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History overview

� Diffusion is a transport phenomena that has been studied since
18th century

� First developments were done by Maxwell, Clausius, Boyle...
� 1827 - discovered Brownian motion
� The theoretical description of the Brownian motion was given

by Langevin, Einstein, Smoluchowski...
� Many different approaches from different branches
� macroscopic vs microscopic approaches
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Macroscopic description of diffusion
Fick’s laws

� Adolf Fick described in 1855 the diffusion by equations for
concentration φ

� First Fick’s law
J = −D

∂φ

∂x
(1)

� the flux is proper to concentration change
� Second Fick’s law

∂φ

∂t
= −∂J

∂x
= D

∂2φ

∂x2 (2)

� time evolution is given by inhomogeneity of current
� the equation is formally the same as heat equation
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Microscopic description of diffusion
Langevin equation

� Generalization of Newton’s dynamics to systems in contact with
heat bath

� Newton equation
mẍ(t)− F = 0 (3)

� Langevin equation

mẍ(t)+
∂U
∂x

+γẋ(t) = η(t) (4)

� −∂U
∂x - external forces

� −γẋ(t) - friction forces
� η(t) - fluctuation forces with 〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′)
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Microscopic description of diffusion
Langevin equation

� both, friction and fluctuations are necessary, otherwise we
would get nonphysical solution

� in the long time limit we get from the relation for velocity

〈v(t)2〉 ' D
γm
≡ kBT

m
(5)

� Relation between diffusion coefficient and friction

D =
kBT
γ

(6)

� for long times we get 〈x2(t)〉 ' t which means that |∆x | '
√

t
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Microscopic description of diffusion
Diffusion equation

� Alternative representation od Langevin equation is through
probability distribution of the system p(x , t)

� for free particle we obtain diffusion equation

∂p(x , t)
∂t

=
D
γ2
∂2p(x , t)
∂x2 . (7)

� the equation is formally the same as Fick’s equation for
concentration

� for one localized particle at time 0 we get a Gaussian function

p(x , t) =
1√

4πDt
exp

(
−(x − x0)2

4Dt

)
(8)
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Microscopic description of diffusion
Wiener stochastic process

� Another possibility is to use a formalism of stochastic processes
� Definition: A stochastic process W (t) (for t ∈ [0,∞]) is called

Wiener process, if
� W (0)

a.s.
= 0

� for every t , s are increments W (t)−W (s) stationary process with
distribution: W (t)−W (s) ∼ N (0, |t − s|).

� for different values are increments not correlated.
� The Wiener process also obeys diffusion equation
� All formalisms lead to the main property of diffusion:
|∆W (t)| = t

1
2
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Diffusion in 2D
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Anomalous diffusion

� For Brownian motion we can observe typical scales for space
and time variables
� for space: variance Var(X (t))
� for time: correlations Corr(X (t),X (s))

� if these quantities do not produce characteristic quantities
(standard deviation, correlation time) , we observe anomalous
diffusion

� for long-term correlations we observe fractional Brownian
motion

� for infinite variance we observe Lévy flight
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Fractional Brownian Motion

� we generalize Brownian motion by introduction of non-trivial
correlations

� for Brownian motion is the covariance element

E[W (t)W (s)] = min{s, t} =
1
2

(s + t − |s − t |) (9)

� we introduce a generalization WH(t) with the same properties,
but covariance

E(WH(t)WH(s)) =
1
2

(s2H + t2H − |s − t |2H) (10)

� Standard deviation scales as |∆WH(t)| ∝ tH

� for H = 1
2 we have Brownian motion, for H < 1

2 sub-diffusion,
for H > 1

2 super-diffusion
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Sample functions of fBM for H=0.3, 0.5, 0.6, 0.7.
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Lévy distributions

� Gaussian distribution has special property - it is a stable
distribution

� Such distributions are limits in long time for stochastic
processes driven by independent increments with given
distribution

� Lévy distributions - class of stable distributions with polynomial
decay

Lα(x) ' lα
|x |1+α

for |x | → ∞ (11)

for α ∈ (0,2)

� the variance for these distributions is infinite
� the distribution has sharper peak and fatter tails (= heavy tails)
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Difference between Gaussian distribution
and Cauchy distribution (α = 1)
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Lévy flights

� Lévy flight Lα(t) is a stochastic process that the same
properties as Brownian motion, but it increments have Lévy
distribution

� Because of infiniteness of variance, scaling properties are
expressed via sum of random variables
� for Brownian motion: a1/2W (t) + b1/2W (t) d

= (a + b)1/2W (t)
� for Lévy flight: a1/αLα(t) + b1/αLα(t)

d
= (a + b)1/αLα(t)

� α-th fractional moment E(|X |α) =
∫

xαp(x)dx of increment is equal
to

E(|Lα(t1)− Lα(t2)|α) ∼ |t1 − t2|. (12)
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Lévy flight in 2D
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Power Spectrum

� Another possibility, how to estimate the scaling exponent is
power spectrum

� it is the absolute value of fourier transform

Px (ω) = |F [x ](ω)|2 (13)

� it is closely related to correlations and variance

〈(∆x(t))2〉 ∝ tα ⇒ Px (ω) ∝ 1
ω1+α (14)
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Examples of anomalous diffusion

� Subdiffusive behavior
� mRNA molecules in E. coli cells
� Lipid granules in yeast cells
� Cytoplasmatic molecules

� Power law behavior
� Power law memory kernel for fluctuations within a single protein

molecule
� Persistent cell motion of eukaryotic cells
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Physical Nature of Bacterial Cytoplasm
Ido Golding and Edward C. Cox. Physical nature of bacterial cytoplasm.

Phys Rev Lett, 96, 2006

� random motion of fluorescently labeled mRNA molecules in E.
coli is measured

� the track of molecules are recorded and fluctuations are
calculated

� the fluctuation function 〈δ(t)2〉 scales with an exponent of
α = 0.70± 0.007 (for 21 trajectories)

� for comparison is done the measurement also in 70% glycerol,
with an exponent of α = 1.04± 0.03, which corresponds to
diffusion

� Reasons: a) power law distributions, b) time-dependent
viscosity c) time correlations
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Physical Nature of Bacterial Cytoplasm
Ido Golding and Edward C. Cox. Physical nature of bacterial cytoplasm.

Phys Rev Lett, 96, 2006
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Anomalous Diffusion in Living Yeast Cells
Iva Marija Tolic´-Norrelykke et al. Anomalous diffusion in living yeast cells.

Phys Rev Lett, 93, 2004

� the movement of lipid granules in the living yeast cell is
investigated

� the track is recorded by two methods:
� Optical tweezer - short times (∼ 10−4s), measures frequency
� Multiple particle tracking - video based, longer times

(∼ 10−1 − 102s)
� The results were for diffusion in the cell α = 0.737± 0.003 for

OT, α = 0.70± 0.03 for MPT, about 1 in water
� Possible reasons: granules are embedded in a protein polymer

network or mechanically coupled to other structures
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Anomalous Diffusion in Living Yeast Cells
Iva Marija Tolic´-Norrelykke et al. Anomalous diffusion in living yeast cells.

Phys Rev Lett, 93, 2004
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Anomalous Subdiffusion Is a Measure for
Cytoplasmic Crowding in Living Cells
Matthias Weiss et al. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.

Biophys J, 87, 2004

� cytoplasmatic molecules were investigated by fluorescence
correlation spectroscopy

� autocorrelation function was measured
� we suppose a diffusion coefficienty D(t) = Γtα−1 and obtain

correlation function

C(τ) ' 1 + fe−τ/τC

1 + (τ/τD)α
(15)

� for different different masses and hydrodynamic radii were
different α’s obtained, but α < 1 in all cases
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Anomalous Subdiffusion Is a Measure for
Cytoplasmic Crowding in Living Cells
Matthias Weiss et al. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.

Biophys J, 87, 2004
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Power law within protein molecules
X. Sunney Xie et al. Observation of a power-law memory kernel for fluctuations within a single protein molecule.

Phys Rev Lett, 94, 2005

� Fluctuations between fluorescein-tyrosine pair were monitored
by photoinduced electron transfer

� System can be described by generalized Langevin equation,
where we assume non-trivial autocorrelation function

mẍ(t) = −ζ
∫ t

0
dτK (τ)ẋ(τ)− dU

dx
+ F (t) (16)

� For memory kernel K (t) was measured power decay

K (t) ∼ t−0.51±0.07
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Persistent Cell Motion in the Absence of External
Signals
Liang Li et al. Persistent cell motion in the absence of external signals:// a search strategy for eukaryotic cells.

PLoS ONE, 2008

� motion of whole eukaryotic cells is investigated in the
environment with no external signals

� it has been shown that the movement is not a simple random
walk

� it has persistent behavior in smaller time scales, in larger time
scales (∼ 10min) it becomes a random walk motion

� the movement seems to be more complex than simple wiener
process or Lévy flight

� cells are able to reach the target very efficiently
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Persistent Cell Motion in the Absence of External
Signals
Liang Li et al. Persistent cell motion in the absence of external signals:// a search strategy for eukaryotic cells.

PLoS ONE, 2008
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Summary

� Diffusion is an important phenomena in biological systems
� It can be described through different formalisms
� Brownian motion can be generalized in a few different ways -

fBM, Lévy flight
� There are examples of subdiffusion and power laws in cell

systems and biology
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Thank you for attention!
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