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ENERGY INEQUALITIES IN COMPOSITIONAL SIMULATION∗

JIŘÍ MIKYŠKA† AND ONDŘEJ POLÍVKA

Abstract. We investigate the single-phase flow of a mixture composed of n components in a
porous medium under the influence of pressure gradients, viscosity, and gravity. For the case of
the single-phase flow (i.e. assuming that under given conditions the phase splitting will not occur),
we derive an energy inequality for the continuous problem. Then, we propose the fully implicit
discretization of the transport problem which uses a combination of the mixed-hybrid finite element
method for the velocity approximation and the finite volume method for the discretization of the
transport equations. We prove that the proposed numerical scheme fulfills a discrete version of the
energy inequality. A numerical experiment reveals exponential decay of the Helmholtz free energy
when a system approaches the equilibrium state.
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1. Introduction. Mathematical models of transport of mixtures consisting of
several chemical components in porous media are important in many disciplines with
many industrial applications including energy industry, reservoir engineering, nuclear
waste storage, and CO2 sequestration. We focus on the models describing transport
of n components in porous media (n ≥ 2) which are usually referred to as the com-
positional models. In the literature models of different degrees of complexity have
been formulated [1, 4, 5, 22]. Depending on the thermodynamic conditions, the com-
ponents of the mixture can remain in a single phase or split among two or possibly
more fluid phases; therefore, we can distinguish among the single-phase, two-phase,
or general multi-phase models. In compositional modeling the phases are assumed
to be compressible and the phase behavior is usually described using conventional
equations of state (EOS). Different models can be derived depending on what pro-
cesses (like diffusion or capillarity) are taken into account. Industrial applications
motivated development of many numerical methods for the solution of these models.
Although many papers have been treating the numerical solution of the compositional
models in past 40 years, it seems that a rigorous mathematical/numerical analysis of
these models and numerical schemes is still missing. Therefore, we present here a
basic formulation of a single-phase compositional model for which we derive an en-
ergy inequality. This energy inequality has a direct physical interpretation which is
basically the balance of the Helmholtz free energy of the system. Then, we propose a
fully implicit numerical scheme in which the spatial discretization is performed using
the finite-volume method for the transport equations together with the mixed-hybrid
finite-element method for the velocity. We show that the numerical solution obeys
a discrete version of the energy inequality. A numerical experiment is presented to
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show exponential decay of the Helmholtz free energy in a closed system approaching
the steady state.

2. Model formulation. We will investigate the flow of n chemical components
(n ≥ 2) in a porous domain Ω ⊂ Rd with porosity φ and permeability k. Transport
of mixture components is described by the following transport equations [2]

(2.1)
∂(φci)

∂t
+∇ · (civ) = Fi, i ∈ {1, 2, . . . , n},

where ci denotes the molar concentration of component i, v is the velocity, and Fi
describes the sources and sinks. The velocity is given by Darcy’s law [6, 2]

(2.2) v = −k

η
(∇p− ρg),

where η denotes the mixture dynamic viscosity, p is the pressure, ρ =
∑n
i=1 ciMi is

the mass density of the mixture, Mi is the molar weight of component i, and g is
the vector of gravity acceleration. We assume that k ∈ L∞(Ω)d×d is a symmetric
second-order tensor satisfying the condition of uniform ellipticity, i.e. there exists
a constant kmin > 0 such that for all vectors ξ ∈ Rd and for all x ∈ Ω we have

(2.3)

d∑
i=1

d∑
j=1

kij(x)ξiξj ≥ kmin
d∑
i=1

ξ2
i .

Constitutive equations for mixture viscosity and pressure are given in the following
form

η = η(T, c1, . . . , cn), p = p(T, c1, . . . , cn).(2.4)

In this work, we assume that the problem is isothermal, i.e. temperature is a known
constant. The exact form of these equations is not important for the discussion here
but for definiteness, one can assume that we are using the Peng-Robinson equation
state [19] to describe pressure, and LBC-model [12, 20] for the viscosities. We assume
that the mixture has limited compressibility, i.e. pressure is defined on the set of
admissible concentrations C defined as

C = {[c1, . . . , cn] ∈ Rn : ∀i ∈ {1, 2, . . . , n} ci ≥ 0, and

n∑
i=1

cibi < 1},(2.5)

where bi are positive constants for i ∈ {1, 2, . . . , n}. For
∑n
i=1 cibi → 1−, the pressure

tends to +∞. The viscosity η is bounded from above and below by some positive
constants, i.e. there exist constants ηmin > 0 and ηmax > 0 such that

∀[c1, . . . , cn] ∈ C : ηmin ≤ η(T, c1, . . . , cn) ≤ ηmax.(2.6)

The only restrictive condition is that the flow remains in a single phase, i.e. under
the simulated conditions no phase-splitting occurs. The system has to be completed
by suitable initial and boundary conditions. The initial conditions read as

(2.7) ci(x, 0) = c0i (x), ∀x ∈ Ω, ∀i ∈ {1, 2, . . . , n}.

To avoid technicalities, we assume that the reservoir boundary is impermeable, and
thus

(2.8) v · n|∂Ω = 0,

where n denotes the unit vector of outer normal on ∂Ω.
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3. Single-phase stability criterion. As stated above, the principal assump-
tion of this work is that no phase splitting occurs. In the opposite case, the model
would have to be reformulated to account for multiple phases. In other words, for
every set of concentrations c1, . . . , cn that may occur in Ω, the single phase has to be
stable. Phase stability testing is a basic problem in chemical engineering literature.
The commonly used formulation is based on the Gibbs criterion of phase stability in
which one tests whether splitting a trial phase of some unknown composition from
the initial phase at given temperature and pressure may decrease the total Gibbs free
energy of the system [7, 14, 15, 16]. This formulation does not fit to our context
because in compositional simulation pressure is not known a-priori. For our purposes,
we use the formulation of phase stability in a system with prescribed temperature,
volume, and moles (or equivalently with prescribed temperature and concentrations).
Unlike the Gibbs formulation, the formulation of stability and phase equilibria for
systems described by the V TN -variables is relatively new [17, 18, 9, 10]. Therefore,
we summarize the basic formulation of phase stability criterion here.

It is well known from equilibrium thermodynamics that for a system with pre-
scribed volume V , temperature T , and mole numbers N1, . . . , Nn, Helmholtz free
energy A is a natural thermodynamic potential. Using the fact that for a given tem-
perature T , A is a homogeneous function of degree one in V and N1, . . . , Nn, it is
natural to define the Helmholtz free energy density a = A/V as a function of the
molar concentrations ci = Ni/V . For a system in a single phase, the Helmholtz free
energy density aI reads as

(3.1) aI = a(T, c1, . . . , cn) =

n∑
i=1

ciµi(T, c1, . . . , cn)− p(T, c1, . . . , cn),

where µi denotes the chemical potential of component i. For physically reasonable
pressure equations of state p, functions a and µi can always be found such that (3.1)
and the following conditions hold

∂a

∂ci
= µi,(3.2)

and
n∑
i=1

ci∇µi = ∇p (Gibbs-Duhem relation).(3.3)

If a system is split into Π phases with volume fractions Sα ∈ (0, 1), and molar concen-
trations cα,i, where α ∈ {1, 2, . . . ,Π}, and i = 1, 2, . . . , n, the Helmholtz free energy
density reads as

(3.4) aΠ =

Π∑
α=1

Sαa(T, cα,1, . . . , cα,n)

with obvious volume and mole-balance constraints

Π∑
α=1

Sα = 1,(3.5)

Π∑
α=1

cα,iSα = ci, i ∈ {1, 2, . . . , n}.(3.6)
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These conditions imply that the overall composition is a convex combination of phase
molar concentrations. The single-phase is stable if for any non-trivial phase-split
satisfying the constraints (3.5), aΠ > aI . In other words, for the given temperature
T , a has to be a strictly convex function of c1, . . . , cn. If this is the case, then splitting
a small amount of a trial phase with concentrations c′1, . . . , c

′
n from the initial phase

with concentrations c1, . . . , cn cannot decrease the value of the Helmholtz energy
density. The phase with concentrations c1, . . . , cn is thus stable if and only if for any
[c′1, . . . , c

′
n] ∈ C the following inequality holds

n∑
i=1

c′i[µi(T, c
′
1, . . . , c

′
n)− µi(T, c1, . . . , cn)]

− [p(T, c′1, . . . , c
′
n)− p(T, c1, . . . , cn)] ≥ 0.(3.7)

This is a Helmholtzian version of the Gibbs tangent plane distance criterion for single-
phase stability testing. We refer the reader to [18] for detailed derivation of this
criterion.

4. Energy inequality for the continuous problem. By multiplying each
equation in (2.1) by µi, summing over i, integrating over Ω, and using Green’s theo-
rem, we derive the following equality

d

dt

∫
Ω

φa(T, c1, . . . , cn)−
∫

Ω

∇p · v =

n∑
i=1

∫
Ω

Fiµi.(4.1)

In the derivation of the above equations, we have used (3.2) to treat the time-derivative
term, (3.3) in the other term on the left side, and the boundary conditions (2.8).

There are several ways to rewrite the second term on the left side of (4.1). In
the first version, we combine (2.2) with (4.1). Using (2.3) and (2.6), it is possible to
derive the following energy inequality

d

dt

∫
Ω

φa(T, c1, . . . , cn) + C1‖∇p− ρg‖2L2(Ω)d ≤
n∑
i=1

∫
Ω

Fiµi +

∫
Ω

ρg · v,(4.2)

where C1 = kmin/ηmax. This is the balance law for the total Helmholtz free energy
A =

∫
Ω
φa(c1, . . . , cn) of the system. For a closed system without sources and sinks

and without gravity, A will decrease in time until the pressure gradients vanish, which
is in line with the second law of thermodynamics. The other possibility is to rewrite
Darcy’s law (2.2) equivalently as

(4.3) ηk−1v +∇p = ρg

and derive

(4.4) −
∫

Ω

∇p · v =

∫
Ω

ηv · k−1v −
∫

Ω

ρg · v

The resulting energy equality is now

d

dt

∫
Ω

φa(T, c1, . . . , cn) + ‖√ηk−1/2v‖2L2(Ω)d =

n∑
i=1

∫
Ω

Fiµi +

∫
Ω

ρg · v.(4.5)
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Using (2.3) and (2.6), we get the following energy inequality

d

dt

∫
Ω

φa(T, c1, . . . , cn) + C2‖v‖2L2(Ω)d ≤
n∑
i=1

∫
Ω

Fiµi +

∫
Ω

ρg · v,(4.6)

where C2 = ηmin/‖k‖L∞(Ω)d×d . This inequality is well suited for using mixed finite
element to approximate v.

5. Numerical scheme. We assume that the domain Ω is polygonal so that
it can be covered by a conforming triangulation. Integrating the transport equa-
tions (2.1) over an arbitrary element K of the triangulation, approximating the
concentrations by piecewise constant functions over the elements, and using the
fully implicit time discretization, we derive the following fully-implicit finite volume
scheme [21]

(5.1) φK
ck+1
i,K − cki,K

τk
|K|+

∑
E⊂∂K

ck+1
i,E vk+1

K,E = F k+1
i,K |K|.

In this scheme, the subscript K denotes averages over the element K, while E denotes
the values assigned at an element face, k is the time step index, τk is the time step in
step k. The value ck+1

i,E is evaluated using the upwind value with respect to vk+1
K,E , i.e.

(5.2) ck+1
i,E =

{
ck+1
i,K if vk+1

K,E ≥ 0

ck+1
i,K′ if vk+1

K,E < 0
for E = ∂K ∩ ∂K ′.

The velocity v on each element is approximated in the lowest-order Raviart-Thomas
space RT0(K), i.e.

(5.3) v|K(x, tk+1) ≈ vh|K(x, tk+1) :=
∑
E⊂∂K

vk+1
K,EwK,E(x),

where wK,E denote the basis functions of the RT0(K) space. These functions can be
chosen such that (see [8, 13])

(5.4) ∇ ·wK,E =
1

|K|
, and

∫
F

wK,E · nK,F = δE,F ,

where E and F are faces of an element K, nK,F is the unit vector of outer normal
with respect to element K on face F , and δE,F is the Kronecker symbol. The weak
form of Darcy’s law can be derived by multiplying (4.3) by a vector test function w,
integrating over an element K, and using Green’s theorem. As a result, we get

(5.5)

∫
K

w · ηk−1v +

∫
∂K

pw · n−
∫
K

p∇ ·w =

∫
K

ρw · g.

Approximating v by (5.3), requiring (5.5) to hold for all test functions from the
RT0(K) space, and using (5.4), we derive the following mixed-hybrid finite-element
discretization of Darcy’s law for each element K and an arbitrary face E ⊂ ∂K

(5.6)
∑
F⊂∂K

Ak+1
K,E,F v

k+1
K,F + p̂k+1

E − pk+1
K = Bk+1

K,E ,
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where p̂k+1
F denotes the pressure trace (average pressure) on face F , pk+1

K is the average
pressure over the element K, both at time tk+1, and

(5.7) Ak+1
K,E,F = ηk+1

K

∫
K

wK,E · k−1wK,F , Bk+1
K,E = ρk+1

K

∫
K

wK,E · g.

The mixed-hybrid finite-element formulation is completed by the conditions

(5.8)
∑

K:E⊂∂K

vk+1
K,E = 0,

which is written for each face of the triangulation. For internal faces, this prescribes
continuity of the normal component of velocity. On boundary faces, the last equation
reduces to the condition of impermeability, which is in line with condition (2.8). The
viscosity, density, and pressure are approximated by element-wise constant functions
ηh, ρh, and ph defined for each x ∈ Ω and t ∈ (tk, tk+1〉 as

ηh(x, t) =
∑
K

ηk+1
K χK(x), ρh(x, t) =

∑
K

ρk+1
K χK(x), ph(x, t) =

∑
K

pk+1
K χK(x),

(5.9)

where χK is the indicator function of element K, and

ηk+1
K = η(T, ck+1

1,K , . . . , c
k+1
n,K), ρk+1

K =

n∑
i=1

ck+1
i,K Mi, pk+1

K = p(T, ck+1
1,K , . . . , c

k+1
n,K).

(5.10)

The system of equations (5.1), (5.2), (5.6), (5.8), and (5.10) represents a system of
non-linear algebraic equations for unknown concentrations ck+1

i,K of all components on

all elements, and traces of pressure p̂k+1
F on all element faces at the time level k + 1

that can be solved when the concentrations cki,K at the old time level are specified.
For k = 0, we use the initial conditions (2.7)

(5.11) c0i,K =
1

|K|

∫
K

c0i (x) dx.

The system can be solved by the Newton method with line search. As the solution of
this system is a special case of a two-phase compositional simulation that is described
in detail in [21], we refer the reader to that paper.

6. Energy inequality for the discretized problem. The main goal of this
paper is to show that the fully implicit scheme presented above fulfills a discrete
version of the energy inequality (4.6). To this end, we multiply (5.1) by µk+1

i,K :=

µi(T, c
k+1
1,K , . . . , c

k+1
n,K), and sum the result over all components i ∈ {1, 2, . . . , n} and all

elements K in the triangulation.
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First, we adjust the time-difference term by adding and subtracting suitable terms
to get a balance for the Helmholtz free energy of the system, i.e.

1

τk

n∑
i=1

∑
K

φK |K|µk+1
i,K (ck+1

i,K − c
k
i,K) =

1

τk

∑
K

φK |K|

[(
n∑
i=1

µk+1
i,K ck+1

i,K − p
k+1
K

)
︸ ︷︷ ︸
ak+1
K :=a(T,ck+1

1,K ,...,c
k+1
n,K)

−

(
n∑
i=1

µki,Kc
k
i,K − pkK

)
︸ ︷︷ ︸
akK :=a(T,ck1,K ,...,c

k
n,K)

+

n∑
i=1

cki,K(µki,K − µk+1
i,K )− (pkK − pk+1

K )︸ ︷︷ ︸
≥0

]
≥ 1

τk

∑
K

φK |K|(ak+1
K − akK).(6.1)

The third term in the square bracket is non-negative due to the phase stability cri-
terion (3.7) applied to the set of concentrations ck+1

1,K , . . . , c
k+1
n,K . In the final estimate,

this term will be neglected.

Next, we rewrite the transport term as

∑
K

∑
E⊂∂K

n∑
i=1

ck+1
i,E µk+1

i,K vk+1
K,E =

∑
E

∑
K:E⊂∂K

n∑
i=1

ck+1
i,E µk+1

i,K vk+1
K,E =

=
∑

E∈Eint

∑
K:E⊂∂K

n∑
i=1

ck+1
i,Eup

(µk+1
i,Eup

− µk+1
i,Edown

)|vk+1
K,E | =

=
∑

E∈Eint

∑
K:E⊂∂K

[
n∑
i=1

ck+1
i,Eup

(µk+1
i,Eup

− µk+1
i,Edown

)− (pk+1
Eup
− pk+1

Edown
)

]
︸ ︷︷ ︸

≥0

|vk+1
K,E |+

+
∑

E∈Eint

∑
K:E⊂∂K

(pk+1
Eup
− pk+1

Edown
)|vk+1

K,E |

≥
∑

E∈Eint

∑
K:E⊂∂K

(pk+1
Eup
− pk+1

Edown
)|vk+1

K,E | =
∑
K

∑
E⊂∂K

(pk+1
K − p̂k+1

E )vk+1
K,E

=
∑
K

∑
E⊂∂K

∑
F⊂∂K

AK,E,F vk+1
K,Ev

k+1
K,F −

∑
K

∑
E⊂∂K

Bk+1
K,Ev

k+1
K,E

=

∫
Ω

vhηhk
−1vh −

∫
Ω

ρhvh · g = ‖√ηhk−1/2vh‖2L2(Ω)d −
∫

Ω

ρhvh · g.(6.2)

In the derivation of this inequality, we have first interchanged the order of summation.
Then we have used the fact that each internal face E is surrounded by exactly two
neighboring elements, the one in the upwind direction with respect to vk+1

K,E is denoted
Eup, while the other one is denoted Edown. Due to the zero Neumann boundary
conditions, it is sufficient to consider only summation over the internal faces. Then,
suitable pressure terms are added and subtracted. The indicated term is non-negative
due to the phase-stability criterion (3.7). In the next development, this term is ne-
glected. Introducing pressure traces into the remaining term allows us to change the
order of summation once again and using (5.6), we get the desired result.
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Fig. 7.1. The Helmholtz free energy dependent on time.

The last term in equation (5.1) is treated in a straightforward manner. Combining
all the estimates, we get the following discrete energy inequality

1

τk

∑
K

φK |K|(ak+1
K − akK) + C2‖vh‖2L2(Ω)d ≤

∑
K

n∑
i=1

F k+1
i,K |K|µ

k+1
i,K +

∫
Ω

ρhvh · g,

(6.3)

which is a discrete version of (4.6).

7. Long-time behavior of the Helmholtz free energy. In this part, we
observe behavior of the Helmholtz free energy in a closed system consisting of a
2-component mixture of methane (i = 1) and propane (i = 2) without gravity and
sources or sinks at temperature 397 K. The reservoir of 50×50 m2 has porosity φ = 0.2
and isotropic permeability k = kI, where k = 9.87 · 10−15 m2. The Peng-Robinson
equation of state [19] and the LBC-model for viscosity [12] are used with parameters
given in Table 1 of [21]. The initial concentrations are

c01(x) = 1600 for x ∈ 〈15, 35〉 × 〈15, 35〉,(7.1)

c01(x) = 0 for x ∈ 〈0, 50〉 × 〈0, 50〉 \ 〈15, 35〉 × 〈15, 35〉,(7.2)

c02(x) = 2700 for x ∈ 〈15, 35〉 × 〈15, 35〉,(7.3)

c02(x) = 2735.42 for x ∈ 〈0, 50〉 × 〈0, 50〉 \ 〈15, 35〉 × 〈15, 35〉,(7.4)

where the concentrations are in mol m−3 and the intervals in meters. The Helmholtz
free energy computed for a simulation on a triangular mesh of 2 · 40× 40 triangles at
different times and constant time step 5 s is depicted in Fig. 7.1. As can be seen, the
Helmholtz free energy decreases as the simulation evolves in time and since 40000 s is
almost constant.

To investigate the decrease of A trend in Fig. 7.1, we are inspired by [3], where the
large-time asymptotic analysis of solutions of degenerate scalar parabolic convection-
diffusion equations and certain systems of parabolic equations is carried out. For the
scalar parabolic equation an exponential time decay of the solution to a steady state
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Fig. 7.2. Comparison of the numerical solution with exponential model (7.5).

is derived, while for the parabolic systems the decay is only algebraic. Our system
of equations is not parabolic; therefore, it does not satisfy assumptions of paper [3].
Nevertheless, we have tried to fit both models to the numerical results and have
found out that the exponential model can describe the decrease of A for larger times.
Considering a general exponential model of the following form

(7.5) A(t) = A∞ + αe−λt ,

the parameters α and λ can be adjusted and A∞ is the energy at some large-enough
time. To specify the parameters, we can compute the natural logarithm of A − A∞
and rewrite (7.5) as

(7.6) ln(A(t)−A∞) = lnα− λt .

The numerical results and exponential model (7.6) with α = 162755, λ = 5.65 · 10−5,
and A∞ taken from the numerical data at t = 555000 s are plotted in Fig. 7.2.
We can see an obvious linear decrease of the numerical solution starting at about
t = 70000 s and matching with the model. The linear decrease of the logarithm of
A−A∞ indicates that A decreases exponentially according to (7.5) for larger times.
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[20] O. Poĺıvka, J. Mikyška, Numerical simulation of multicomponent compressible flow in porous
medium, Journal of Math-for-Industry Vol. 3 (2011C-7), (2011) pp. 53–60.
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