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Introduction

• Scaling properties are one of the most important quantifiers of
complexity in many systems, e.g. financial time series

• Presence of scaling exponents can point to an inner fractal
structure of the series

• Multiple scalings can be analyzed trough various techniques as
Multifractal spectrum

• We examine different techniques of multifractality estimation,
especially Multifractal detrended analysis and Multifractal entropy
analysis

• We discuss both theoretical and practical properties of the
techniques and compare them on both model and empirical time
series
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Multifractal Analysis
Multifractal Spectrum

• Let us have a discrete time series {xi}Ni=1, where i denotes
discrete time moments with specific time lag s.

• Probability of each region Ki is given as pi =
#{xj∈Ki}

N
• We assume that probabilities scale with the typical length s, so

pi ∼ sαi

• We wish to identify structure and strenght of α’s in the system
• For this end we analyze the probability density in a form

p(α, s)dα = ρ(α)s−f (α)dα

• f (α) - Mutlifractal spectrum - measure of strength of each
exponent
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Multifractal Analysis
Scaling Function

• A dual description is provided by the Partition function

Z (q, s) =
∑

i pq
i ∼ sτ(q)

• Function τ(q) is called Scaling function
• Relation to the f (α) is given by Legendre transform

τ(q) = [qα(q)− f (α(q))]
where α(q) is such that it maximizes τ(q)
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Multifractal Analysis
Generalized Dimension

• Partition function is related to Rényi entropy S(q) = ln Z (q,l)
q−1 , for

q → 1 it reduces to the Shannon entropy
• Scaling exponent of the Rényi entropy is called Generalized

dimension and is related to τ(q) as

Dq =
τ(q)
q − 1

• Another measure of multifractality is a Generalized Hurst exponent
defined as

〈|x (t + s)− x (t )|q〉 ∼ sqH(q)
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Multifractal Detrended Fluctuation Analysis (MFDFA)

• Method is based on measuring of fluctuations from local trends
• We transform the noise-like series into walk-like series

Y (i) =
∑

j (xj − 〈x 〉)
• We divide a series into intervals of length s, calculate the local

linear (quadratic,...) trends yν and calculate the Fluctuation
function

F (ν, s) =
s∑

i=1

[Y (s(ν − 1) + i)− yν(i)]
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Multifractal Detrended Fluctuation Analysis (MFDFA)

• We calculate the Total fluctuation function as a generalized
average of all fluctuation functions and this function is assumed to
have scaling function h(q), so

F (q, s) =

{
1

Ns

Ns∑
ν=1

[F (ν, s)2]q/2

}1/q

∼ sh(q)

• Exponent τ(q) can be calculated from h(q) as τ(q) = qh(q)− 1
• Method can be problematic, because it is based on assumption,

that the expression

|ps(ν)| = |
∑νs

k=(ν−1)s−1(xk − 〈x 〉)|
is proper measure, which is not always true
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Multifractal Diffusion Entropy Analysis (MFDEA)

• In case of heavy-tailed processes, the fluctuation approach can
give wrong predictions, because the variance grows to infinity

• In this case we exploit self-similarity properties of the time series
• For monofractal series we assume that the distribution has the

form

p(x , t )dx = 1
tδ F

( x
tδ
)

dx
- i.e., generalized Gaussian scaling

• The exponent δ is possible to express from the entropy

S(t ) = −
∫

dx p(x , t ) ln[p(x , t )] = A + δ ln t
• For the Fractional Brownian motion (monofractal) is δ equal to the

Hurst exponent δ = H
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Multifractal Diffusion Entropy Analysis (MFDEA)

• If we replace the Shannon entropy by the Rényi entropy, we get
the whole class of scaling exponents

Sq(t ) = Bq + H(q) ln t
• H(q) is the Generalized Hurst exponent and for monofractal series

H(q) = H
• Probability distribution is estimated from the Fluctuation collection

algorithm; all fluctuations over time lag s are collected
xs(t ) =

∑s
i=1 xi+t , and the probability distribution Ps(t ) on a grid of

length s is estimated
• For the monofractal series is the MFDFA scaling function equal to
τM (q) = qH − 1, whereas the MFDEA scaling function
τR(q) = H(q)(q − 1) = H · (q − 1), so

τM (q) =
q

q − 1
τR(q)− 1
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Numerical Comparison of Multifractal Techniques
Investigated Time Series - which one is real?
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Numerical comparison of multifractal techniques
Multifractal spectrum, Renyi entropy
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Summary

• Multiscaling properties are important properties of time series that
can quantify the complexity of the series

• There are several methods, how to estimate the multifractality
• Properties of MFDFA and MFDEA were discussed
• Benefit of MFDEA is its interpretation as a Generalized dimension

and also applicability to heavy-tailed processes
• Recently, there was published a discussion paper 1 that points to

the problematic mathematical background and necessity to
deeper discussion

• Benefit of MDFDA is the elegance of the algorithm, computational
effectiveness and its interpretation as a scaling exponent of the
probability density

1
A. Yu. Morozov. Comment on ’multifractal diffusion entropy analysis on stock volatility in financial markets’ [Physica A 391

(2012) 5739-5745].

Physica A, 392(10):2442 – 2446, 2013
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