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History overview

m Diffusion is a transport phenomena that has been studied since
181" century

m First developments were done by Maxwell, Clausius, Boyle...
m 1827 - discovered Brownian motion

= The theoretical description of the Brownian motion was given
by Langevin, Einstein, Smoluchowski...

= Many different approaches from different branches
B macroscopic vs microscopic approaches
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Macroscopic description of diffusion

Fick’s laws

m Adolf Fick described in 1855 the diffusion by equations for
concentration ¢

m First Fick’s law

__p9?
J=-D3. (1)

= the flux is proper to concentration change

m Second Fick’s law
00 __0J _ P 2
ot 0x  0Ox2

= time evolution is given by inhomogeneity of current

= the equation is formally the same as heat equation
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Microscopic description of diffusion

Langevin equation

® Generalization of Newton’s dynamics to systems in contact with
heat bath

= Newton equation

mx(t) - F=0 (3)
® | angevin equation
m)"((t)+?)f(j+a x(t) =n(t) (4)

0 —2Y . external forces
0 —~x(f) - friction forces
o n(t) - fluctuation forces with (n(t)) = 0, (n(H)n(t')) =2Dj(t — t')
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Microscopic description of diffusion

Langevin equation

® both, friction and fluctuations are necessary, otherwise we
would get nonphysical solution

= in the long time limit we get from the relation for velocity

D kgT
2y~ _ "Bl
(v(t)7) ~ m= m (5)
m Relation between diffusion coefficient and friction
kgT

D="8" (6)
Y

= for long times we get (x2(t)) ~ t which means that |Ax| ~ v/t
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Microscopic description of diffusion

Diffusion equation

= Alternative representation od Langevin equation is through
probability distribution of the system p(x, t)

m for free particle we obtain diffusion equation

op(x,t) _ D &Pp(x,) -
ot v ox2

m the equation is formally the same as Fick’s equation for
concentration

m for one localized particle at time 0 we get a Gaussian function

1 (X —x0)?




Microscopic description of diffusion

Wiener stochastic process

Another possibility is to use a formalism of stochastic processes

Definition: A stochastic process W(t) (for t € [0, x]) is called

Wiener process, if

0 W) =0

o for every t, s are increments W(t) — W(s) stationary process with
distribution: W(t) — W(s) ~ N(0, |t — s]|).

o for different values are increments not correlated.

The Wiener process also obeys diffusion equation

All formalisms lead to the main property of diffusion:
AW(D)| =tz
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Diffusion in 2D




Anomalous diffusion

= For Brownian motion we can observe typical scales for space
and time variables

o for space: variance Var(X(t))
o for time: correlations Corr(X(t), X(s))

m if these quantities do not produce characteristic quantities
(standard deviation, correlation time) , we observe anomalous

diffusion

= for long-term correlations we observe fractional Brownian
motion

m for infinite variance we observe Lévy flight



Fractional Brownian Motion

= we generalize Brownian motion by introduction of non-trivial
correlations

for Brownian motion is the covariance element

E[W(t)W(s)] = min{s,t} = %(S—i— t—|s—1) 9)

we introduce a generalization Wy(t) with the same properties,
but covariance
1

E(Wh()Wi(s)) = 5(s*" + 2 —|s — 1) (10)

Standard deviation scales as |AWy(t)| o<
for H = } we have Brownian motion, for H < } sub-diffusion,
for H > 3 super-diffusion
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.
Sample functions of fBM for H=0.3, 0.5, 0.6, 0.7.




Lévy distributions

Gaussian distribution has special property - it is a stable
distribution

Such distributions are limits in long time for stochastic
processes driven by independent increments with given
distribution

Lévy distributions - class of stable distributions with polynomial
decay

lon
La(X)ZW for |x| — oo (11)

fora € (0,2)
the variance for these distributions is infinite
the distribution has sharper peak and fatter tails (= heavy tails)
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Difference between Gaussian distribution
and Cauchy distribution (o« = 1)
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-
Lévy flights

m | évy flight L,(t) is a stochastic process that the same
properties as Brownian motion, but it increments have Lévy
distribution

m Because of infiniteness of variance, scaling properties are
expressed via sum of random variables
O for Brownian motion: a'/2W(t) + b'/2W(t) < (a+ b)'/2W(1)

O for Lévy flight: @'/ La(t) + b1/ La(t) £ (a+ b)!/*La (1)

m o-th fractional moment g(x|») = [ xp(x)dx of increment is equal

to
E([La(t) — La(B)[*) ~ |t — to|. (12)
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-
Lévy flight in 2D




Power Spectrum

= Another possibility, how to estimate the scaling exponent is
power spectrum

m it is the absolute value of fourier transform
Pr(w) = |FX](w)? (13)
®m it is closely related to correlations and variance

1

((AX(1))?) o 1% = Py(w) o ita

(14)
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Examples of anomalous diffusion

m Subdiffusive behavior

o0 mRNA molecules in E. coli cells
O Lipid granules in yeast cells
o Cytoplasmatic molecules

m Power law behavior

0 Power law memory kernel for fluctuations within a single protein
molecule
o Persistent cell motion of eukaryotic cells




Physical Nature of Bacterial Cytoplasm

Ido Golding and Edward C. Cox. Physical nature of bacterial cytoplasm.
Phys Rev Lett, 96, 2006

= random motion of fluorescently labeled mRNA molecules in E.
coli is measured

® the track of molecules are recorded and fluctuations are
calculated

= the fluctuation function (5(t)?) scales with an exponent of
a = 0.70 + 0.007 (for 21 trajectories)

m for comparison is done the measurement also in 70% glycerol,
with an exponent of a = 1.04 + 0.03, which corresponds to
diffusion

m Reasons: a) power law distributions, b) time-dependent
viscosity c) time correlations
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Physical Nature of Bacterial Cytoplasm

Ido Golding and Edward C. Cox. Physical nature of bacterial cytoplasm.
Phys Rev Lett, 96, 2006
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Anomalous Diffusion in Living Yeast Cells

Iva Marija Tolic’-Norrelykke et al. Anomalous diffusion in living yeast cells.
Phys Rev Lett, 93, 2004

= the movement of lipid granules in the living yeast cell is
investigated
m the track is recorded by two methods:
0 Optical tweezer - short times (~ 10~*s), measures frequency
O Multiple particle tracking - video based, longer times
(~10~" —10%s)
m The results were for diffusion in the cell o = 0.737 4 0.003 for
OT, a = 0.70 £+ 0.03 for MPT, about 1 in water

® Possible reasons: granules are embedded in a protein polymer
network or mechanically coupled to other structures
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Anomalous Diffusion in Living Yeast Cells

Iva Marija Tolic’-Norrelykke et al. Anomalous diffusion in living yeast cells.
Phys Rev Lett, 93, 2004
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Anomalous Subdiffusion |Is a Measure for
Cytoplasmic Crowding in Living Cells

Matthias Weiss et al. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.
Biophys J, 87, 2004

m cytoplasmatic molecules were investigated by fluorescence
correlation spectroscopy

m gutocorrelation function was measured

= we suppose a diffusion coefficienty D(t) = I't*~' and obtain
correlation function

{ 4 fo/m

Sy

(15)
m for different different masses and hydrodynamic radii were
different o’s obtained, but o < 1 in all cases
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Anomalous Subdiffusion |Is a Measure for
Cytoplasmic Crowding in Living Cells

Matthias Weiss et al. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells.

Biophys J, 87, 2004
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Power law within protein molecules

X. Sunney Xie et al. Observation of a power-law memory kernel for fluctuations within a single protein molecule.

Phys Rev Lett, 94, 2005

® Fluctuations between fluorescein-tyrosine pair were monitored
by photoinduced electron transfer

m System can be described by generalized Langevin equation,
where we assume non-trivial autocorrelation function

du

t
mx(t) = —C /0 drK(r)(r) = o + F() (16)

= For memory kernel K(t) was measured power decay

K( t) ~ Z¢70.51 +0.07



Persistent Cell Motion in the Absence of External
Signals

Liang Li et al. Persistent cell motion in the absence of external signals:/ a search strategy for eukaryotic cells.
PLoS ONE, 2008

= motion of whole eukaryotic cells is investigated in the
environment with no external signals

® it has been shown that the movement is not a simple random
walk

® it has persistent behavior in smaller time scales, in larger time
scales (~ 10min) it becomes a random walk motion

= the movement seems to be more complex than simple wiener
process or Lévy flight

m cells are able to reach the target very efficiently
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Persistent Cell Motion in the Absence of External
Signals

Liang Li et al. Persistent cell motion in the absence of external signals:/ a search strategy for eukaryotic cells.

PLoS ONE, 2008
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Summary

Diffusion is an important phenomena in biological systems
It can be described through different formalisms

Brownian motion can be generalized in a few different ways -
fBM, Lévy flight

There are examples of subdiffusion and power laws in cell
systems and biology
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Thank you for attention!
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