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Abstract

Measuring information transfer between time series is a challenging task. Classical
statistical approaches based on correlations do not provide complete image about sources
of the information flow. On the other hand, there have been introduced many
sophisticated approaches that enable us to reveal the complex nature of many processes.
One of these successful approaches is based on transfer entropy, introduced by
Schreiber [1] and generalized to the class of q-Rényi transfer entropies by Jizba et al. [2].
The latter enables to ’zoom’ different part of distribution. The whole concept of transfer
entropy enables to reveal not only strength of information flow, but also the direction.
This method is applied to daily and intraday financial data to observe information flows
among exchanges. The method shows the whole complexity of informational flows
among particular stocks, which may also differ on different timescales.

Entropy as an informational measure

I Shannon entropy (SE) is a classical concept from information theory that enables us to
measure the amount of information encoded in the data. It is defined as:

H(X ) = −
∑
x∈X

p(x) log p(x) . (1)

I In case of two random variables X and Y , we can define the conditional entropy, i.e.
the average information entropy gain by X, when given Y

H(X |Y ) =
∑
y∈Y

p(y)H(X |Y = y)

= −
∑

x∈X ,y∈Y
pX ,Y (x, y) log pX |Y (x|y) . (2)

I Further, one can define mutual information (SMI) I (X ,Y ) as

I (X ,Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

=
∑

x∈X ,y∈Y
pX ,Y (x, y) log

pX ,Y (x, y)

pX(x), pY (y)
. (3)

I Mutual information is unfortunately not directional and does not obey causality,
therefore Schreiber [1] introduced the informational measure called Transfer entropy on
discrete stochastic processes {Xi}∞i=1, {Yj}∞j=1

TY→X(m, l) = H(Xm+1|Xm, . . . ,X1)

− H(Xm+1|Xm, . . . ,X1,Ym, . . . ,Ym−l+1)

= I (Xm+1,Xm, . . . ,X1,Ym, . . . ,Ym−l+1)

− I (Xm+1,Xm, . . . ,X1). (4)

I The history can be truncated only for Markovian systems. For Non-Markovian systems,
one should take the whole history up to t → −∞. This is not possible in case of
discrete finite data, therefore Marchinski et al. [3] introduced Effective transfer entropy
(ETE)

T e�
Y→X(m, l) = TY→X(m, l)− TYshu�ed→X(m, l) (5)

I Because of the finite length of time series, one has to transform the real-numbered time
series into the finite alphabet {I1, . . . , IN}, where the probability distribution of this
series corresponds to discrete histogram that approximates underlying distribution. The
length N is determined from the particular setup of the measured system.

Rényi entropy

I Shannon entropy can be generalized into 1-parameter class of Rényi entropies (RE)

Sq(X ) =
1

q − 1
log

∑
x∈X

pq(x) . (6)

I The entropy is motivated by Campbell coding theorem: it minimizes average cost of
codeword in case when cost is an exponential function of length.

I The RE accentuates extreme events for q > 1 and suppresses them for q < 1. For
q → 1 we recover SE.

I Example: Rényi entropy of a binomial model Pa = (a, 1− a)

I Analogously to (SMI) one can define Rényi mutual information (RMI) as

Iq(X ,Y ) =
1

q − 1
log

∑
x∈X ,y∈Y p

q
X(x)pqY (y)∑

x∈X ,y∈Y p
q
X ,Y (x, y)

(7)

I Rényi transfer entropy (RTE) can be straightforwardly defined as

Tq;Y→X(m, l) = Iq(Xm+1,Xm, . . . ,X1,Ym, . . . ,Ym−l+1)

− Iq(Xm+1,Xm, . . . ,X1) (8)

and the effective Rnyi transfer entropy (ERTE) analogously as

T e�
q;Y→X(m, l) = Tq;Y→X(m, l)− Tq;Yshu�ed→X(m, l). (9)

I Contrary to Shannon ETE, which is always positive [2], ERTE can be generally also
negative in particular cases, which means that knowledge of Y reveals an extra risk for
swan-like events.

Major world stock indices

I We take into the account 11 major stock indices according to the traded volume. 3 are
from U.S. region, 3 from Europe and 5 from Asia.

I The data are collected on the minute basis (high-frequency), and are collected over the
period of 3 years during the crisis 2007-2009.

I We also create the series Superindex, which is weighted sum of all indices and should
contain all information during the whole day.

I Main properties of the indices:

●
NYA

vol: 17.521
14:30−21:00

●

DAX
vol: 13.608
08:00−16:30

DJIA
vol: 13.608
14:30−21:00

●

AIM100
vol: 5.055

08:00−16:30

●

NKY
vol: 3.708

00:00−06:00

●

SZCOMP
vol: 2.772

01:30−07:00

●

SX5E
vol: 1.819

08:00−16:30
●

KOSPI2
vol: 1.769

00:00−06:00

●

HSI
vol: 1.553

01:20−08:00

CCMP
vol: 1.426

14:30−21:00

●

SHCOMP
vol: 1.416

01:30−07:00

U.S. region EU region

Asia region

Net informational flow of daily financial data

I Jizba et al. [2] presented the net entropy flow FX ,Y = TX→Y −TY→X among various
stocks. One can distinctly observe the different net flows for different values of q. This
is caused by accentuating different parts of distribution.

q = 0.8 q = 1 q = 1.5

Transfer information from Superindex to particular stocks

I The data are divided into 3-hrs time windows and for each is calculated ETE from
Superindex to particular stocks. Particularly interesting are time windows when
opening times of EU and Asian stocks, resp. EU and U.S. stocks are overlapped. For
q 6= 1, the opposite direction of arrow means the negative effective information flow.

q = 0.5 q = 1 q = 1.5

6-9h UTC

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

1.14e−05

2.46e−05

5.29e−05

1.14e−04

2.44e−04

5.25e−04

1.13e−03

2.42e−03

5.21e−03

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

1.44e−05

2.39e−05

3.98e−05

6.6e−05

1.1e−04

1.82e−04

3.03e−04

5.02e−04

8.34e−04

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

6.99e−06

1.34e−05

2.55e−05

4.87e−05

9.31e−05

1.78e−04

3.4e−04

6.49e−04

1.24e−03

15-18h UTC

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

4.36e−06

1.17e−05

3.13e−05

8.38e−05

2.25e−04

6.01e−04

1.61e−03

4.32e−03

1.16e−02

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

9.34e−05

1.29e−04

1.78e−04

2.46e−04

3.4e−04

4.69e−04

6.48e−04

8.95e−04

1.24e−03

SUPER

NYA

DJIA

NASDAQ

FTSE

SX5E

DAX

N225

KOSPI

HSI

SHCOMP

SZCOMP

8.39e−05

1.22e−04

1.77e−04

2.57e−04

3.74e−04

5.44e−04

7.9e−04

1.15e−03

1.67e−03

Conclusion

I Transfer entropy is a powerful tool to reveal strength and direction of information flow.
I Informational flow of extreme events, such as sudden jumps, can be revealed by Rényi

entropy with appropriate parameter q.
I Financial data exhibit a variety of complex informational flows among different stocks.
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