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Introduction

random processes - important part of modeling of many
problems in physics, biology, economy, etc.

Basic model - random walk (Brownian motion)
Brownian motion - the simplest process, but cannot be
applied for modeling of complex systems
Our aim is to find generalizations of Brownian motion, that
better describe real processes
Common properties of different processes - (multi)fractal
geometry
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Concrete example - financial markets
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Concrete example

evolution of Lehman brothers’ shares in 2008 - rapid fall
before the begin of financial crisis
in model with random walk extremely improbable
many times larger standard deviation than normally
need of other processes - modeling of extreme situations
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Brownian motion - Definition

classical random walk:
p - probability of step to the right
q - probability of step to the left
n - number of steps

after n steps is the probability of the walker at position m:
p(m,n) = n!

( n+m
2 )!( n−m

2 )!
p

n+m
2 (1− p)

n−m
2

limit for n→∞: according to Central limit theorem we get
Gaussian distribution
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random walk for n=1000
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Wiener process - continuous random walk

Definition: stochastic process ξ(t) is the set of random
variables parameterized by parameter t (often time)

stochastic process W (t) is called Wiener if:

1 W (0) = 0 almost surely,
2 function t 7→W (t) is continuous a.s.,
3 for all t , s: W (t)−W (s) ∼ N(0, |t − s|)
4 W (t) has independent increments of t

Wiener process is almost nowhere differentiable!
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representative trajectories of Wiener process
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Lévy distribution - definition
stable distribution is such, that :
p(a1x + b1) ∗ p(a2x + b2) = p(ax + b)

Examples: Gauss distribution, Cauchy distribution...
Theorem: stable distributions are limit distributions of
infinite sums of random variables
general for of stable distribution in Fourier image (Lévy,
Kchintchin):

ln Lαβ(k) = ick − γ|k |α (1 + iβsgn(k)ω(k , α))
where: 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0, c ∈ R,

ω(k, α) =

{
tan(πα/2) if α 6= 1
2
π

ln |k| if α = 1.

for α < 2 is variance infinite - class of α-stable Lévy
distribution
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Lévy distributuion
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Fractals - introduction
fractal geometry deals with objects that have its inner and
repeating structure, that remains apparent when scaling.

informal definition: fractal = self-similar object defined by simple
rules

fractal dimension - generalization of topological dimension for
other objects than manifolds

possible way of dimension computation: Nδ(F ) - minimal no. of
balls with diameter δ, that cover F
for manifolds with dimension n: Nδ(F ) ' cδ−n

Box counting dimension:

dimB F = lim
δ→0

ln Nδ(F )

ln 1
δ

formal definition of fractal: fractal dimension is greater than
topological
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Multifractals
Presence of local fractal dimension - different dimensions
in different part of object

It is constructed on F with some arbitrary measure µ,
µ(F ) = 1.
Let Ui be minimal cover of F with balls of diameter δ.

Nδ,α(F ) = #{Ui |µ(Ui) ≥ δα}

We define f (α) - multifractal spectrum:

f (α) = lim
δ→0

lim
ε→0

log(Nδ,α+ε(F )− Nδ,α−ε(F ))

− log δ

multifractal spectrum reflects particular weight of fractal
dimensions
For such α0 for that f ′(α0) = 0 holds, that f (α0) = dimB(F )
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Lévy process
Lévy analog Wiener process

Wiener process can be written as t1/2W , where
W ∼ N(0,1). Then

t1/2
1 W + t1/2

2 W d
= (t1 + t2)1/2W

Strict α-stability criterion:

t1/α
1 Y + t1/α

2 Y d
= (t1 + t2)1/αY

Lévy α-stable process:

1 Lα(0) = 0 a.s.
2 Lα(t) has independent increments of t
3 Lα(t) is strictly α-stable process
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Wiener process - example
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Lévy process - example
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Fractal dimension of Lévy processes

representative trajectory of Wiener process in Rn (n ≥ 2)
has fractal dimension 2

representative trajectory of Lévy α process in Rn (n ≥ 2)
has dimension max{1, α}
graph of random function t 7→W (t) has dimension 3

2

graph of random function t 7→ Lα(t) has fractal dimension
max{1,2− 1

α}
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Fractional Brownian motion

process WH(t) se is called fractional Brownian motion
(fBM), if:

1 WH(0) = 0 a.s.,
2 WH(t) has independent increments of t
3 WH(t)−WH(s) ' N(0, |t − s|2H)

H is called Hurst exponent
For H = 1

2 - Wiener process
correlation is not zero:
E(WH(t)WH(s)) = 1

2

[
|t |2H + |s|2H − |t − s|2H]

fBM brings memory to random walk
graph of random function t 7→WH(t) has dimension 2− H
-analogue to Lévy process
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ukázka fBM
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Real behavior of financial markets
Observed properties of financial markets :

Large fluctuations

Memory

Different behavior for different seasons (prosperity, crisis,...)

Estimation of α and H by index S&P 500 in years 1985-2010:
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Necessity of processes with time-dependent parameters
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Generating of processes with time-dependent Hurst
exponent

volatility as stochastic process (double stochastic equation)

volatility as random variable with given distribution
(superstatistics)
Time as multifractal (stochastic) process
"Trader’s time"and "Clock time"

Many trades are made just just the stock is open or before
the stock is closed
Sudden losses cause sales (black days on stocks..)
Volume differs over time

generation of multifractal stochastic time using brownian
patterns
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Wiener fractal pattern
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Wiener fractal pattern
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Wiener fractal pattern
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Wiener fractal pattern
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Multifractal pattern
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other generators, random choice between generators in every
iteration

∆t = ∆xH(t)
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Multifractal pattern
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Time as multifractal
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Wiener pattern generates trading time
Multifractal pattern generates clock time
the shift of appropriate points in time generates
dependence of both times
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Time as multifractal
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Processes generated by multifractal patterns
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We can generate processes from view of trading time and
transform them to clock time
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Processes generated by fractal patterns
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Processes generated by fractal patterns
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Conclusion

Brownian motion an illustrative process, but it is not the
best for modeling of complex processes
better description - Lévy process, fractional Brownian
motion...
common properties of different processes - fractal
geometry
Multifractal processes - easy modeling of difficult
processes
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