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MOTIVATION

Figure : Multifractals in nature



INTRODUCTION MULTIFRACTAL ANALYSIS MULTIPLICATIVE CASCADES NUMERICAL SIMULATIONS SUMMARY

MOTIVATION

Figure : Multifractals in finance
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MOTIVATION

I scaling properties are one of the most important
quantifiers of complexity in many systems, e.g. financial
time series

I presence of scaling exponents points to the inner structure
of the system, described through fractal, or multifractal
analysis

I multiscaling systems have a tight relation with
Generalized dimensions and consequently with Rényi
entropy

I Multiplicative cascades provide a successful approach of
creating such systems

I aim is to create time series and compare it with real
financial series trough multifractal analysis
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MULTIFRACTAL SPECTRUM

I discrete time series {xj}N
j=1 in RD, j denotes discrete time

moments with specific time lag s
I empirical probability of each region Ki ⊂ RD is estimated

as pi =
#{xj∈Ki}

N
I probabilities scale with the typical length as pi(s) ∼ sα

I regions with different scalings are identified and PDF of
scaling exponents is assumed in form

p(α)dα = ρ(α)s−f (α)dα

I f (α) - Multifractal spectrum = fractal dimension of the
subset with scaling exponent α



INTRODUCTION MULTIFRACTAL ANALYSIS MULTIPLICATIVE CASCADES NUMERICAL SIMULATIONS SUMMARY

MULTIFRACTAL SPECTRUM OF S&P 500

Figure : Multifractal spectrum of S&P 500
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SCALING FUNCTION AND RÉNYI ENTROPY

I alternative way of describing multifractality is via
“Partition function”: Zq(s) =

∑
i pq

i (s) ∼ sτ(q)

I relation to f (α) is provided through Legendre transform
f (α(q)) = qα(q)− τ(q)

I Scaling function τ(q) has a tight relation to Generalized
dimension Dq =

τ(q)
q−1 and Rényi entropy

Sq(s) =
1

q− 1
ln
∑

i

pq
i (s) =

ln Zq(s)
q− 1

I multifractality can be measured via estimation of Rényi
entropy
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MULTIFRACTAL DIFFUSION ENTROPY ANALYSIS

(MF-DEA)
I methods of multifractal spectrum estimation: Detrended

fluctuation analysis, Wavelets, Generalized Hurst
exponent, etc.

I in our case Diffusion entropy analysis method is used; it
is based on self-similarity property of PDF - in monofractal
case

p(x, t)dx =
1
tδ

F
( x

tδ
)

dx,

where δ is for monofractal Fractional Brownian motion
equal to H.

I from relation for Shannon entropy (or more precisely
Shannon divergence w.r.t. uniform distribution) we get

S(t) = −
∫

dx p(x, t) ln[p(x, t)] = A + δ ln t
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MULTIFRACTAL DIFFUSION ENTROPY ANALYSIS

I in multifractal case, whole class of Rényi entropies is
calculated, which gives a class of scaling exponents

Sq(t) = Bq + h(q) ln t

I Scaling function h(q) has a relation to multifractal
spectrum and enables to classify multifractality

I PDF is estimated through Fluctuation collection
algorithm

I all fluctuations over lag s are collected: x̃s(t) =
∑s

i=1 xi+t,
and PDF Ps(t) is estimated
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MULTIPLICATIVE PROCESSES

I concept of multiplicative processes is based on the idea
that typical quantity of the system is self-similarly
compound of itself, measured at smaller scale

I cascade of scales is defined as rn = r0
∏n

i=1 lj;
lj - scale multipliers

I if typical quantity E is given by its density ε, aggregated
quantity in the region Ω is measured as

E(Ω) =

∫
Ω
ε(x)dx

I multiplicative cascade defines the aggregated quantity at
the scale rn as E(rn) = E0

∏n
j=1 Mj
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MULTIFRACTAL CASCADES

I there are many models of multiplicative cascades, both
deterministic and stochastic

I our aim is to use such models that would sufficiently
simulate the multiscaling nature of investigated systems

I this is the case of Multifractal cascades. A few examples:
I Binomial cascade (BC) - deterministic model with lj = 1/2

and M•,1 = m1, M•,2 = m2,
we demand m1 + m2 = 1 - conservative cascade

I Microcanonical cascade (µCC) - similar to Binomial
cascade, but m1 and m2 are randomly shuffled (i.e. with
p = 0.5 is M•,1 = m1)
- M•,i are not independent.

I Canonical cascade (CC) - we demand the conservation on
average

∑
i〈M•,i〉 = 1, hence in case of i.i.d. variables

〈Mj,i〉 = 1
lj
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MULTIFRACTAL CASCADE
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Figure : Generation of binomial cascade
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NUMERICAL SIMULATIONS OF VOLATILITY AS A

MULTIFRACTAL CASCADE

I method of multifractal cascades is used in order to
simulate financial time series

I volatility (σt) is a good candidate for a cascade modeling
I volatility is modeled as a canonical cascade with dyadic

structure with binomial distribution, normalized such that
〈σt〉 = 1

I daily returns can be modeled from the estimated volatility
as rt = σ0σtηt, where ηt is a white noise (or more generally
colored noise)

I when comparing simulated series to real data, statistical
quantities as mean or variance bring us only a fraction of
information about the series

I both series are therefore compared by MF-DEA
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SIMULATED VS REAL VOLATILITY SERIES
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MULTIFRACTAL SPECTRUM OF VOLATILITY AND

COMPARISON TO RETURN SPECTRUM



INTRODUCTION MULTIFRACTAL ANALYSIS MULTIPLICATIVE CASCADES NUMERICAL SIMULATIONS SUMMARY

CONCLUSIONS

I many complex systems physics, economy, etc. can be
sufficiently well described by multifractals

I self-similarity of these systems can be also modeled by
multiplicative cascades

I interconnection of these two concepts brings a powerful
tool in modeling such systems

I in case of financial markets, the volatility can be modeled
as multifractal cascade

I there are many open questions in this field that need to be
answered ( spectrum for volatility, relation to other
methods, parameter estimation, . . . )
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BACK TO MOUNTAINS!

Figure : 2D multiplicative smoothed cascade as a terrain model
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Thank you for your attention.
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