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MOTIVATION

A physicist, mathematician and programmer talk about
entropy. Somebody asks:

I what is entropy?
I measure of uncertainty, information, etc.

I how do you define entropy?
I physicist: S =

∫ dQ
T

I mathematician: S = −
∑

i pi log2 pi
I programmer: minimal length of message encoded in a

binary code

different definitions and still one quantity



INTRODUCTION

I entropy is the central concept of thermodynamics,
statistical mechanics and information theory

I there are close parallels between thermodynamical entropy
and statistical entropy

I nevertheless, there are some differences and it is necessary
to distinguish these concepts

I the aim of this talk is comparison of these concepts
I we discuss situations when a generalized form of entropy

can be more convenient in description of a system



HISTORICAL OVERVIEW

I Thermodynamics
I 1803: Carnot - first formulation of 2nd law of TD
I 1854: Clausius - equivalence-value (first formulation of TD

entropy)
I 1865: Clausius - first definition of entropy (he used term

entropy for the first time)
I Statistical mechanics

I 1877: Boltzman - S = kB ln W (microcanonical)
I 1880’s: Gibbs - S = −

∑
i pi ln pi

I Information theory
I 1948: Shannon - mathematical theory of communication -

Shannon entropy S(P) = −
∑

i pi log2 pi
I 1957: Jaynes - MaxEnt principle (connection between

information theory and statistical mechanics)
I 1961: Rényi entropy
I 1973: Havrda Charvát entropy, 1988 - Tsallis entropy



THERMODYNAMICAL ENTROPY

I classical thermodynamics is based on
laws of thermodynamics

I the first law of thermodynamics

dU = ∂Q− ∂W

I differential form of heat is not closed, but there exists an
integration factor, so

∂Q = TdS

I thermodynamical entropy is therefore defined as from the
previous relation

I as a consequence, entropy is a state variable



STATISTICAL MECHANICS ENTROPY

I Classical thermodynamics works with macroscopic
quantities

I Statistical mechanics works with microscopic quantities
from which can be the macroscopic quantities derived

I The whole description is based on ensemble description
and partition function

I Entropy can be determined as

S = kB ln Ωmic

= kB(ln Zcan + β < E >)

= kB(lnZgc + β(< E > −µ < N >))



INFORMATIONAL ENTROPY

I information theory defines the entropy as a measure of
information encoded in an arbitrary probability
distribution

I entropy represents the amount of information necessary to
fully determine a system

I exact form of entropy depends on the particular system
I the most common is the Shannon entropy (SE)

S(P) =
∑

i pi log2

(
1
pi

)



IMPORTANT PRINCIPLES OF ENTROPY

To entropy are connected several important principles, among
others:

I MaxEnt principle
I Legendre structure of TD
I Additivity
I Extensivity

we briefly discuss the importance of each principle



MAXENT PRINCIPLE
I connection between thermodynamical entropy and

informational entropy is given by Jaynes’ MaxEnt
principle

I thermodynamical entropy is obtained from the
distribution which maximizes informational entropy
under given constrains

I we define Lagrange function

L(P) = S(P)−
∑

λjfj(P) (1)

where S is the entropy and fj are the constraints
I usually, we consider average energy constraint
< E >=

∑
i piEi (canonical ensemble)

I corresponding Lagrange parameter represents the inverse
temperature β

I resulting distribution maximizing entropy is the one which
is realized in a thermodynamical system



LEGENDRE STRUCTURE OF THERMODYNAMICS

I one important consequence of MaxEnt principle is the
Legendre structure of thermodynamics

I for canonical ensemble represents Lagrange function the
free energy of the system

I therefore we get the well-known relation

F(T,V) = U(T,V)− TS(T,V) (2)

not only for Shannon entropy, but also for other entropy
functionals



ADDITIVITY

I additivity and extensivity are important properties of
statistical systems

I nevertheless, they have slightly different meaning
I additivity: informational property - entropy of a

compound system can be expressed as

S(A ∪ B) = S(A) + S(B|A) (3)

I it is possible to introduce a concept of generalized additivity
so for independent A,B

S(A ∪ B) = Φ(S(A),S(B)) (4)



EXTENSIVITY

I extensivity is, on the other hand, a thermodynamical
property depending on a particular system

I entropy is extensive if for state space W(N) is

lim
N→∞

S(W(N))

N
= ω (5)

the entropy scales as the number of particles so

S(2N) ' 2S(N)

I Shannon entropy is extensive for W(N) ∝ 2N

(no correlations)
I other entropies are extensive systems growing

polynomially Nα (Tsallis) or subexponentially 2Nγ



AXIOMATIC DEFINITION OF ENTROPY

I Entropy can be straightforwardly defined as a functional
on a probability space

I Alternatively, more rigorous definition was done by A.
Kolmogorov

I The axiomatic definition of the entropy enables us to
understand main properties of entropy

I It is also a good starting point for possible generalizations



AXIOMATIC DEFINITION OF SHANNON ENTROPY

Shannon entropy is defined by the following four axioms:
1. continuity: H(P) is continuous in every argument,
2. maximality: H(P) takes the maximal value for the uniform

distribution,
3. expansibility: H(p1, . . . , pn, 0) = H(p1, . . . , pn).
4. additivity: H(A ∪ B) = H(A) +H(B|A), where
H(B|A) =

∑
k pkH(B|A = ak).

From these four axioms can be determined the form of
Shannon entropy

H(P) = −
∑

k

pk ln pk .



GENERALIZED ENTROPIES

I functional form of Shannon entropy corresponds to
Boltzman-Gibbs entropy from statistical mechanics

I information theory provides many more information
measures

I one way how to define these entropies is to generalize
Shannon axiomatic

I these entropies could be understand as statistical
mechanical entropies resulting into a different
thermodynamics

I question at stake is if this approach is legitimate and if it
brings any advantages

I “everybody can have his/her own entropy”



RÉNYI ENTROPY
ENTROPY OF MULTIFRACTAL SYSTEMS

I Shannon entropy is not the only solution for additivity
axiom S(A ∪ B) = S(A) + S(B|A)

I The defining axioms remain the same but the fourth is
slightly changed:

4. Rényi additivity: Iq(A ∪ B) = Iq(A) + Iq(B|A),
where Iq(B|A) = g−1

[∑
k ρk(q)g[Iq(B|A = ak)]

]
,

ρk(q) = pq
k/
∑

j pq
j and g is positive and invertible function

on [0,∞).
I Similarly to Shannon entropy, it is possible to find an

operational definition of RE (minimal cost)

This leads to the definition of RE in the form:

Iq(P) =
1

1− q
ln

(∑
k

pq
k

)



RÉNYI ENTROPY
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APPLICATION OF RE
MULTIFRACTAL THERMODYNAMICS

I Rényi entropy has tight relation to theory of multifractals
I fractal systems: characteristic scaling relation and fractal

dimension (Koch snowflake,etc.)
I multifractal systems: multiple local scaling exponents,

probability distribution pi(s) ∼ sαi (s - scale)
I distribution of scaling exponents p(α, s) ∼ s−f (α)dα - f (α):

multifractal spectrum, fractal dimension of α-subset
I partition function Z(q, s) =

∑
i pi(s)q ∝ sτ(q) ∼ sαq−f (α)

I the whole system can be described alternatively by
multifractal spectrum f (α) or scaling function τ(q)

I Rényi entropy Iq = 1
1−q ln

∑
i pq

i ∼
τ(q)
q−1 = D(q)



APPLICATION OF RE
MULTIFRACTAL THERMODYNAMICS

I The connection to thermodynamics can be done via the
partition function

∑
i pq

i =
∑

i exp(−βEi)

I As a consequence Ei = − ln pi and β = q
I Temperature is equal to parameter q which is called

zooming parameter because for pq
i accentuates different

parts of PDF
I Relation between multifractal entropy Iq = 1

1−q ln Z(q, s)
and thermodynamical entropy Sq = (ln Z(q, s) + β < E >)
is more complicated



TSALLIS ENTROPY
ENTROPY OF NON-EXTENSIVE SYSTEMS

I Tsallis entropy generalizes the concept of entropy to
non-extensive systems

I it was firstly discovered in information theory by Czech
mathematicians J. Havrda and F. Charvát

I later it was introduced to physics by C. Tsallis
I The additivity axiom is now changed as follows:

4. Tsallis additivity:
Sq(A ∪ B) = Sq(A) + Sq(B|A) + (1− q)Sq(A)Sq(B|A),
where Sq(B|A) =

∑
k ρk(q)Sq(B|A = ak) and

ρk(q) = pq
k/
∑

j pq
j

We can deduce that Tsallis entropy has form

Sq(P) =
1

1− q

(∑
k

pq
k − 1

)



TSALLIS ENTROPY
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APPLICATION OF TSALLIS ENTROPY
THERMODYNAMICS WITH FINITE BATH

I let us consider a system S coupled with a heat bath B
I in microcanonical ensemble is the partition function given

by number of states Ωtot(E) =
∑

s ΩS(Es)ΩB(E− Es)

I for finite bath is ΩB(E− Es) ∝ (E− Es)
ns−1

I probability distribution is therefore
p(Es) = ΩB(E−Es)∑

k ΩB(E−Ek)
= 1

Z−1
q

[1− β(q− 1)Es]
1/(q−1)

I equivalently, Tsallis q-gaussian distribution can be derived
as a MaxEnt distribution of Tsallis entropy under
constraints

∑
i pi = 1

∑
j pjEj =< E >

I There are problems with temperature definition
(self-referential temperature - depending on distribution)



HYBRID ENTROPY
OVERLAP BETWEEN SELF–SIMILARITY AND NON–EXTENSIVITY

I recently, there have been many attempts on further
generalizations - one of them is called hybrid entropy

I hybrid entropy is based on both properties of Rényi
entropy and Tsallis entropy

I resulting entropy can describe self–similar and
non–extensive systems

I additivity axiom is now changed as
4. J.-A. additivity:
Dq(A ∪ B) = Dq(A) +Dq(B|A) + (1− q)Dq(A)Dq(B|A),
where Dq(B|A) = f−1

[∑
k ρk(q)f [Dq(B|A = ak)]

]
,

ρk(q) = pq
k/
∑

j pq
j is escort distribution and f is a positive

and invertible function on [0,∞).

These axioms define the hybrid entropy in form:

Dq(P) =
1

1− q

(
e−(1−q)

∑
k ρk(q) ln pk − 1

)
=

1
1− q

(
e−(1−q)〈lnP〉q − 1

)



HYBRID ENTROPY
MAXENT DISTRIBUTION

I we demand normalization condition
∑

k pk = 1 and given
expectation value of energy 〈E〉r =

∑
k ρk(r)Ek.

I two most common choices are linear averaging (r = 1,
〈E〉 =

∑
k pkEk) and q-averaging (r = q)

I for both cases we find the MaxEnt distributions and
discuss their properties

I the maximization under constraints is done via the
Lagrange multiplier method:

Lq,r(P) = Dq(P)−Ω

(∑
k

ρk(r)Ek − 〈E〉r

)
−Φ

(∑
k

pk − 1

)



HYBRID ENTROPY
MAXENT FOR r = q

I condition ∂Lq,q(P)
∂pi

= 0 leads to equation

κp1−q
i = q ln pi + Ei

where κ =
∑

j pq
j and Ei = 1 +

q ln(−Φ)
1−q +

qΩ
−Φ(Ei − 〈E〉q)

I previous equation can be solved in terms of Lambert
W-function defined as W(x)eW(x) = x

I we obtain pi =
[

q
κ(q−1) W

(
κ(q−1)

q e(q−1)Ei/q
)]1/(1−q)

I Lambert W-function is defined only on interval [−1/e,∞),
so there are energy regions with zero probability - energy
gaps



HYBRID ENTROPY
MAXENT FOR r = q

I Similarly to previous case, from condition ∂Lq,1(P)

∂pi
= 0 we

obtain

κp1−q
i =

Φ

Φ + Ω(Ei − 〈E〉)

[
q ln pi −

q ln(−Φ)

q− 1
+ 1
]

I The solution of previous equation is

pi =

[
qΦ

(q− 1)κ(Φ + Ω∆Ei)
W
(
−
κ(q− 1)

Φq
exp

(
q− 1

q

) (
1 +

Ω

Φ
∆Ei

))]1/(1−q)

I Also in this case we observe energy gaps and forbidden
energies



MAXIMALITY AXIOM AND AND (SCHUR-)CONCAVITY

I In the derivation of the hybrid entropy was not used the
maximality axiom, it is necessary to check its validity

I We focus on the term 〈lnP〉q =
∑

k ρk(q) ln pk

I For q < 1/2, 〈lnP〉q does not become maximal value for
equal probabilities

I Thus, the hybrid entropy is properly defined only for
q ≥ 1/2

I hybrid entropy is for concave for q ≥ 1 and Schur-concave
for q ≥ 1/2 (weaker version of concavity)



HYBRID ENTROPY

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

1.2

DHpL

q=0.3 q=0.5 q=1 q=2 q=4

Hybridentropy



DISCUSSION

I the main question is if generalized entropies are a
fundamental concept, similarly to thermodynamical
entropy

I one could think about systems with q-gaussian
distributions

I MaxEnt distribution does not determine entropy:
q-gaussian distribution can be obtained from

I Tsallis entropy under constraints∑
i pi = 1,

∑
i piEi =< E >

I Shannon entropy under constraints∑
i pi = 1,

∑
i pq

i = Nq,
∑

i Eiρi(q) =< E >q

I same distributions - different entropies (correlated walk vs
accelerated walk)

I problems with operational definitions (Tsallis entropy
cannot be measured) and self-referential entropy



CONCLUSIONS

I entropy is the concept used in many different scientific
fields

I the talk compared its definition and connection is
thermodynamics, statistical mechanics and information
theory

I several generalized entropies were presented - Rényi
entropy, Tsallis entropy

I we have combined axiomatic of Rényi entropy and Tsallis
entropy and obtained a new class of hybrid entropies

I generalized entropies can be useful tools for description of
various systems

I usually, they are not fundamental concepts (contrary to
thermodynamical entropy)
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Thank you for your attention.


