Space-time fractional diffusion and its applications in finance

Jan Korbel February 9, 2017

Department of Physics, Zhejiang University, Hangzhou Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Workshop Path Integration in Complex Dynamical Systems, Lorentz Center, Leiden

Introduction

Mathematical description of Space-time diffusion model

Applications of anomalous fractional diffusion to option pricing

Ongoing research and perspectives

Introduction

- Financial markets are complex systems with many non-trivial phenomena
- Prices S_t are described via log-returns $R_t = \ln S_t \ln S_0$
- Returns can be modeled via diffusion processes $R_t \sim \mathcal{N}(0, \sigma^2 t)$
- Prices are described as geometric Brownian motion $S_t = e^{R_t} = e^{\sum_{i=1}^t r_i}$
- Brownian motion cannot describe more complex phenomena (jumps, memory), so we introduce several classes of generalized anomalous diffusion which describe these phenomena more accurately

Derivative pricing

- In finance are traded many derivatives assets, whose price depends on underlying asset futures, forwards, CDF, options...
- Their price should be derived from the possible scenarios of underlying assets
- First option pricing model (Black and Scholes) was based on ordinary Brownian motion 1973
- 1997 Nobel prize in economics (Scholes, Merton)
- In financial crises or in complex markets, the model cannot catch realistic market dynamics large drops, sudden shocks, memory effects
- We investigate these markets in the framework of several classes of anomalous diffusion

Mathematical description of Space-time diffusion model

Stable distributions

- $L_{\alpha,\beta;\bar{x},\sigma}$ class of distributions form-invariant w.r.t. convolution
- limiting distributions for sums of i. i. d. variables with no constraint on variance (σ² ≤ +∞)
- Stable Hamiltonian (logarithm of a characteristic function)

$$H_{\alpha,\beta;\bar{x},\sigma}(k) = \ln \int_{\mathbb{R}} e^{ikx} L_{\alpha,\beta;\bar{x},\sigma}(x) \, dx$$
$$= i\bar{x}k - \sigma^{\alpha}|k|^{\alpha} \left(1 - i\beta \operatorname{sign}(k)\omega(k,\alpha)\right)$$

with $\omega(k, \alpha) = \tan(\alpha \pi/2)$ for $\alpha \neq 1$ and $\omega(k, 1) = 2/\pi \ln |k|$.

- Parameters: $\alpha \in (0, 2]$ shape, $\beta = [-1, 1]$ asymmetry $\sigma > 0$ - scale, $\bar{x} \in \mathbb{R}$ - location
- standard distribution $L_{\alpha,\beta}(x) = \frac{1}{\sigma} L_{\alpha,\beta;\bar{x},\sigma} \left(\frac{x-\bar{x}}{\sigma} \right)$
- for $\alpha < 2$ is decays polynomially as $1/|x|^{\alpha+1}$,
- extreme cases $\beta = \pm 1$:
 - $\alpha \in (1,2)$ exponential decay for left, resp. right tail.
 - $\alpha \in (0,1]$ bounded support from left, resp. from right.

 stable distributions with β = -1 are preferred in financial applications for description of log-Lévy process Y = e^{Lα,-1}, because all moments exist and are finite = Laplace transform exists

$$\int L_{\alpha,-1}(x)e^{x}\,\mathrm{d}x = e^{-\sigma^{\alpha}\sec(\frac{\pi\alpha}{2})}$$

• alternative representation of stable Hamiltonian

$$\mathcal{H}_{\alpha,\theta,\bar{x},c}(k) = i\bar{x}k - c|k|^{\alpha}e^{i\mathrm{sign}(k)\theta\frac{\pi}{2}}$$

- c, θ functions of α , β and σ
- $\theta \leq \min\{\alpha, 2 \alpha\}$ Feller-Takayasu diamond

- The aim is to generalize diffusion equation $\frac{\partial}{\partial t}g(x,t) = \frac{\partial^2}{\partial x^2}g(x,t)$ to obtain more complex diffusion processes
- fractional derivatives generalization for non-natural orders: not unique
- Caputo derivative

$$_{x_0}^*\mathcal{D}_x^{\nu}f(x) := \frac{1}{\Gamma(\lceil \nu \rceil - \nu)} \int_{x_0}^x \frac{f^{\lceil \nu \rceil}(y)}{(x - y)^{\nu + 1 - \lceil \nu \rceil}} \mathrm{d}y$$

- preserves derivative of polynomials: ${}^*\mathcal{D}^{\nu}_{x}x^{\mu} = \frac{\Gamma(\mu+1)}{\Gamma(\mu-\nu+1)}x^{\mu-\nu}$.
- because of lower integral bound x₀, it is convenient for time derivative
- in the following we consider $x_0 = 0$

Fractional calculus

• Riesz-Feller derivative

 $\mathfrak{D}_x^{\nu}f(x) = \int_{\mathbb{R}} \frac{e^{ikx}}{2\pi} (-ik)^{\nu} \mathcal{F}[f](k) dk$

- preserves derivative of exponentials: D^ν_x exp(λx) = λ^ν exp(λx)
- in Fourier image, the R.-F. derivative corresponds to stable Hamiltonian with $\beta=-1$
- Riesz-Feller derivative can be defined via Caputo derivative for $x_0 \rightarrow -\infty$
- R.-F. pseudo-derivative operator ^θD^ν:
 F[^θD^νf(x)](k) = H_{ν,θ}(k)f(k)
- Due to the connection with stable distribution, it is convenient for space derivative

• Space fractional diffusion equation in 1D

$$\left(\partial_t - {}^{\theta}\mathfrak{D}_x^{\alpha}\right)g_{\alpha}^{\theta}(x,t) = 0$$

- Solution: Lévy-flight $g^{\theta}_{\alpha}(x,t) = 1/t^{1/\alpha}L_{\alpha,\theta}(x/t^{1/\alpha})$
- continuous sample paths for $\alpha>1$
- for α < 2 are some moments infinite/indeterminable (E[|x|^δ] < +∞ for δ < α)
- scaling exponent $1/\alpha$ self-similarity

Graphs of stable distribution

- Generalization of space-fractional diffusion for fractional time derivative non-Markovian
- Space-time fractional diffusion equation in 1D

$$(^{*}\mathcal{D}_{t}^{\gamma}-\mathfrak{D}_{x}^{\alpha})g_{\alpha,\gamma}^{\theta}(x,t)=0$$

- Parameter space: $\alpha \in [1, 2]$ continuity of sample paths $\gamma \in (0, \alpha]$ - probabilistic interpretation $(g(x, t) \ge 0)$
- for γ ≤ 1 we have one initial condition g(x, 0) = δ(x) for γ ∈ (1, 2] we have another condition ^{∂g}/_{∂t}(x, t)|_{t=0} ≡ 0.

¹F. Mainardi, Yu. Luchko, G. Pagnini, Frac. Calc. Appl. Anal. 4(2), 153 (2001)

Solution of double-fractional diffusion equation

• Solution is obtained through Fourier-Laplace image $(x \xrightarrow{\mathcal{F}} p, t \xrightarrow{\mathcal{L}} s)$

$$(s^\gamma-H_{lpha,-1}(p))\hat{ar{g}}(p,s)=s^{\gamma-1}$$

• inverse Laplace transform:

$$\hat{g}(p,t) = E_{\gamma}(\mathcal{H}_{lpha, heta}(k)t^{\gamma})$$

- Mittag-Leffler function: $E_{\gamma}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\gamma n+1)}$
- Mellin representation: $E_{\gamma}(z) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(s)\Gamma(1-s)}{\Gamma(1-\gamma s)} (-z)^{-s} ds$
- Mellin-Barnes integral rep. of $g^{\theta}_{\alpha,\gamma}(x,t)$:

$$g^{\theta}_{\alpha,\gamma}(x,t) = \frac{1}{2\alpha\pi i x} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma\left(\frac{s}{\alpha}\right) \Gamma\left(1-\frac{s}{\alpha}\right) \Gamma(1-s)}{\Gamma\left(1-\frac{\gamma}{\alpha}s\right) \Gamma\left(\frac{(\alpha-\theta)s}{2\alpha}\right) \Gamma\left(1-\frac{(\alpha-\theta)s}{2\alpha}\right)} \left[\frac{x}{(t^{\gamma})^{1/\alpha}}\right]^{s} \mathrm{d}s.$$

Smearing kernel representation²

- for $\gamma < 1$ it is possible to derive a composition rule, so the solution can be expressed as

$$g(x,t) = \int_0^\infty dl g_\gamma(t,l) g_\alpha(l,x)$$

where the kernels are solutions of fractional equations

$$\frac{\partial g_{\gamma}(t, l)}{\partial l} = {}^{*}_{0} \mathcal{D}^{\gamma}_{t} g_{\gamma}(t, l)$$
$$\frac{\partial g^{\theta}_{\alpha}(l, x)}{\partial l} = {}^{\theta} \mathcal{D}^{\alpha}_{x} g^{\theta}_{\alpha}(l, x)$$

- $g^{\theta}_{\alpha}(l,x) = L_{\alpha,\theta}(l,x)$ stable distribution
- $g_{\gamma}(t, l) = \left(\frac{t}{l_{\gamma}}\right) \frac{1}{l^{1/\gamma}} L_{\gamma, 1}\left(\frac{t}{l^{1/\gamma}}\right)$ smearing kernel
- Path integral representation: it is possible to rewrite the smearing-kernel representation into a double path integral

²H. Kleinert, V. Zatloukal, Phys. Rev. E 88, 052106 (2013)

Graphs of double-fractional Green functions

Space-time fractional diffusion of varying order

with Yu. Luchko

- One of important aspects of financial markets is switching between different regimes conjuncture vs crisis
- Long-term scaling properties remain stable and characteristic for each stock
- This requires time-dependent description by fractional diffusion of varying order: we have intervals T_i = (t_i, t_{i+1})
- dynamics described by a space-time fractional diffusion in each interval

$$\begin{pmatrix} * \\ t_i \mathcal{D}_t^{\gamma_i} - \mathfrak{D}_x^{\Omega \gamma_i} \end{pmatrix} g_i(x, t) = 0$$

with initial condition $g_i(x, t_i) = g_{i-1}(x, t_i)$, $g_0(x, 0) = f(x)$. For $\gamma_i > 1$ we add another condition $\frac{\partial g_i(x,t)}{\partial t}|_{t=t_i} = 0$.

• the dynamics is given by convolution of g_i

$$g(x,t)=f(x)*g_0(x,t_1-t_0)*\cdots*g_i(x,t-t_i)$$
 for $t\in T_i$

- stable parameter is determined by other parameters: $\alpha_i = \Omega \gamma_i$
- $\Omega = \frac{\gamma_i}{\alpha_i}$ remains constant as describes the scaling $g(x, t) = \frac{1}{t^{\Omega}}g\left(\frac{x}{t^{\Omega}}\right)$
- Estimation of Ω scaling methods
 - Diffusion entropy analysis³: $S(t) = -\int g(x, t) \ln[g(x, t)] dx = S(1) + \Omega \ln t$
 - Entropy production rate: $R(t) = \frac{dS(t)}{dt} = \frac{\Omega}{t}$
- Connection to regime-switching volatility models absolute moment for $\theta = \alpha 2$ ($\beta = -1$) are

$$E[|x|^{s}] = \frac{1 + \csc\left(\frac{\pi s}{\Omega\gamma}\right)\sin\left(\pi s\left(1 - \frac{1}{\Omega\gamma}\right)\right)}{\gamma} \frac{\Gamma(s)}{\Gamma\left(\frac{\pi}{\Omega}\right)} \propto \frac{1}{\gamma}$$

³see e.g., P. Jizba, J. K., Physica A 413, 348 (2014)

Diffusion in a temporally abnormal period

- Space-time fractional diffusion of varying order can be used for description of temporally abnormal period e.g. crisis
- We distinguish two intervals
 - short-term behavior affected by immediate dynamics
 - long-term behavior characterized by scaling properties

Described by g(x, t) as overlap between space-time fractional diffusion $(t \leq \tau)$ and Lévy flight $(t \to \infty)$. Ω is the system-characterized scaling exponent

$$g_{\gamma, heta, au,\sigma}(x,t) = \left\{egin{array}{ll} g^{ heta}_{\Omega\gamma,\gamma}(x/\sigma,t), & t\leq au, \ \left[g^{ heta}_{\Omega\gamma,\gamma}(au)*\mathcal{L}_{\Omega, heta}(t- au)
ight](x/\sigma), & t> au, \end{array}
ight.$$

- In financial applications $\theta = \alpha 2$
- Good approximation of models with more intervals PDF converges to stable distribution

Green function of fractional diffusion of varying order

Green functions for t = 1, $\alpha = 1.6$, $\beta = -1$ and different τ for $\gamma = 0.9$ (left) and $\gamma = 1.1$ (right)

Applications of anomalous fractional diffusion to option pricing

- *option* is a special asset which gives to the owner the right (option) to buy (call) or sell (put) an underlying asset for specified strike price *K*.
- European options: the option can be exercised only at a certain maturity time T
- buyer long position, seller short position
- seller takes the risk of losses this is compensated by the option price
- Price of a call option at *maturity time* (t = T):

$$C(S,K) = \max\{S - K, 0\}$$

(if S < K we can directly buy the underlying asset for price S)

Option pricing

• Call option for t < T

$$C(S_t, K, t) = e^{-r(T-t)} E[C(S_T, T|S_t, t)]_{\mathbb{Q}} = \int_{\mathbb{R}} dy \max \left\{ S_t e^{(t-T)(r+\mu)+y} - K, 0 \right\} g(y, T-t)$$

- Put option $P(S_t, t) = C(S_t, t) S_t + Ke^{-r(T-t)}$
- g(y, τ) is the probability distribution given by an appropriate stochastic model
- Q is the *equivalent risk-neutral measure* which is reflected by presence of μ in the option pricing formula
- μ can be calculated as

$$\mu = \ln \int e^{x} g(x, 1) \mathrm{d}x$$

the integral has to converge - only for $\theta = \alpha - 2$ - exponential decay

Comparison of fractional option pricing models

with H. Kleinert⁶, Yu. Luchko⁷

- We fit the model with the option prices of S&P 500 in November 2008 ($\sim 10^5~\rm records)$
- We minimize aggregated error over all available maturity times *T* and all strike prices *K*

$$AE = \sum_{t \in T, K \in \mathcal{K}} |\mathcal{O}_{model} - \mathcal{O}_{market}|$$

- We compare Black-Scholes⁴, Lévy-stable⁵, Double-fractional⁶ and 2-period Varying order⁷ model
- We do the analysis for all options and separately for call and put options

 ⁴F. Black, M. Scholes, J. Polit. Econ. 81(3), 1973
 ⁵P. Carr, L. Wu, J. Fin. 58(2), 2003
 ⁶H. Kleinert, J. K., Physica A 449, 2016
 ⁷J. K., Yu. Luchko, Frac. Calc. Apl. Anal. 19(6), 2016

Model calibration for S&P 500 options traded in November 2008

All options									
par.	Black-Scholes	Lévy stable	Double-fractional	Varying order					
σ	0.1696(0.027) 0.140(0.021) 0.143(0.030		0.143(0.030)	0.132(0.019)					
α	-	1.493(0.028)	1.503(0.037)	$1.50 \cdot \gamma$					
γ	-	-	1.017(0.019)	0.905(0.040)					
τ	-	-	-	0.072(0.025)					
AE	8240(638)	6994(545)	6931(553)	<mark>4794</mark> (584)					
Call options									
par.	Black-Scholes	Lévy stable	Double-fractional	Varying order					
σ	0.140(0.021)	0.118(0.026)	0.137(0.020)	0.079(0.017)					
α	-	1.563(0.041)	1.585(0.038)	$1.50\cdot\gamma$					
γ	-	-	1.034(0.024)	0.809(0.016)					
τ	-	-	-	0.118(0.067)					
AE	3882(807)	3610(812)	3550(828)	1437(293)					
Put options									
par.	Black-Scholes	Lévy stable	Double-fractional	Varying order					
σ	0.193(0.039)	0.163(0.034)	0.163(0.037)	0.174(0.072)					
α	-	1.493(0.031)	1.508(0.036)	$1.50\cdot\gamma$					
γ	-	-	1.047(0.017)	0.961(0.092)					
τ	-	-	-	0.578(0.728)					
AE	3741(711)	3114(591)	2968(594)	2161(466)					

Estimated call and put option prices for various maturity times

Risk redistribution among strike prices and maturity times

- the risk coming from selling an option can be eliminated by appropriate hedging strategy
- we create a portfolio Π(S, t) = C(S, t) φ(S, t)S(t) containing a short of the option and a fraction φ(S, t) of the underlying asset S(t) used to hedge the option.
- optimal strategy $\phi^*(S, t)$ can be expressed as

$$\phi^*(S,t) = \frac{1}{\sigma^2} \int_{\mathbb{R}} \mathrm{d}S(S_{t_0} - S_t) \max\{S_t - K, 0\} g(S,T|S_t,t)$$

Ongoing research and perspectives

Series formula for the fractional option pricing models

with J.-P. Aguilar and C. Coste

- Calculation of option prices driven by fractional diffusion requires knowledge of advanced mathematical concepts - stable distributions, Mellin calculus, etc.
- Alternatively it is possible to express the price though residue series
- we express payoff function as

$$[Se^{(r+\mu)\tau+y} - K]^+ = \frac{K}{2i\pi} \int_{c_s - i\infty}^{c_s + i\infty} - \frac{e^{-(r+\mu)\tau s - ys}}{s(s+1)} \left(\frac{S}{K}\right)^{-s} ds$$

 Together with Mellin-Barnes representation of exp(-μsτ) it is possible to rewrite the option price as

$$C_{(\alpha,\gamma,\theta)}(S,K,\tau) = \frac{Ke^{-r\tau}}{\alpha} \frac{1}{(2i\pi)^2} \int_{\underline{c}+i\mathbb{R}^2} \omega_{\alpha,\gamma,\theta}(\underline{t})$$

where $\omega_{\alpha,\gamma,\theta}(\underline{t})$ is a complex 2-form.

Series formula for the fractional option pricing models

• It is possible to derive a residue formula

$$\frac{1}{(2i\pi)^2} \int_{\underline{c}+i\mathbb{R}^2} \omega(\underline{t}) = \sum_{z_k \in \Pi} \operatorname{Res}_{z_k} \omega$$

where Π is an appropriate cone in \mathbb{C}^2 .

Example: residue summation for totally asymmetric space-time fractional diffusion

$$C_{\alpha}(S, K, \tau) = \frac{1}{\alpha} \sum_{\substack{n \geq -1 \\ m \geq 0}} \frac{2^{\frac{1+\alpha}{\alpha} - m}(S - (-1)^{m}Ke^{-r\tau})}{(1 + n - m)!m!\Gamma(1 - \frac{\gamma}{\alpha}(1 + n))} [\log]^{1+n-m} \Sigma^{-1-n+\alpha m} \tau^{\frac{1-\gamma}{\alpha}(1+n)}$$

where $\tau = T - t$, $[\log] = \log \frac{S}{K} + r\tau$ and $\Sigma = \sigma (-\tau^{\gamma} \sec \frac{\pi \alpha}{2})^{1/\alpha}$

For other models is the calculation analogous, but technically more complicated

Convergence of the series for S = K = 4000, α = 1.9, γ = 1, σ = 0.25, τ = 1 year 8

	-1	0	1	2	3	4	5
0	20.9477	0.6412	-0.0017	-0.0002	0.0000	0.0000	0.0000
1		466.1127	-2.5408	-0.3926	0.0030	0.0002	0.0000
2			-0.0231	-0.0071	0.0000	0.0000	0.0000
3				-1.7287	0.0390	0.0044	0.0000
4					0.0001	0.0000	0.0000
5						0.0058	0.0003
6							0.0000
Price	20.948	497.702	485.136	483.007	483.050	483.060	483.060

 $^{^{8}}$ taken from J.-P. Aguilar, C. Coste, Non-Gaussian analytic option pricing: a closed formula for the Lévy-stable model. arXiv:1609.00987.

- So far, we have anticipated that all fractional models have extreme asymmetry $\beta=-1 \Rightarrow \theta=\alpha-2$
- Nevertheless, there are examples of assets with both positive and negative jumps commodities, etc.
- Option pricing of such assets cannot be done within the classic scheme of risk-neutral measure
- one needs to generalize the option pricing scheme

Time-dependent fractional diffusion

- We have considered a special class of time-dependent fractional diffusion
- general time-dependent fractional diffusion

$$\left({}_{t_0}^*\mathcal{D}_t^{\gamma(t)} + \mu[{}^{\theta}\mathcal{D}_x^{\Omega\gamma(t)}]\right)g(x,t) = 0\,, \ \mu < 0 \tag{1}$$

time-dependent Caputo derivative

$$\binom{*}{t_0}\mathcal{D}^{\gamma(t)}f(t) = \frac{1}{\Gamma(\lceil \gamma(t) \rceil - \gamma(t))} \int_{t_0}^t \frac{f^{\lceil \gamma(t) \rceil}(s)}{(t-s)^{\gamma(t)+1-\lceil \gamma(t) \rceil}} \mathrm{d}s.$$
(2)

 Solution of this equation is very complicated and the techniques are not well developed

Pricing of exotic options

- European options is not the only type of options which is traded on financial markets
- Actually, there are options which are more popular
- American put option: the right to sell the underlying option any time from now to maturity
- There is an optimal excercise price $S_f(t)$
- Dynamics: the same (generalized) Black-Scholes, but different boundary conditions⁹

$$V(S_f(t), t) = K - S_f$$

 $\frac{\partial V}{\partial S}(S_f(t), t) = -1$ continuity in prices

• *Physics works with different potentials, options with different boundary conditions*

⁹S.-P. Zhu, Int. J. Theor. Appl. Fin. 9(7), 1141 (2006)

- Financial markets are a complex system with non-trivial phenomena - sudden jumps, seasonal changes, memory effects
- We have discussed several models based on fractional diffusion which can be used for description of these phenomena
- These models are particularly useful in option pricing
- Some of the properties (regime switching, memory,...) are even more general and can be used beyond the framework of fractional diffusion

Thank you for your attention.