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Introduction



Anomalous diffusion in finance

• Financial markets are complex systems with many non-trivial

phenomena

• Prices St are described via log-returns Rt = lnSt − lnS0

• Returns can be modeled via diffusion processes Rt ∼ N (0, σ2t)

• Prices are described as geometric Brownian motion

St = eRt = e
∑t

i=1 ri

• Brownian motion cannot describe more complex phenomena (jumps,

memory), so we introduce several classes of generalized anomalous

diffusion which describe these phenomena more accurately
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Derivative pricing

• In finance are traded many derivatives - assets, whose price depends

on underlying asset - futures, forwards, CDF, options...

• Their price should be derived from the possible scenarios of

underlying assets

• First option pricing model (Black and Scholes) was based on

ordinary Brownian motion - 1973

• 1997 - Nobel prize in economics (Scholes, Merton)

• In financial crises or in complex markets, the model cannot catch

realistic market dynamics - large drops, sudden shocks, memory

effects

• We investigate these markets in the framework of several classes of

anomalous diffusion
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Mathematical description of

Space-time diffusion model



Stable distributions

• Lα,β;x̄,σ - class of distributions form-invariant w.r.t. convolution

• limiting distributions for sums of i. i. d. variables with no constraint

on variance (σ2 5 +∞)

• Stable Hamiltonian (logarithm of a characteristic function)

Hα,β;x̄,σ(k) = ln

∫
R

e ikxLα,β;x̄,σ(x) dx

= i x̄k − σα|k |α (1− iβsign(k)ω(k, α))

with ω(k , α) = tan(απ/2) for α 6= 1 and ω(k , 1) = 2/π ln |k|.
• Parameters: α ∈ (0, 2] - shape, β = [−1, 1] - asymmetry

σ > 0 - scale, x̄ ∈ R - location

• standard distribution Lα,β(x) = 1
σ Lα,β;x̄,σ

(
x−x̄
σ

)
• for α < 2 is decays polynomially as 1/|x |α+1,

• extreme cases β = ±1:

• α ∈ (1, 2) - exponential decay for left, resp. right tail.

• α ∈ (0, 1] - bounded support from left, resp. from right.
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Stable distributions

• stable distributions with β = −1 are preferred in financial

applications for description of log-Lévy process Y = eLα,−1 , because

all moments exist and are finite = Laplace transform exists∫
Lα,−1(x)ex dx = e−σ

α sec(πα2 )

• alternative representation of stable Hamiltonian

Hα,θ,x̄,c(k) = i x̄k − c |k |αe isign(k)θ π2

• c , θ - functions of α, β and σ

• θ ≤ min{α, 2− α} - Feller-Takayasu diamond

6



Fractional calculus

• The aim is to generalize diffusion equation ∂
∂t g(x , t) = ∂2

∂x2 g(x , t) to

obtain more complex diffusion processes

• fractional derivatives - generalization for non-natural orders: not

unique

• Caputo derivative
∗
x0
Dνx f (x) := 1

Γ(dνe−ν)

∫ x

x0

f dνe(y)

(x−y)ν+1−dνe dy

• preserves derivative of polynomials: ∗Dνx xµ = Γ(µ+1)
Γ(µ−ν+1)

xµ−ν .

• because of lower integral bound x0, it is convenient for time

derivative

• in the following we consider x0 = 0
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Fractional calculus

• Riesz-Feller derivative

Dν
x f (x) =

∫
R

e ikx

2π
(−ik)νF [f ](k) dk

• preserves derivative of exponentials: Dν
x exp(λx) = λν exp(λx)

• in Fourier image, the R.-F. derivative corresponds to stable

Hamiltonian with β = −1

• Riesz-Feller derivative can be defined via Caputo derivative for

x0 → −∞
• R.-F. pseudo-derivative operator θDν :

F [θDν f (x)](k) = Hν,θ(k)f (k)

• Due to the connection with stable distribution, it is convenient for

space derivative
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Space-fractional diffusion and Lévy flight

• Space fractional diffusion equation in 1D(
∂t − θDα

x

)
gθα(x , t) = 0

• Solution: Lévy-flight gθα(x , t) = 1/t1/αLα,θ(x/t1/α)

• continuous sample paths for α > 1

• for α < 2 are some moments infinite/indeterminable

(E [|x |δ] < +∞ for δ < α)

• scaling exponent 1/α - self-similarity
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Graphs of stable distribution
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Space-time double-fractional diffusion1

• Generalization of space-fractional diffusion for fractional time

derivative - non-Markovian

• Space-time fractional diffusion equation in 1D

(∗Dγt −Dα
x ) gθα,γ(x , t) = 0

• Parameter space: α ∈ [1, 2] - continuity of sample paths

γ ∈ (0, α] - probabilistic interpretation (g(x , t) ≥ 0)

• for γ ≤ 1 we have one initial condition g(x , 0) = δ(x)

for γ ∈ (1, 2] we have another condition ∂g
∂t (x , t)|t=0 ≡ 0.

1F. Mainardi, Yu. Luchko, G. Pagnini, Frac. Calc. Appl. Anal. 4(2), 153 (2001)
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Solution of double-fractional diffusion equation

• Solution is obtained through Fourier-Laplace image (x
F→ p, t

L→ s)

(sγ − Hα,−1(p))ˆ̄g(p, s) = sγ−1

• inverse Laplace transform:

ĝ(p, t) = Eγ(Hα,θ(k)tγ)

• Mittag-Leffler function: Eγ(z) =
∑∞

n=0
zn

Γ(γn+1)

• Mellin representation: Eγ(z) = 1
2πi

∫ c+i∞
c−i∞

Γ(s)Γ(1−s)
Γ(1−γs)

(−z)−s ds

• Mellin-Barnes integral rep. of gθα,γ(x , t):

gθα,γ(x, t) =
1

2απix

∫ c+i∞

c−i∞

Γ
(

s
α

)
Γ
(

1− s
α

)
Γ(1− s)

Γ
(

1− γ
α s
)

Γ
(

(α−θ)s
2α

)
Γ
(

1− (α−θ)s
2α

) [ x

(tγ)1/α

]s
ds.

12



Smearing kernel representation2

• for γ < 1 it is possible to derive a composition rule, so the solution

can be expressed as

g(x , t) =

∫ ∞
0

dl gγ(t, l) gα(l , x)

where the kernels are solutions of fractional equations

∂gγ(t, l)

∂l
= ∗0D

γ
t gγ(t, l)

∂gθα(l , x)

∂l
= θDαx gθα(l , x)

• gθα(l , x) = Lα,θ(l , x) - stable distribution

• gγ(t, l) =
(

t
lγ

)
1

l1/γ
Lγ,1

(
t

l1/γ

)
- smearing kernel

• Path integral representation: it is possible to rewrite the

smearing-kernel representation into a double path integral
2H. Kleinert, V. Zatloukal, Phys. Rev. E 88, 052106 (2013)
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Graphs of double-fractional Green functions
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Space-time fractional diffusion of varying order

with Yu. Luchko

• One of important aspects of financial markets is switching between

different regimes - conjuncture vs crisis

• Long-term scaling properties remain stable and characteristic for

each stock

• This requires time-dependent description by fractional diffusion of

varying order: we have intervals Ti = (ti , ti+1)

• dynamics described by a space-time fractional diffusion in each

interval (∗
tiD

γi
t −DΩγi

x

)
gi (x , t) = 0

with initial condition gi (x , ti ) = gi−1(x , ti ), g0(x , 0) = f (x).

For γi > 1 we add another condition ∂gi (x,t)
∂t |t=ti = 0.

• the dynamics is given by convolution of gi

g(x , t) = f (x) ∗ g0(x , t1 − t0) ∗ · · · ∗ gi (x , t − ti ) for t ∈ Ti
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Space-time fractional diffusion of varying order

• stable parameter is determined by other parameters: αi = Ωγi

• Ω = γi
αi

remains constant as describes the scaling g(x , t) = 1
tΩ g

(
x
tΩ

)
• Estimation of Ω - scaling methods

• Diffusion entropy analysis3:

S(t) = −
∫
g(x , t) ln[g(x , t)]dx = S(1) + Ω ln t

• Entropy production rate: R(t) = dS(t)
dt = Ω

t

• Connection to regime-switching volatility models

absolute moment for θ = α− 2 (β = −1) are

E [|x |s ] =
1 + csc

(
πs
Ωγ

)
sin
(
πs
(

1− 1
Ωγ

))
γ

Γ(s)

Γ
(
π
Ω

) ∝ 1

γ

3see e.g., P. Jizba, J. K., Physica A 413, 348 (2014)
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Diffusion in a temporally abnormal period

• Space-time fractional diffusion of varying order can be used for

description of temporally abnormal period - e.g. crisis

• We distinguish two intervals

• short-term behavior affected by immediate dynamics

• long-term behavior characterized by scaling properties

Described by g(x , t) as overlap between space-time fractional

diffusion (t ≤ τ) and Lévy flight (t →∞). Ω is the

system-characterized scaling exponent

gγ,θ,τ,σ(x , t) =

{
gθΩγ,γ(x/σ, t), t ≤ τ,[
gθΩγ,γ(τ) ∗ LΩ,θ(t − τ)

]
(x/σ), t > τ,

• In financial applications θ = α− 2

• Good approximation of models with more intervals - PDF converges

to stable distribution
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Green function of fractional diffusion of varying order
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Applications of anomalous

fractional diffusion to option

pricing



Option pricing

• option is a special asset which gives to the owner the right (option)

to buy (call) or sell (put) an underlying asset for specified strike

price K .

• European options: the option can be exercised only at a certain

maturity time T

• buyer - long position, seller - short position

• seller takes the risk of losses - this is compensated by the option price

• Price of a call option at maturity time (t = T ):

C (S ,K ) = max{S − K , 0}

(if S < K we can directly buy the underlying asset for price S)

19



Option pricing

• Call option for t < T

C (St ,K , t) = e−r(T−t)E [C (ST ,T |St , t)]Q =∫
R

dy max
{
Ste

(t−T )(r+µ)+y − K , 0
}
g(y ,T − t)

• Put option P(St , t) = C (St , t)− St + Ke−r(T−t)

• g(y , τ) is the probability distribution given by an appropriate

stochastic model

• Q is the equivalent risk-neutral measure which is reflected by

presence of µ in the option pricing formula

• µ can be calculated as

µ = ln

∫
exg(x , 1)dx

the integral has to converge - only for θ = α− 2 - exponential decay
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Comparison of fractional option pricing models

with H. Kleinert6, Yu. Luchko7

• We fit the model with the option prices of S&P 500 in November

2008 (∼ 105 records)

• We minimize aggregated error over all available maturity times T

and all strike prices K

AE =
∑

t∈T ,K∈K

|Omodel −Omarket |

• We compare Black-Scholes4, Lévy-stable5, Double-fractional6 and

2-period Varying order7 model

• We do the analysis for all options and separately for call and put

options
4F. Black, M. Scholes, J. Polit. Econ. 81(3), 1973
5P. Carr, L. Wu, J. Fin. 58(2), 2003
6H. Kleinert, J. K., Physica A 449, 2016
7J. K., Yu. Luchko, Frac. Calc. Apl. Anal. 19(6), 2016
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Model calibration for S&P 500 options

traded in November 2008

All options

par. Black-Scholes Lévy stable Double-fractional Varying order

σ 0.1696(0.027) 0.140(0.021) 0.143(0.030) 0.132(0.019)

α - 1.493(0.028) 1.503(0.037) 1.50 · γ
γ - - 1.017(0.019) 0.905(0.040)

τ - - - 0.072(0.025)

AE 8240(638) 6994(545) 6931(553) 4794(584)

Call options

par. Black-Scholes Lévy stable Double-fractional Varying order

σ 0.140(0.021) 0.118(0.026) 0.137(0.020) 0.079(0.017)

α - 1.563(0.041) 1.585(0.038) 1.50 · γ
γ - - 1.034(0.024) 0.809(0.016)

τ - - - 0.118(0.067)

AE 3882(807) 3610(812) 3550(828) 1437(293)

Put options

par. Black-Scholes Lévy stable Double-fractional Varying order

σ 0.193(0.039) 0.163(0.034) 0.163(0.037) 0.174(0.072)

α - 1.493(0.031) 1.508(0.036) 1.50 · γ
γ - - 1.047(0.017) 0.961(0.092)

τ - - - 0.578(0.728)

AE 3741(711) 3114(591) 2968(594) 2161(466)
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Estimated call and put option prices for various maturity times
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Optimal hedging strategies

• the risk coming from selling an option can be eliminated by

appropriate hedging strategy

• we create a portfolio Π(S , t) = C (S , t)− φ(S , t)S(t)

containing a short of the option and a fraction φ(S , t) of the

underlying asset S(t) used to hedge the option.

• optimal strategy φ∗(S , t) can be expressed as

φ∗(S , t) =
1

σ2

∫
R

dS(St0 − St) max{St − K , 0}g(S ,T |St , t)
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Ongoing research and

perspectives



Series formula for the fractional option pricing models

with J.-P. Aguilar and C. Coste

• Calculation of option prices driven by fractional diffusion requires

knowledge of advanced mathematical concepts - stable distributions,

Mellin calculus, etc.

• Alternatively it is possible to express the price though residue series

• we express payoff function as

[Se(r+µ)τ+y − K ]+ =
K

2iπ

cs+i∞∫
cs−i∞

−e−(r+µ)τs−ys

s(s + 1)

( S
K

)−s
ds

• Together with Mellin-Barnes representation of exp(−µsτ) it is

possible to rewrite the option price as

C(α,γ,θ)(S ,K , τ) =
Ke−rτ

α

1

(2iπ)2

∫
c+iR2

ωα,γ,θ(t)

where ωα,γ,θ(t) is a complex 2-form.
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Series formula for the fractional option pricing models

• It is possible to derive a residue formula

1

(2iπ)2

∫
c+iR2

ω(t) =
∑
zk∈Π

Reszkω

where Π is an appropriate cone in C2.
• Example: residue summation for totally asymmetric space-time

fractional diffusion

Cα(S,K , τ) =
1

α

∑
n ≥ −1

m ≥ 0

2
1+n
α
−m(S − (−1)mKe−rτ )

(1 + n − m)!m!Γ(1− γ
α (1 + n))

[log]1+n−mΣ−1−n+αm
τ

1−γ
α

(1+n)

where τ = T − t, [log] = log S
K + rτ and Σ = σ(−τγ sec πα

2 )1/α

• For other models is the calculation analogous, but technically more

complicated
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Series formula for the fractional option pricing models

Convergence of the series for S = K = 4000, α = 1.9, γ = 1, σ = 0.25,
τ = 1 year 8

-1 0 1 2 3 4 5

0 20.9477 0.6412 -0.0017 -0.0002 0.0000 0.0000 0.0000

1 466.1127 -2.5408 -0.3926 0.0030 0.0002 0.0000

2 -0.0231 -0.0071 0.0000 0.0000 0.0000

3 -1.7287 0.0390 0.0044 0.0000

4 0.0001 0.0000 0.0000

5 0.0058 0.0003

6 0.0000

Price 20.948 497.702 485.136 483.007 483.050 483.060 483.060

8taken from J.-P. Aguilar, C. Coste, Non-Gaussian analytic option pricing: a closed formula for

the Lévy-stable model. arXiv:1609.00987.
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Option pricing with arbitrary asymmetry θ

• So far, we have anticipated that all fractional models have extreme

asymmetry - β = −1⇒ θ = α− 2

• Nevertheless, there are examples of assets with both positive and

negative jumps - commodities, etc.

• Option pricing of such assets cannot be done within the classic

scheme of risk-neutral measure

• one needs to generalize the option pricing scheme
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Time-dependent fractional diffusion

• We have considered a special class of time-dependent fractional

diffusion

• general time-dependent fractional diffusion(
∗
t0
Dγ(t)

t + µ[θDΩ γ(t)
x ]

)
g(x , t) = 0 , µ < 0 (1)

time-dependent Caputo derivative

(∗t0
Dγ(t)f )(t) =

1

Γ(dγ(t)e − γ(t))

∫ t

t0

f dγ(t)e(s)

(t − s)γ(t)+1−dγ(t)e ds. (2)

• Solution of this equation is very complicated and the techniques are

not well developed
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Pricing of exotic options

• European options is not the only type of options which is traded on

financial markets

• Actually, there are options which are more popular

• American put option: the right to sell the underlying option any

time from now to maturity

• There is an optimal excercise price Sf (t)

• Dynamics: the same - (generalized) Black-Scholes, but different

boundary conditions9

V (Sf (t), t) = K − Sf

∂V

∂S
(Sf (t), t) = −1 continuity in prices

• Physics works with different potentials, options with different

boundary conditions
9S.-P. Zhu, Int. J. Theor. Appl. Fin. 9(7), 1141 (2006)
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Conclusions

• Financial markets are a complex system with non-trivial phenomena

- sudden jumps, seasonal changes, memory effects

• We have discussed several models based on fractional diffusion

which can be used for description of these phenomena

• These models are particularly useful in option pricing

• Some of the properties (regime switching, memory,. . . ) are even

more general and can be used beyond the framework of fractional

diffusion

Thank you for your attention.
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