 2 and investigate VT-stability for a binary mixture of

ethane (C1) and normal penthane (nC5) with mole fractions zC1 =
.489575 and znC5 = 0.510425 for temperatures T ∈ 〈250 ; 450〉 K
nd the whole range of feasible molar densities. The minima of
unction D for each point and the approximate boundaries of the
wo-phase region in the c, T-space are presented in Fig. 3.

Note that for c = 6135.3 mol  m−3 and T = 310.95 K, the mixture
s unstable, but the PT-stability analysis performed at the pressure
rovided by the equation of state (P = − 9.93516 bar) with several

nitial guesses indicates single-phase. This is an example of one
f the issues with the PT-stability analysis discussed above, which
ustifies the alternative formulation.
xample 4. In the fourth example we investigate VT-stability for
 binary mixture of carbon dioxide (CO2) and normal decane (nC10)
ith mole fractions zCO2 = 0.547413 and znC10 = 0.452587 for

able 1
arameters of the Peng–Robinson equation of state for all components used in all
xamples. PC1–PC3 are the pseudocomponents defined in Examples 6 and 7.

Component Ti,crit (K) Pi,crit (MPa) ωi (–) Mw,i (g mol−1)

CO2 304.14 7.375 0.2390 44
N2 126.21 3.390 0.039 28
C1 190.56 4.599 0.0110 16
C3 369.83 4.248 0.153 44.1
nC5 469.70 3.370 0.2510 72.2
nC10 617.70 2.110 0.489 142.28
PC1 333.91 5.329 0.1113 34.64
PC2 456.25 3.445 0.2344 69.52
PC3 590.76 2.376 0.4470 124.57
C12+ 742.58 1.341 0.9125 248.30
perature T (left) and boundary between single-phase and two-phase regions in the

temperatures T ∈ 〈250 ; 650〉 K and the whole range of feasible molar
densities. The binary interaction coefficient ıCO2−nC10 = 0.15. The
minima of function D for each point and the approximate bound-
aries of the two-phase region in the c, T-space are presented in
Fig. 4. Note that for high molar densities c and low temperatures
we can observe a second two-phase region which may  correspond
to a liquid–liquid two-phase region (provided that the solid phase
does not form). As can be seen in Fig. 4, for c = 6307.21 mol  m−3 and
T = 311 K, the mixture is unstable. This is another example in which
the PT-stability fails to provide correct answer because when per-
formed at the pressure given by the equation state (P = − 184.5 bar),
it indicates single phase.

Example 5. In the fifth example we investigate VT-stability for a
four-component mixture of nitrogen (N2), methane (C1), propane
(C3), and normal decane (nC10) with mole fractions zN2 = 0.2463,
zC1 = 0.2208, zC3 = 0.2208, and znC10 = 0.3121 for temperatures
T ∈ 〈250 ; 650〉 K and the whole range of feasible molar densities.
The binary interaction coefficients are shown in Table 2. The min-
ima  of function D for each point and the approximate boundaries
of the two-phase region in the c, T-space are presented in Fig. 5.

Example 6. In the sixth example we  investigate VT-stability
for a seven-component mixture of nitrogen (N2), carbon diox-
ide (CO2) with a multicomponent oil. The oil is modeled by
seven (pseudo)components – N2, CO2, methane (C1), and four
hydrocarbon pseudo-components denoted as PC1 (H2S + C2 + C3),
PC2 (C4–C6), PC3 (C7–C11), and C12+. In this example oil is
mixed with nitrogen to obtain a nitrogen-rich mixture with over-
all composition zN2 = 0.466905, zCO2 = 0.007466, zC1 = 0.300435,
zPC1 = 0.105051, zPC2 = 0.041061, zPC3 = 0.045060, and zC12+ =
0.034021. We  investigate VT-stability of this mixture for tem-
peratures T ∈ 〈250 ; 650〉 K and the whole range of feasible molar

densities. The binary interaction coefficients are shown in Table 3.
The minima of function D for each point and the approximate
boundaries of the two-phase region in the c, T-space are presented
in Fig. 6.

Table 2
Binary interaction coefficients for the four-component mixture used in Example 5.

Component N2 C1 C3 nC10

N2 0 0.1 0.1 0.1
C1 0.1 0 0.036 0.052
C3 0.1 0.036 0 0
nC10 0.1 0.052 0 0
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Fig. 2. Global minimum of function D as a function of the overall molar density c and temperature T (left) and boundary between single-phase and two-phase regions in the
c,  T-space (right). Example 2: binary C1–nC5 mixture (mole fractions in the text).
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Fig. 3. Global minimum of function D as a function of the overall molar density c and temperature T (left) and boundary between single-phase and two-phase regions in the
c,  T-space (right). Example 3: binary C1–nC5 mixture (mole fractions in the text).
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,  T-space (right). Example 6: 7-component mixture rich in N2.
xample 7. In the last example we mix  the oil from Example 6
ith CO2 so that we obtain a CO2-rich seven-component mixture
ith overall composition zN2 = 0.000131, zCO2 = 0.568185, zC1 =

.246739, zPC1 = 0.086275, zPC2 = 0.033722, zPC3 = 0.037006, and
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perature T (left) and boundary between single-phase and two-phase regions in the
zC12+ = 0.027941. We  investigate VT-stability of this mixture for
temperatures T ∈ 〈250 ; 650〉 K and the whole range of feasible molar
densities. The binary interaction coefficients are shown in Table 3.
The minima of function D for each point and the approximate
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Table 3
Binary interaction coefficients for the reservoir fluids used in Examples 6 and 7.

Component N2 CO2 C1 PC1 PC2 PC3 C12+

N2 0.000 0.000 0.100 0.100 0.100 0.100 0.100
CO2 0.000 0.000 0.150 0.150 0.150 0.150 0.150
C1 0.100 0.150 0.000 0.035 0.040 0.049 0.069
PC1 0.100 0.150 0.035 0.000 0.000 0.000 0.000
PC2 0.100 0.150 0.040 0.000 0.000 0.000 0.000
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+ mi(1
PC3 0.100 0.150 0.049 0.000 0.000 0.000 0.000
C12+ 0.100 0.150 0.069 0.000 0.000 0.000 0.000

oundaries of the two-phase region in the c, T-space are presented
n Fig. 7. We  observe again an unstable region in the bottom right
orner of Fig. 7 (right) which corresponds to a liquid–liquid two-
hase state if the solid phase does not form.

. Summary and conclusions

In this work we have formulated conditions for the phase
tability at constant temperature, volume, and moles. This prob-
em differs significantly from the common problem of stability
t constant pressure, because the pressure is not known a-priori.
oreover, the pressures in the initial phase and in the trial phase

re not generally the same. We  have proposed a simple numerical
lgorithm for VT-stability testing, which is based on the Newton
ethod with line search. This combination together with a spe-

ial choice of initial guesses allows robust VT-stability testing. The
lgorithm has been tested on many mixtures under different con-
itions of different complexity. In most simulations, the algorithm
onverges in 10–20 iterations. In seven-components examples, the

typical number of Newton iterations is between 20 and 30. In
ost situations the line search is necessary in the first few iterations

f the Newton method only. Once the iterates converge toward the
rue solution, we observe the quadratic convergence and the line
earch is not needed any more. In some cases the Newton method
oes not converge for some initial guesses, but these cases are very
are. If the Newton method does not converge for one initial guess,
he other initial guesses converge rapidly. Therefore, we  are able
o obtain these results using at most four initial guesses for each
T-stability testing. This can not be achieved using the SSI method
hich breaks down frequently and does not allow to evaluate reli-

ble phase boundaries in the c, T-space as it is for the Newton
ethod.
List of symbols

 Helmholtz free energy
i covolume parameter of the Peng-Robinson EOS

 molar concentration
, D* different forms of the tangent plane distance function
i,j Kronecker symbol
X−Y binary interaction coefficient between components X and

Y

i volume function of the i-th component
, j component indices

 iteration index
i chemical potential of the i-th component
w,i molar weight of the i-th component

A  =
n∑

i=1

n∑
j=1

NiNjaij, aij = (1 − ıi−j)
√

aiaj, ai = 0.45724
R2T2

i,crit

Pi,crit
[1 
 number of components
i mole number of the i-th component
i accentric factor of the i-th component

 pressure
hase Equilibria 321 (2012) 1– 9

Pi,crit critical pressure of the it-th component
Psat

i
saturation pressure of the i-th component

Pini initial pressure
R universal gas constant
T absolute temperature
Ti,crit critical temperature of the i-th component
V total volume of the system
xi mole fraction of the i-th component in the trial phase
zi mole fraction of the i-th component in the initial phase
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Appendix A. Volume function coefficient for the
Peng–Robinson equation of state

In this work we  use the Peng–Robinson equation of state [9] in
the form

P(V, T, N1, . . . , Nn) = NRT

V − B − A
V2 + 2BV − B2)

,

where R is the universal gas constant, N =
∑n

i=1Ni is the total mole
number, and coefficients A and B are given by

 −
√

Tr )]2, mi =
{

0.37464 + 1.54226ωi − 0.26992ω2
i
, for ωi < 0.5,

0.3796 + 1.485ωi − 0.1644ω2
i

+ 0.01667ω3
i

for ωi ≥ 0.5
.

B =
n∑

i=1

Nibi bi = 0.0778
RTi,crit

Pi,crit

In these equations ıi−j denotes the binary interaction parameter
between the components i and j, Ti,crit, Pi,crit, and ωi are the criti-
cal temperature, critical pressure, and accentric factor of the i-th
component, respectively. Defining the molar densities of the i-th
component by cxi = Ni/V, the volume function coefficient for the
Peng–Robinson equation of state can be written in terms of molar
densities as (for details see [1])

ln ˚i(T, cx1, . . . , cxn) = ln(1 − B) − bic

1 − B
+ Abi

BRT

1
1 + 2B − 2B

− 1√
2BRT

⎡
⎣Abi

2B
−

n∑
j=1

cxjaij

⎤
⎦ ln

∣∣∣∣
1 + (1 +

√
2)B

1 + (1 −
√

2)B

∣∣∣∣ , (29)

where

A = A
V2

=
n∑

i=1

n∑
j=1

cxicxjaij, B = B
V

=
n∑

i=1

cxibi.

In the text the dependence of the volume function ˚i on tempera-
ture T is not written explicitly, because the temperature is assumed
to be constant.
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