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Brief history overview

Diffusion is a transport phenomenon that has been studied
since 18th century
1827 - discovered Brownian motion on a pollen grain in the
water
1900 - Louis Bachelier: Théorie de la spéculation - First
application of Brownian motion in financial markets
60’s - Benoit Mandelbrot: Fractals and self-similarity -
description of irregular objects
90’s - econophysics - application of physical models into
financial markets

Jan Korbel Multifractal Processes and Their Applications



Introduction
Brownian motion

Memory and Scaling
Fractal geometry

Multifractal processes
Summary

Econophysics

Why econophysics? - necessity of modeling and analyzing
complex processes as financial time series
Presence of various phenomena - memory, crash,
economic cycles, financial crisis...
Aim: generalization of models based on random walk
(discrete version of Brownian motion)
Multiscaling: general phenomenon that enables to model
many different processes
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Brownian motion: different approaches

Brownian motion is a well known transport phenomenon
that has many applications in different fields
It can be described with many formalisms such as Random
walk, Langevin equation, theory of stochastic processes,
etc.
It is advantageous to introduce a few of possible definitions
and show the relations between them
First diffusion description - Adolf Fick

Fick’s law

∂φ

∂t
= D

∂2φ

∂x2

Solution: φ(x , t) = 1√
2Dt

exp
[
− (x−x0)

2

2Dt

]
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Basic approach: Random walk

We begin with a walker that can do a step to the right with
probability p and to the left with probability 1− p
After n steps we get a binomial distribution

p(m, n) =
n!( n+m

2

)
!
( n−m

2

)
!
p

n+m
2 (1− p)

n−m
2

For long times n→∞ around the expectation value
E(m) = n(2p − 1) we get that

p(m, n) ≈ 1√
2πnp(1− p)

exp
[
− (m − E(m))2

8npq

]
For long times in the center part of the distribution we get a
gaussian distribution, which describes classical diffusion
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Central part of distribution of random walk
for n = 1000, p = 1

2
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Physical approach: Langevin equation

We generalize a classical Newton’s law for systems in the
contact with heat bath (presence of random fluctuations)
Newton equation

mẍ(t)− F = 0 (1)

We add a random force and because of conservation of
physical laws we have to add a friction forces too

Langevin equation

mẍ(t)+
∂U
∂x

+γẋ(t) = η(t) (2)

−∂U
∂x - external forces
−γẋ(t) - friction forces
η(t) - fluctuation forces with 〈η(t)〉 = 0,
〈η(t)η(t ′)〉 = 2Dδ(t − t ′)Jan Korbel Multifractal Processes and Their Applications
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Diffusion equation

Alternative representation od Langevin equation is through
probability distribution of the system p(x , t)

Diffusion equation for free particle

∂p(x , t)
∂t

=
D
γ2
∂2p(x , t)
∂x2 (3)

The equation is formally the same as Fick’s equation for
concentration
For one localized particle at time 0 we get a Gaussian
function

p(x , t) =
1√

4πDt
exp

(
−(x − x0)2

4Dt

)
(4)

Jan Korbel Multifractal Processes and Their Applications



Introduction
Brownian motion

Memory and Scaling
Fractal geometry

Multifractal processes
Summary

Diffusion in 2D
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Mathematical approach: Wiener process

Another possibility is to use a formalism of stochastic
processes
A stochastic process W (t) (for t ∈ [0,∞]) is called Wiener
process, if

W (0)
a.s.
= 0

For every t , s are increments W (t)−W (s) dependent only
on |t-s| with distribution: W (t)−W (s) ∼ N (0, |t − s|).
for different values are increments not correlated.

The Wiener process also obeys diffusion equation
All formalisms lead to the main property of diffusion:
|∆W (t)| = t

1
2
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Sample paths of Wiener process in 1D
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Remark: Diffusion on financial markets

On financial markets is observed a modified version of
diffusion
We demand that price S(t) is always positive
From empirical observations
r(t) = log(S(t))− log(S(t − 1)) has a normal distribution -
increment of Wiener process
the price is then defined as

Geometric Brownian motion

S(t) = S0 exp

(∑
t

r(t)

)
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Sample path of geometric Brownian motion
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Beyond classical diffusion

The theory of Brownian motion is an elegant simple theory,
but cannot describe systems with more complex behavior
Generalizations of Brownian motion: introduction of
memory and large fluctuation
Typical scales for Brownian motion: for space - variance,
for time - correlation
Both have their typical values (scales) - in generalizations
these typical scales vanish
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Fractional Brownian Motion

We generalize Brownian motion by introduction of
non-trivial correlations
For Brownian motion is the covariance element

E[W (t)W (s)] = min{s, t} =
1
2

(s + t − |s − t |) (5)

We introduce a generalization WH(t) with the same
properties, but covariance

E [WH(t)WH(s)] =
1
2

(s2H + t2H − |s − t |2H) (6)

Standard deviation scales as |∆WH(t)| ∝ tH

For H = 1
2 we have Brownian motion, for H < 1

2
sub-diffusion, for H > 1

2 super-diffusion
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Sample functions of fBM for H=0.3, 0.5, 0.6, 0.7.
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Lévy distributions

Gaussian distribution has special property - it is a stable
distribution
Such distributions are limits in long time for stochastic
processes driven by independent increments with given
distribution
Lévy distributions - class of stable distributions with
polynomial decay

Lα(x) ' lα
|x |1+α

for |x | → ∞ (7)

for α ∈ (0,2)
The variance for these distributions is infinite
The distribution has sharper peak and fatter tails (= heavy
tails)
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Difference between Gaussian distribution
and Cauchy distribution (α = 1)
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Lévy flights

Lévy flight Lα(t) is a stochastic process that the same
properties as Brownian motion, but its increments have
Lévy distribution
Because of infiniteness of variance, scaling properties are
expressed via sum of random variables

For Brownian motion: a1/2W (t) + b1/2W (t) d
= (a + b)1/2W (t)

For Lévy flight: a1/αLα(t) + b1/αLα(t)
d
= (a + b)1/αLα(t)

α-th fractional moment E(|X |α) =
∫

xαp(x)dx of increment is
equal to

E(|Lα(t1)− Lα(t2)|α) ∼ |t1 − t2|. (8)
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Lévy flight in 2D
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Fractal dimension

Many objects in nature exhibit inner structure that is present at any
scale
These object fill the space more than regular curves, surfaces, etc -
fractals
The robustness of fractals is measured by a generalization of the
dimension

we measure by how many squares with side l can be the object
covered
a curve is covered by N(l) = Al−1 squares
a surface is covered by N(l) = Bl−2 squares etc.
for a dimension we have −D ln l = ln N(l)− ln B

Fractal dimension

dim F = − lim
l→0

ln N(l)
ln l
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Example: Koch curve

The Koch curve is generated iteratively
We begin with a line, we remove a middle part of the line
and replace it by two lines with the angle of 60◦

We repeat it to infinity
Fractal dimension: we cover the object by squares of
length l = 3−k , the number of squares is N(l) = 4k

dim F = − lim
k→∞

ln 4k

ln 3−k = − lim
k→∞

k ln 4
−k ln 3

=
ln 4
ln 3

> 1
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Fractal dimension of random fractals

We can calculate the dimension of random objects from its statistical
properties (random Koch curve has the same dimension as Koch curve)
Fractal dimension of stochastic processes:

Random processes in 2D: dimension of Wiener process - 2,
dimension of Lévy process - max{1, α}
Random functions t 7→ X (t): Wiener function - 3

2 , Lévy function -
max{1, 2− 1

α
}, fBM - 2− H

Hurst exponent - gives scaling between space and time increments
|∆x | ∝ ∆tH , relation to fractal dimension
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Multifractal spectrum

Assumption of one scaling index (even in a statistical
meaning) seems to be quite restrictive for many processes
occurring in nature
We relax the condition of one scaling exponent, processes
can have scaling exponents locally different (|∆x | ∝ ∆tH(t))
We would like to capture relative strengths of fractal
dimensions, we divide the fractal into subsets Fα that scale
with an exponent α

Multifractal spectrum

f (α) = − lim
δ→0

ln N[Fα](δ)

ln δ
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Multifractal deformations

The basic model of price evolution is based on geometric Brownian
motion

ln S(t) = µt + σW (t)

We generalize this model by introduction of time deformation, where we
consider an existence of two times: trading time on the market and real
physical clock time. The transformation between them is given by a time
deformation θ(t), so

ln S(t) = µt + σW [θ(t)]

The time deformation is constructed as a multifractal process, which
enables us to estimate the multifractal spectrum and from it scaling
properties of the process
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Generation of a multifractal patterns
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Multifractal deformation and its spectrum

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
0.0

0.2

0.4

0.6

0.8

1.0

Jan Korbel Multifractal Processes and Their Applications



Introduction
Brownian motion

Memory and Scaling
Fractal geometry

Multifractal processes
Summary

Applications to financial markets

MMAR - Multifractal model of asset returns: ln S(t) = σW [θ(t)]

MSM - Markov switching multifractal: ln S(t) = W (t , σ(t))

σ2(t) = σ2
(∏k

j=1 Mk (t)
)

Mk (t) - state variables driven by a Markov process, they determine
the final volatility
special choice of the process: For every time tn the variable Mk (tn)
is either updated from given distribution M with intensity γk or
remains the same value as in tn−1

γk is chosen approximately geometrically, M is binomial, Mk -
representation of economic cycles, the process depends on 4
variables
in limit of continuous time and countably many state variables we
become a time deformation
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Benefits of MSM

With a few parameters, we can analyze and predict
complex time series on financial markets
Compared to other models commonly used on financial
markets (ARMA, GARCH,...) has MSM better results
State variables have nice interpretation
MSM is related to multifractal deformations and
multiscaling processes
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Conclusions

Brownian motion is a phenomenon that has many
applications
It provides an elegant description of various systems
In case of complex processes, with memory or large
fluctuations, the description fails
More appropriate models: fBM, Lévy flight
Multifractal processes: good description of real models on
financial markets
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Thank you for attention.
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