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Motivation

vs
Many real systems have similar structure ⇒ similar description
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Introduction

• Scaling properties are one of the most important quantifiers of
complexity in many systems, e.g. financial time series

• Presence of scaling exponents can point to an inner fractal
structure of the series

• Multiple scalings can be analyzed trough various techniques as
Multifractal spectrum

• We examine different techniques of multifractality estimation,
especially Detrended fluctuation analysis (DFA) and Diffusion
entropy analysis (DEA)

• We introduce a procedure to proper estimation of Rényi entropy
necessary in DEA algorithm

• We discuss both theoretical and practical properties of the
techniques and compare them on various real financial time series
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An example: real financial series
Which series is the real series of daily returns of S&P 500?
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Multifractal spectrum

• Discrete time series {xi}Ni=1 in RD with specific time lag s

• Empirical probability: pj =
#{xi∈Kj}

N

• Probabilities scale with the typical length as pj(s) ∼ sα

• Regions with different scalings are identified and distribution of
scaling exponents has the form

ρ(α, s)dα = c(α)s−f (α)dα

• f (α) - Multifractal spectrum = fractal dimension of the subset
with scaling exponent α
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Multifractal spectrum of S&P 500
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Scaling function and Rényi entropy

• Alternative approach - Partition function:

Zq(s) =
∑
j

pqj (s) ∼ sτ(q)

• Relation to f (α) - Legendre transform: f (α) = maxq(qα− τ(q))

• τ(q) is related to Generalized dimension Dq = τ(q)
q−1

and Rényi entropy

Sq(s) = 1
q−1 ln

∑
j p

q
j (s) =

lnZq(s)
q−1

• Multifractal exponents can be measured via estimation of Rényi
entropy
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Estimation of Multifractal spectrum

• There exist several exponents of multifractal spectrum estimation

• Examples provide Generalized Hurst exponent or Wavelet analysis

• We focus on the most common, i.e. Detrended fluctuation analysis
and Diffusion entropy analysis

• We introduce both methods and compare them on the real data
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Detrended entropy analysis

• Method is based on measurement of fluctuations from local trends

• We divide the series into intervals of length s and calculate the
aggregated deviation from local linear (quadratic,. . . ) trends -
Fluctuation function F (s, ν)

• The total fluctuation function is calculated as a q-mean of local
fluctuation functions Fq(s) = (1/N

∑
ν F (s, ν)q)1/q.

• Fluctuation function scales as Fq(s) ∝ sh(q)

• For stationary positive series is τ(q) = qh(q)− 1
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Estimation of local trends in DFA method
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Diffusion entropy analysis

• Scaling exponents estimation: Diffusion entropy analysis - based on
self-similarity property of PDF

• Monofractal case:

p(x , t)dx = 1
tδ
F
(
x
tδ

)
dx

• Shannon entropy identifies the exponent δ:

S(t) = −
∫
dx p(x , t) ln[p(x , t)] = A + δ ln t

• In multifractal case, whole class of Rényi entropies is calculated -
class of scaling exponents δ(q) = τ(q)/(q − 1) is estimated from

Sq(t) = Bq + δ(q) ln t

• Fluctuation collection algorithm: all fluctuations over lag s are
collected x̃s(t) =

∑s
i=1 xi+t , and PDF is estimated
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Fluctuation collection algorithm of S&P 500
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Basic properties of histograms

• Histogram: approximation of underlying PDF from data

• Equidistant boxes Kj of bin-width h; from frequency analysis:

p̂(x) = 1
Nh

∑nB
j=1 νj1Kj

(x)

νj - # of {xi}Ni=1 in Kj , nB - number of boxes

• The proper estimation of bin-width is crucial, because underfitted
or overfitted histograms do not correspond to the underlying
distribution

• Popular rules - Sturges: nB = 1 + log2N
Scott: h = 3.5σ̂N−1/3

Freedman-Diaconis: h = 2.6 · IQR · N−1/3
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Histograms for different bin-widths
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Entropy fits for different bin-widths
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Optimal bin-width for Rényi entropy

• By minimizing the mean-squared integrated error we become an
expression for optimal bin-width h∗q

h∗q = 3

√
6q2

N

∫
p2q−1(x)dx∫

(dpq(x)/dx)2

• We assume that p(x) is normal distribution N (µ, σ2)

h∗q = σN−1/3 3
√

24
√
π q1/2

6√2q−1
= h∗q=1ρq

• For q = 1 we recover original Scott, resp. Freedman-Diaconis rules
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Optimal bin-width for Rényi entropy

• In case of δ spectrum, we have to estimate several histograms on
different specific lags {s1, . . . , sm} with the same bin-width

• We obtain the optimal bin-width by minimizing sum of particular
errors

h∗q(s1, . . . , sm) = (24
√
π)1/3ρq

3

√∑m
i=1 σ

2(1−q)
si

/Nsi∑m
i=1 σ

−(1−2q)
si
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Comparison of multifractal methods on real data

• We have applied methods on the various financial data to test the
stability of methods and to compare the spectra

• We used four financial series (Athens stock index, IBM stock price,
Nikkei 225 stock index, Volatility index of S&P 500 VIX) recorded
on minute and daily basis

• On the minute basis we observe some discontinuities due to the
nature of the data (non-liquidity, heavy tails)

• Because each method has its own limitations, it is the best to use
several multifractal methods to have the complete image of scaling
exponents
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Multifractal analysis for daily data
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Multifractal analysis for minute data
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Conclusions

• Many systems can be well described by multifractal scaling
exponents

• Diffusion entropy analysis and Detrended fluctuation analysis
represent possible ways how to estimate the exponents

• In case of DEA we have to properly estimate the histograms

• In case of DFA, the method does not work properly for heavy
tailed distributions and long correlations

• Financial markets provide one example of complex system that can
exhibit various kinds of multifractal spectra

• For high-frequency data is necessary to improve the method to be
capable of dealing with heavy-tailed non-liquid time series
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Back to the mountains!

Multifractal multiplicative cascade terrain model
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