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MOTIVATION

A physicist, mathematician and programmer talk about
entropy. Somebody asks:
» what is entropy?
» measure of uncertainty, information, etc.
» how do you define entropy?
> physicist: 5 = [ ¢
» mathematician: S = — >, p; log, p;
» programmer: minimal length of message encoded in a
binary code

different definitions and still one quantity



INTRODUCTION

» entropy is the central concept of thermodynamics,
statistical mechanics and information theory

» there are close parallels between thermodynamical entropy
and statistical entropy

» nevertheless, there are some differences and it is necessary
to distinguish these concepts

» the aim of this talk is comparison of these concepts

» we discuss situations when a generalized form of entropy
can be more convenient in description of a system



HISTORICAL OVERVIEW

» Thermodynamics
» 1803: Carnot - first formulation of 2nd law of TD
» 1854: Clausius - equivalence-value (first formulation of TD
entropy)
» 1865: Clausius - first definition of entropy (he used term
entropy for the first time)
» Statistical mechanics
» 1877: Boltzman - S = ki In W (microcanonical)
» 1880’s: Gibbs -5 = — > p;Inp;
» Information theory
» 1948: Shannon - mathematical theory of communication -
Shannon entropy S(P) = — >, pilog, p;
» 1957: Jaynes - MaxEnt principle (connection between
information theory and statistical mechanics)
» 1961: Rényi entropy
» 1973: Havrda Charvat entropy, 1988 - Tsallis entropy



THERMODYNAMICAL ENTROPY

» classical thermodynamics is based on
laws of thermodynamics

» the first law of thermodynamics
dU = 0Q — oW
» differential form of heat is not closed, but there exists an
integration factor, so
0Q = TdS
» thermodynamical entropy is therefore defined as from the
previous relation

> as a consequence, entropy is a state variable



STATISTICAL MECHANICS ENTROPY
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Classical thermodynamics works with macroscopic

quantities

Statistical mechanics works with microscopic quantities
from which can be the macroscopic quantities derived

The whole description is based on ensemble description
and partition function

Entropy can be determined as

S
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INFORMATIONAL ENTROPY

» information theory defines the entropy as a measure of
information encoded in an arbitrary probability
distribution

» entropy represents the amount of information necessary to
fully determine a system

» exact form of entropy depends on the particular system

» the most common is the Shannon entropy (SE)

S(P) = >_;pilog, (;%,)



IMPORTANT PRINCIPLES OF ENTROPY

To entropy are connected several important principles, among
others:

» MaxEnt principle

v

Legendre structure of TD
Additivity

Extensivity

v

v

we briefly discuss the importance of each principle



MAXENT PRINCIPLE

>

connection between thermodynamical entropy and
informational entropy is given by Jaynes” MaxEnt
principle

thermodynamical entropy is obtained from the
distribution which maximizes informational entropy
under given constrains

we define Lagrange function

L(P) = S(P) = > Af(P) (1)

where S is the entropy and f; are the constraints

usually, we consider average energy constraint

< E >= ). piE; (canonical ensemble)

corresponding Lagrange parameter represents the inverse
temperature 3

resulting distribution maximizing entropy is the one which
is realized in a thermodynamical system



LEGENDRE STRUCTURE OF THERMODYNAMICS

» one important consequence of MaxEnt principle is the
Legendre structure of thermodynamics

» for canonical ensemble represents Lagrange function the
free energy of the system

» therefore we get the well-known relation
F(T,V)=U(T,V)—-TS(T,V) (2)

not only for Shannon entropy, but also for other entropy
functionals



ADDITIVITY

» additivity and extensivity are important properties of
statistical systems

» nevertheless, they have slightly different meaning

» additivity: informational property - entropy of a
compound system can be expressed as

S(AUB) = S(A) + S(B|A) 3)

» it is possible to introduce a concept of generalized additivity
so for independent A, B

S(AUB) = ®(5(A),5(B)) 4)



EXTENSIVITY

» extensivity is, on the other hand, a thermodynamical
property depending on a particular system

» entropy is extensive if for state space W (N) is
S(WN))

Iim ———% =w
NEI;C N )

the entropy scales as the number of particles so
S(2N) ~ 25(N)
» Shannon entropy is extensive for W(N) oc 2
(no correlations)

» other entropies are extensive systems growing
polynomially N (Tsallis) or subexponentially 2"



AXIOMATIC DEFINITION OF ENTROPY

» Entropy can be straightforwardly defined as a functional
on a probability space

» Alternatively, more rigorous definition was done by A.
Kolmogorov

» The axiomatic definition of the entropy enables us to
understand main properties of entropy

» Itis also a good starting point for possible generalizations



AXIOMATIC DEFINITION OF SHANNON ENTROPY

Shannon entropy is defined by the following four axioms:
1. continuity: #(P) is continuous in every argument,
2. maximality: 7 (P ) takes the maximal value for the uniform
distribution,

3. expansibility: H(p1,....pn.0) = H(pi,....pn).
4. additivity: H(A UB) = H(A) + H(B|A), where
H(B‘A) - Zk pk%(B’A - le).
From these four axioms can be determined the form of
Shannon entropy

H(P) - = Zpk lnpk-
k
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GENERALIZED ENTROPIES

» functional form of Shannon entropy corresponds to
Boltzman-Gibbs entropy from statistical mechanics

» information theory provides many more information
measures

» one way how to define these entropies is to generalize
Shannon axiomatic

» these entropies could be understand as statistical
mechanical entropies resulting into a different
thermodynamics

» question at stake is if this approach is legitimate and if it
brings any advantages

» “everybody can have his/her own entropy”



RENYI ENTROPY

ENTROPY OF MULTIFRACTAL SYSTEMS

» Shannon entropy is not the only solution for additivity
axiom S(AUB) = S(A) + S(B|A)

» The defining axioms remain the same but the fourth is
slightly changed:

4. Rényi additivity: 7,(A U B) = 7,(A) + 7,(B|A),
where 7,(B|A) = g7 [, pe(9)8[Zy(BIA = ay)]],

pi(q) = p}/ >, p] and g is positive and invertible function
on [0, 00).

» Similarly to Shannon entropy, it is possible to find an
operational definition of RE (minimal cost)

This leads to the definition of RE in the form:

1 ‘
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RENYI ENTROPY

Renyi entropy




APPLICATION OF RE

MULTIFRACTAL THERMODYNAMICS

» Rényi entropy has tight relation to theory of multifractals

» fractal systems: characteristic scaling relation and fractal
dimension (Koch snowflake,etc.)

» multifractal systems: multiple local scaling exponents,
probability distribution p;(s) ~ s (s - scale)

» distribution of scaling exponents p(cv,s) ~ s/ (“da - f(a):
multifractal spectrum, fractal dimension of a-subset

» partition function Z(q,s) = > pi(s)7 oc 570 ~ g2 (<)

» the whole system can be described alternatively by
multifractal spectrum flo) or scaling function 7(q)

> Rényi entropy 7, = ;= In Sip! - = D(q)



APPLICATION OF RE

MULTIFRACTAL THERMODYNAMICS

» The connection to thermodynamics can be done via the
partition function >, p! = >~ exp(— L))

» Asaconsequence £; = —Inp;and J =g

» Temperature is equal to parameter g which is called
zooming parameter because for p! accentuates different
parts of PDF

» Relation between multifractal entropy I,

and thermodynamical entropy S, = (In Z(q,
is more complicated

1]—17 InZ(q,s)

s)+ B <E>)



TSALLIS ENTROPY

ENTROPY OF NON-EXTENSIVE SYSTEMS

» Tsallis entropy generalizes the concept of entropy to
non-extensive systems

» it was firstly discovered in information theory by Czech
mathematicians J. Havrda and F. Charvat
» later it was introduced to physics by C. Tsallis

» The additivity axiom is now changed as follows:
4. Tsallis additivity:
S;(AUB) = §,(A) + 8,(BIA) + (1 - 0)S,(A)S,(BIA),
where S, (B/A) = > pe(q)S,(BIA = a;) and
pe(q) = pi/ 2P}

We can deduce that Tsallis entropy has form

1 ‘
Sq(P)_ 1*4 < F’/Zl>
k
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TSALLIS ENTROPY

Tsdlisentropy
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APPLICATION OF TSALLIS ENTROPY

THERMODYNAMICS WITH FINITE BATH

>

>

let us consider a system S coupled with a heat bath 5

in microcanonical ensemble is the partition function given
by number of states (), (E) = > Qg(E;)Qp(E — E;)

for finite bath is Q5(E — E) oc (E — E.)" !

probability distribution is therefore

Qp(E—Es y
P(Es) = soiezBls = 11— B(g — DEJV@

equivalently, Tsallis q-gaussian distribution can be derived
as a MaxEnt distribution of Tsallis entropy under
constraints ), p; = 1) piEj =< E >

There are problems with temperature definition
(self-referential temperature - depending on distribution)



HYBRID ENTROPY

OVERLAP BETWEEN SELF-SIMILARITY AND NON—EXTENSIVITY

» recently, there have been many attempts on further
generalizations - one of them is called hybrid entropy
» hybrid entropy is based on both properties of Rényi
entropy and Tsallis entropy
» resulting entropy can describe self-similar and
non-extensive systems
» additivity axiom is now changed as
4. |.-A. additivity:
DA UB)~ Did) £ DB & (DA BI4)
where D, (BJA) = 1 [3, pe(q)f[D; (BIA = ap)]],
pi(q) = p}/ >, p] is escort distribution and / is a positive
and invertible function on [0, o0).

These axioms define the hybrid entropy in form:

D,(P) = 1 (C,u,q) S k@) Inpy _ 1) _ 11q (L,eufq)anpm -

1—9q

=} F



HYBRID ENTROPY

MAXENT DISTRIBUTION

» we demand normalization condition ), p; = 1 and given
expectation value of energy (E), = >, pr(r)Ey.

» two most common choices are linear averaging (r = 1,
(E) = > i piLy) and g-averaging (= )

» for both cases we find the MaxEnt distributions and
discuss their properties

» the maximization under constraints is done via the
Lagrange multiplier method:

Ly (P) = Dy(P) - Q (Z pr(r)Ex — <E>r> - <Z Pk — 1)
k k




HYBRID ENTROPY

MAXENT FOR 7 = g

0Ly q(P)

» condition oy~ =0 leads to equation

wp; = qnp+ &

where x = Z/ p] and & =1+ 1 “} qq)) + Z%(Ei —(E)q)

» previous equation can be solved in terms of Lambert
W-function defined as W(x)e"'*) = x

» we obtain p; = L(qﬂil) W (n(qqf]) e(q_l)&/qﬂl/(hL])

» Lambert W-function is defined only on interval [—1/¢, o),

so there are energy regions with zero probability - energy
&aps



HYBRID ENTROPY

MAXENT FOR 7 = g

» Similarly to previous case, from condition
obtain

05,5;}57?) _ Owe
@ Lo qin(=®)
i T 31 QE - (B) {" LA
» The solution of previous equation is
. (]‘I)

(g — _ 9) 1/(1—9q)
- 4% 7h(q ) exp <u> <]+7AEi>>}
(g — 1D)r(P + QAE;) ®q q P
energies

» Also in this case we observe energy gaps and forbidden



MAXIMALITY AXIOM AND AND (SCHUR-)CONCAVITY

» In the derivation of the hybrid entropy was not used the
maximality axiom, it is necessary to check its validity

» We focus on the term (In7), = >, pr(q) Inpy

» Forg < 1/2,(InP), does not become maximal value for
equal probabilities

» Thus, the hybrid entropy is properly defined only for
q=1/2

» hybrid entropy is for concave for 7 > 1 and Schur-concave
for g > 1/2 (weaker version of concavity)



HYBRID ENTROPY

D(p)

Hybridentropy




DI1SCUSSION

» the main question is if generalized entropies are a
fundamental concept, similarly to thermodynamical
entropy

» one could think about systems with g-gaussian
distributions

» MaxEnt distribution does not determine entropy:
7-gaussian distribution can be obtained from

» Tsallis entropy under constraints

Yupri=1>,pEi=<E>
» Shannon entropy under constraints

Yopi= 1,2477 = Ny, > iEipi(q) =< E >,
» same distributions - different entropies (correlated walk vs
accelerated walk)
» problems with operational definitions (Tsallis entropy
cannot be measured) and self-referential entropy



CONCLUSIONS

» entropy is the concept used in many different scientific
fields

» the talk compared its definition and connection is
thermodynamics, statistical mechanics and information
theory

» several generalized entropies were presented - Rényi
entropy, Tsallis entropy

» we have combined axiomatic of Rényi entropy and Tsallis
entropy and obtained a new class of hybrid entropies

» generalized entropies can be useful tools for description of
various systems

» usually, they are not fundamental concepts (contrary to
thermodynamical entropy)
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Thank you for your attention.



