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Abstrakt

Tato práce se zabývá vybranými tématy z teorie komplexních systémů a ekonofyziky.
Zamě̌ruje se zejména na multifraktální analýzu, anomální difuzia teorii zobecňených
entropií. Tyto modely jsou založeny na několika univerzálních konceptech - škálování,
zobecňená statistika a extenzivita. Všechna tato témata jsou široce studována z teo-
retického hlediska. Podrobně jsou diskutovány nejdůležitější otázky každého z témat,
jako nap̌ríklad odhad škálovacích parametrů v přípaďe multifraktální analýzy, modely
s ťežkými rameny a fraǩcní modely v p̌rípaďe anomální difuze nebo speciální třídy zo-
becňených entropií. V návaznosti na to to jsou také navrženy a prezentovány aplikace
výše uvedených modelů na finančních trzích a v termodynamice.

Abstract

This thesis deals with selected topics from the theory of complex systems and econo-
physics. It is mainly focused on multifractal analysis, anomalous diffusion and theory
of generalized entropies. These models are based on severaluniversal concepts - scal-
ing, generalized statistics and extensivity. All of these topics are broadly studied from
the theoretical point of view. Salient issues of each topic,such as the estimation of
characteristic scaling exponents in the case of multifractal analysis, heavy-tailed and
fractional models in the matter of anomalous diffusion, or special classes of general-
ized entropies are discussed in detail. Subsequently, applications of the aforementioned
models in financial markets and thermodynamics are presented.
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Chapter 1

Introduction

A lot of systems observed in the nature - dynamical, biological, chemical, quantum,
sociological or financial, just to name a few - exhibit a wide range of complex phe-
nomena including non-linearity, phase transitions, regime switching, sudden changes
and/or memory effects. Usually it is extremely hard to describe dynamics of such sys-
tems within the conventional framework represented by classical mechanics, equilib-
rium thermodynamics and the theory of diffusion. Nevertheless, these theories often
serve as springboards for various generalizations and adaptations. The models which
are based on some kind of universal, generally applicable principles belong to the most
successful. In the thesis we particularly focus on models based onself-similarity, scal-
ing and the concept ofgeneralized additivity. It is universality which makes the models
successful in many interdisciplinary areas including boththeoretical works as well as
practical applications. The amount of possible applications represents a strong mo-
tivation for rapid development of these areas and encourages looking for new inter-
disciplinary fields, in which the aforementioned ideas can improve effectiveness and
predicability of the models.

Let us mention a few examples of areas in which the ideas knownfrom theory of
complex systems have helped to establish new disciplines. Application of methods
commonly used in physics on financial markets, known aseconophysics[1, 2], was
established as a response to increased demand of realistic forecasting in finance. In-
deed, financial markets are a very complex and complicated system and it is essential
to use appropriate sophisticated models for successful trading. As an example of this
kind of connection we can mentionmultifractal analysis. Multifractals were originally
observed in dynamical systems but afterwards celebrated great success in financial mar-
kets. Generalized statistics[3] with generalized versions oflimit theoremsandstable
distributionsserve as another example. Additionally,nonextensive thermodynamics[4]
have celebrated great success with the idea of replacing theShannon entropy by gener-
alized versions of entropy. As evolution of these research areas was sometimes rather
precipitous and has brought many interesting moments, we briefly summarize some as-
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pects of historical evolution of research fields related to the previously mentioned topics
and point out some of the rudimental and pioneering works.

1.1 Historical Overview

This section provides an overview of historical evolution and thr current state of the
art of complex systems and related topics such as multifractal analysis or the theory of
generalized statistics. It is interesting that many model are based on very similar ideas,
although they might seem different on the first sight. That iswhy these ideas have made
their way through the theory of complex systems. We gradually go through some of
the topics and present the most important works which have largely contributed to the
particular topics.

Scalingandself-similaritybelong to the most important properties of complex sys-
tems. They have been known for a very long time, since they areoften associated with
fractals. Fractal systems can be observed everywhere in real natural systems. In the era
of differential calculus, i.e., in the times of Newton and Leibnitz, researchers believed
that most of the processes observed in nature can be described in terms of derivatives
and integrals. However, later, it turned out that many processes cannot be described
in terms smooth trajectories. This was later confirmed by thetheory of stochastic pro-
cesses. These extremely rough processes are usually not differentiable, but they can be
described by a specific scaling rule, or, in more realistic cases, by a set of scaling rules.
If the system can be described by a single dominant scaling rule, we refer to it as a
unifractal. On the other hand, if the system is described by a whole continuous set of
local scaling rules with different intensities, we talk about multifractals. The first works
related to the theory of scaling exponents were done by L. Hölder and particularly by
H. .E Hurst, a British hydrologist who was the first one to study long-term dependence
in hydrology [5]. Further important contributions were done e.g., by H. Hentschel and
I. Proccacia [6, 7] and by the pioneer of multifractal analysis, a French and American
mathematician B. B. Mandelbrot [8, 9]. Since that time, multifractals found wide ap-
plication in chemistry [10] or in finance [11]. Nowadays, it is still a hot topic with an
active community and many interesting open problems.

The theory ofgeneralized statisticsis also connected to the topic of scaling expo-
nents. When a process is described by many independent, identically distributed (i.i.d.)
increments, then the infinite sum of these increments is described by the normal dis-
tribution. This is the result ofCentral limit theoremunder the assumption of finite
variance. When we omit the assumption of finite variance, we obtain the whole class
of Lévy distributionwhich are stable under the operation of convolution. The theory of
stable distributionswas broadly studied by B. V. Gnedenko and A. N. Kolmogorov [12].
Interestingly, these distributions are closely related tofractional calculus throughfrac-
tional diffusion equations. Fractional calculus operates with generalizations of ordinary
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derivatives and integrals for non-natural, real orders. These generalizations have been
studied since the nineteenth century, but the first attempt on a systematic description is
dated to the second half of the twentieth century. All these mathematical descriptions
lead to processes which can describe systems with sudden jumps (also called “black
swans” [13]) more accurately. These black swans are observed, for instance, in quan-
tum systems [14] or financial markets [15].

It is interesting that similar ideas incorporating scalingand generalized statistics
can also be found in thermodynamics. In statistical physics, which is a link between
equilibrium thermodynamics and the theory of information,have been investigated sys-
tems, in which the ordinary extensivity of variables is disrupted because of openness
of the system and/or information/energy flows. Such systemshave to be described in
the regime of non-equilibrium thermodynamics [16]. For some particular cases, it is
nevertheless possible to recover some of the thermodynamical properties by using gen-
eralized statistics. The two most important examples of generalized information mea-
sures are the Rényi entropy discovered by a Hungarian mathematician A. Rényi [17] and
Tsallis entropy (also called Tsallis-Havrda-Charvát entropy). Tsallis entropy was firstly
discovered in connection with the theory of information divergences by Czech mathe-
maticians J. Havrda and F. Charvát [18] and applied to physics by C. Tsallis [19]. These
two entropies opened a new playground for description of systems with long-range cor-
relations, open systems and multifractal systems, callednonextensive thermodynamics.

Generally, concepts based on general ideas which find their applications in several
scientific fields open discussion about similarities of two or more different fields and
bring new ideas adopted in other theories. That is one of their main benefits. Apart
from the aforementioned examples, let us mention for example the concept of path
integrals [20], which has found its applications in many fields including quantum me-
chanics, solid state physics or financial markets. One of theaims of this thesis to point
out the existence of similar concepts which can be successfully applicable in several
fields.

1.2 Aims of the Thesis

The thesis has several targets. As outlined in the previous sections, the thesis presents
several general concepts. To the main concepts discussed inthe thesis belong scal-
ing, multifractals, generalized statistics, nonextensivity and Legendre structure. It is
important to discuss their important theoretical aspects as well as to show the poten-
tial of practical applications. The thesis is mainly focused in applications in financial
markets, because such applications represent a hot topic inthe field of econophysics.
Nevertheless, we also mention other possible applications, for instance applications in
thermodynamics or in models of developed turbulence. Additionally, the second aim is
to cover the topics which have been investigated during author’s studies and to provide

13



a comprehensive overview. There is usually not enough spaceto present some broader
perspective in the articles. All technical details or connections to related topics have
to be omitted. Therefore, the thesis provides the optimal format to cover all of these
interesting points, so that the reader gets a complete overview about the topic.

The thesis is based on several articles that have been published during author’s stud-
ies or are currently in the submission process. The thesis connects all of these topics
and provides an additional space for more general perspective. Namely, the results
from Ref. [21], which discusses some important technical aspects of Diffusion entropy
analysis, are presented in Sect. 2.4. Applications to financial series, done in several
papers, e.g. in Ref. [22], are presented in Sect. 5.1. Ref. [23] shows the application
of Double-fractional diffusion to the theory of option pricing. Theoretical aspects of
Double fractional diffusion are discussed in Sect. 3.3.3 and estimation on the real data
is presented in Sect. 5.2. Ref. [24] compares several important classes of nonextensive
generalized entropies and presents a new class of hybrid entropies and corresponding
MaxEnt distributions. The results can be found in Sect. 4.3.3.

The thesis is organized as follows: after this introductorychapter come three theo-
retical chapters. Namely, chapter 2 covers the multifractal analysis, chapter 3 presents
several models of anomalous diffusion and chapter 4 discusses possible generalizations
of Shannon entropy. Consequently, chapter 5 is dedicated toapplications in finance.
The last chapter is devoted to conclusions and perspectives. List of all author’s publica-
tions published or submitted during the period the doctoralstudies can be found at the
end of the thesis.
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Chapter 2

Multifractal analysis

Scaling and (multi)fractals belong to the most popular concepts in physics, chemistry,
biology and many other complex systems. This chapter brieflyreviews the existing
mathematical framework and compares methods for estimation of multifractal scaling
exponents. We particularly discuss some theoretical aspects of Diffusion entropy analy-
sis. At the end of the chapter, we also presents some possibleapplications of multifrac-
tals in physics.

2.1 Fractals and Self-similarity

There exist many real systems with characteristic scaling properties and inner structure
which is determined by the scaling rules. This is often connected with fractal prop-
erties of the system. Contrary to ordinary physical systemsdescribed by (systems of)
differential equations with smooth trajectories, fractalsystems are systems with rough,
non-differentiable structure. When we define fractal dimension, one of the necessary
conditions is that the fractal dimension of a smooth function is the same as its topo-
logical dimension. As a consequence, a simple rule for recognition of fractal systems
can be formulated: if the fractal dimension differs from topological dimension, fractal
structure is incorporated in the system.

Popular examples of fractals commonly emerging in the nature include snowflakes,
fern leaves, mountain ranges, Romanesco broccoli, coastlines and many others. More-
over, fractals found their applications also in other scientific fields. Let us mention, e.g.,
astronomy and the rings of Saturn, electromagnetism an the structure of electric dis-
charge or biology with the structure of blood vessel [25]. According to observations,it is
necessary to distinguish several kinds of fractals. The most rigorous areproper fractals,
which obey the scaling rule for all scales.Natural fractalsare fractals which follows the
scaling rule up to some particular scale determined usuallyby microstructure limitations
or by measurement accuracy. The most general type of fractalarestatistical fractals.
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They fulfill the scaling rules only for some statistical quantities. In the real systems are
usually observed the latter two types.

There exist several definitions of fractal dimension on different levels of mathemat-
ical rigor. We stick to the most illustrative one and sketch the other possibilities. The
most familiar is the so-calledbox-countingdimension, which, as the name suggests, is
based on counting of boxes in the embedding space. Let us havea setF ⊂ RD and
let us divide the space into non-overlapping boxes,l-mesh, of volumelD. We count
the number of boxes which have non-empty intersection withF and denote asNF (l).
WhenF is a smooth curve, the number acquires the scaling ruleNF (l) = Cl−1. We can
clearly recognize the dimension as the exponent at1/l. Subsequently, we can generally
considerNF (l) in the form

NF (l) = c(l) l−dF , (2.1)

wherec(l) is a slowly varying function ofl, i.e.

lim
l→∞

c(al)

c(l)
= 1 for all a > 0 . (2.2)

We can easily extractdF from previous equation, so

dF = lim
l→0

(
− lnNF (l)

ln l
+

ln c(l)

ln l

)
= lim

l→0

lnNF (l)

ln 1/l
, (2.3)

which is nothing else then the definition of the box-countingfractal dimension. We have
to be aware that nothing guarantees the existence of the limit. Nonetheless, in practical
applications, we are limited by the measurement precision.Execution of the limit is
intractable. In these cases is the limit replaced by linear regression oflnNF (l) versus
− ln l.

More rigorous approach provides so-calledHausdorff dimension, which is based
on l-covers. We definel-cover as a countable cover. The elements of the cover are
sets containing points which have their respective distance at most equal tol. This
determines a class of measures defined as

∑
i |Ui|q, where{Ui} is thel-cover (compare

with the definition of partition function in Sect. 2.2.) For certain values ofq ∈ [0, dH)
is the measure infinite inl → 0 limit, while for q ∈ (dH ,∞] tends the sum to zero. The
parameterdH is therefore the Hausdorff dimension and the sum is nothing else than the
generalization ofD-dimensional volume for non-natural dimension. Indeed, when both
fractal dimensions exist, they are both the same.

Many fractals can be generated trough self-similar transformations. The recursive
procedure of fractal creation is a very popular technique and there exist dozens of meth-
ods based on simple recursive rules. Among others, Iteratedfunction systems or L-
systems [26] provide two examples. All these methods are based onsimilarities. Simi-
larity S is a transformation which just rescales the set but preserves the shape. It holds
that‖S(x)− S(y)‖ = c‖x− y‖. A self-similarobject is composed of similar copies of
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itself, therefore, it can be expressed asF =
⋃

i Si(F ), whereSi are similarities. Fractal
dimensiond can be easily determined from equation

∑

i

cdi = 1 , (2.4)

whereci are characteristic coefficients ofSi.
We can find self-similar properties not only in systems described geometrically, but

also in probabilistic systems. Examples provide stochastic processes, random fields or
unifractal cascades. We have to slightly generalize the concept of the fractal dimension
in these case. Firstly, because of probabilistic nature of the embedding space, we should
work with probabilistic measures. These measures are usually naturally available in
the probability space, so it does not usually restrict our investigations. Secondly, in
time-evolutionary systems, as e.g., stochastic systems, we have an additional structure
given by the time evolution. We have to admit that the time coordinate is conceptu-
ally different and this should be reflected when calculatingthe dimension in space-time
coordinate space (x-t space). Additionally, there is no natural measure in time-space
coordinate space, i.e., it is not possible (in non-relativistic theories) to mix space coor-
dinates with time and to measure the distances between(x, t)-points. Time is just the
parameter of the system. It can be overcome by definition of so-calledaffinity, which,
loosely speaking, imposes the implicit scale ratio betweentime and space coordinates
which afterwards enables to define a distance on the space-time coordinate space. Con-
sequently, this allows to define a concept ofself-affinity, defined as self-similarity in
space-time coordinate space with affinity.

At this point, we remind the basic fractal properties of someparticular stochastic
processes. The most popular stochastic process is the Wiener process, defined e.g., in
[27]. The scaling properties can be treated via its conditional distribution

p(x, t|x0, t0)dx =
1√

2πD(t− t0)
exp

(
− (x− x0)

2

2D(t− t0)

)
dx . (2.5)

The distribution has is invariant under the transform

∆x = α∆x′ (2.6)

∆t = α2∆t′ . (2.7)

Scaling parameterα cancels out and the distribution remains unchanged. Thus, we
become the scaling property|∆x| ∝ (∆t)1/2. The exponent is calledHurst exponent. It
is an important measure for estimation of (multi)-fractal properties and will be further
investigated in Sect. 2.3.1. In the following overview are presented fractal dimensions
of some familiar stochastic processes:

• sample paths of Wiener process inRn (n ≥ 2) have dimension 2,
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• graphs of Wiener process inx-t space have dimension3
2
,

• graphs of fractional Brownian motionWH(t) (see Sect. 3.3.1) inx-t space have
dimension2−H.

• sample paths of Lévy processLα(t) (see Sect. 3.3.2) have dimensionmax{1, α},

• graphs of Lévy process inx-t spacemax{1, 2− 1
α
},

These processes serve often as a springboard for more complex processes. However,
many systems cannot be completely described by processes with one scaling exponent.
In the real systems are usually present several scaling exponents or even the whole spec-
trum of scaling exponents. Therefore, we introduce a concept that enables description
of processes with more scaling exponents.

2.2 Multifractal Analysis

For many systems are global scaling rules too restrictive. On the other hand, local
scaling rules can be often observed. Systems described by more scaling exponents are
calledmultifractal systems. These local scaling exponents are usually characteristically
distributed for a given system and therefore can be used for classification. In multifractal
analysis is assumed that the distribution of scaling exponents has also some typical
spectrum of scaling exponents. This spectrum of scaling exponents is calledmultifractal
spectrumand fully characterizes the multifractal properties of given system [7]. In this
section we show an intuitive definition of multifractal scaling exponents. More rigorous
definitions based on multifractal measures can be found e.g., in Ref. [9].

Let us divide the space into distinct regionsKi(s) depending on the typical scale
s. We suppose that there is defined a characteristic quantity in each region. Usually, it
is the probability distributionpi. We consider that the probability distribution scales as
pi ∝ sαi . In the limit of smalls, we assume that the distribution of scaling exponents
can be expressed as a smooth function ofα, i.e., in the form

P (α, s) dα = c(α)s−f(α) dα , (2.8)

wherec(α) is a slowly varying function ofα. Scaling exponentf(α) is called multi-
fractal spectrum and is nothing else than the fractal dimension of subset which scales
with exponentα. Hence, in multifractal analysis we assume that there are two probabil-
ity distributions. Scaling exponents of these distributions determine the behavior of the
system. It is also convenient to introduce another approachof multifractal exponents
estimation. We introduce the partition functionZ(q, s), which is the analogue of its
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thermodynamical counterpart (more about multifractal thermodynamics in Sect. 2.5.2).
We consider that the partition function scales with thescaling functionτ(q):

Z(q, s) =
∑

i

pi(s)
q = 〈Pq−1〉 ∝ sτ(q) . (2.9)

The relation to multifractal spectrum can be obtained by plugging into the definition of
partition function:

Z(q, s) =

∫
dαP (α, s)p(s, α)q =

∫
dα c(α)s−f(α)sαq ∝ sτ(q) . (2.10)

In the limit of smalls is possible to use the steepest descent approximation. Thus, the
main term contributing to integral is the one with the smallest exponent. Finally, we get

τ(q) = inf
α
(αq − f(α)) = qα(q)− f(α(q)) (2.11)

whereα(q) is the exponent which minimizes previous expression. This transform is
called Legendre-Frenchel transform or convex conjugation. The properties of the trans-
form are summarized in Ref. [28]. Additionally, when we consider differentiability of
scaling exponents, we end with classic Legendre relations,namely

τ(q) = qα(q)− f(α(q)) , (2.12)
dτ(q)

dq
= α(q) , (2.13)

q =
df(α(q))

dq
. (2.14)

In this case, we can immediately write down analogous relations for scaling exponent
α, because twice performed Legendre transform gives us back the original function.

The partition function is also closely related to Rényi entropy (which properties are
extensively discussed in Sect. 4.3.1), because

Iq(P(s)) ≡ Iq(s) =
1

q − 1
lnZ(q, s) . (2.15)

The connection to Rényi entropy is important, because it enables us to collate multifrac-
tal exponents to so-calledgeneralized dimension

D(q) = lim
s→0

1

q − 1

ln
∑

i pi(s)
q

ln s
=

τ(q)

q − 1
. (2.16)

The generalized dimension is nothing else than scaling exponent ofxq−1-power mean,
so

q−1
√
〈Pq−1(s)〉 ∝ sD(q) . (2.17)
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Actually, it can be considered as a generalization of several dimension measures, as
topological dimensions (q = 0), box-counting dimension (q → 1) or correlation di-
mension (q = 2) [6]. This provides a nice interpretation of the scaling function τ(q),
which is proportional to generalized dimension and therefore measures the distortion
from monofractal behavior, which is represented by the curve τD(q) = D(q − 1).

The main issue in multifractal analysis is the problem of scaling coefficients estima-
tion. Strictly speaking, the exponents should be extractedfrom relations in thes → 0
limit, which is in practical applications intractable, because we usually work with mea-
sured discrete data. The next section presents some methodsof measuring the scaling
exponents.

2.3 Estimation of Scaling Exponents

Real applications demand a different approach of scaling exponents estimation. As
discussed in previous sections, the estimation based on small-scale limit is unthinkable,
because the objects are usually not theoretical (multi)-fractals across all scales. They
are rather natural-fractals, with scaling laws perceptible only up to some treshold. We
also have to face to the problem of finite amount of data which also changes estimation
of relevant quantities. In practical applications, we usually start with some finite set of
elements{xi}Ni=1, which can be a time series, a sequence of measurements, etc.We
need to extract the scaling elements only from this limited amount of data. Because we
should make the estimation over at least a few scales, small datasets are generally not
very suitable for such methods.

We gradually introduce some of the popular techniques for estimation of multifractal
exponents and briefly compare their strong and weak aspects.We start with a mono-
fractal technique calledRescaled range analysis(RSA). Main reason is that it was his-
torically the first method based on the celebratedHurst exponentand also because of
its conceptual clearness. Subsequently, we discuss the multifractal version of HE called
Generalized Hurst exponent(GHE). As next, we treat probably the most popular tech-
nique, calledDetrended fluctuation analysis(DFA) based on calculation of fluctuations
around local trends. Finally, we present theDiffusion entropy analysis(DEA) based
on estimation of Rényi entropy. Apart from these methods, there have been developed
many other methods, among others let us mention Multifractal wavelet analysis [29].

We extensively discuss the related problems. For instance,estimation of probability
distributions as histograms or estimation of the optimal bin-width belong to the most
important. All presented methods are demonstrated on one-dimensional datasets, how-
ever, generalizations to more dimensions are straightforward.
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2.3.1 Rescaled Range Analysis

Rescaled range analysis is a simple method based on estimation of Hurst exponent in
time series, introduced by H. E. Hurst [5, 30], a British hydrologist and pioneer of the-
ory of scaling exponents. The method is simply based on the investigation of range
measured on different scales. From knowledge of propertiesof stochastic processes
(particularly fractional Brownian motion), we deduce thatthe estimated scaling param-
eter corresponds to the Hurst exponent. Let us have a series{xi}Ni=1. For each partic-
ular scales, we divide the series to parts of lengths, i.e., we haveX1(s) = {xi}si=1,
X2(s) = {xi}2si=s+1, etc. Similarly to other methods, we have to remove the localiza-
tion and scale dependence. For this end, we transform the series by subtraction of local
means

yi = xi − X̄j (2.18)

whereX̄j is the corresponding mean, e.g. fori ∈ {1, . . . , s} we haveX̄1 =
1
s

∑s
i=1 xi,

etc. Analogously to previous notation, we haveY1(s) = {yi}si=1, and so on. For each
partj = 1, . . . ⌊N/s⌋, two quantities are calculated, namelyRangeof the series

Rj(s) = max{Yj(s)} −min{Yj(s)} (2.19)

andStandard deviation

Sj(s) =

√
Yj(s) · Yj(s)

s
(2.20)

wherea · b denotes the scalar product. The ratioR/S is used for estimation of Hurst
exponent. We average all localR/S ratios to obtain the globalR/S ratio that scales as

R/S(s) =
1

⌊N/s⌋

⌊N/s⌋∑

j=1

Rj(s)

Sj(s)
∝ sH . (2.21)

Similarly to all other methods, we assume that the scaling dependence is not far from
exact scaling, i.e.R/S(s) = KsH . Eventually, we can estimate the Hurst exponent
from doubly-logarithmic linear regression. Despite its simplicity, which can sometimes
cause improper estimations, Rescaled range analysis in theextremely popular method
for detection of the characteristic scaling exponent.

2.3.2 Generalized Hurst Exponent

Morales et al. [31] introduced a method which enables to generalize Hurst exponent for
multifractal systems. It was successfully applied e.g., intext analysis [32]. The method
is slightly improved compared to theR/S analysis and provides the whole spectrum of
exponents. The exponent is not based on estimation of Range,for which is necessary to
work with large amount of data. Instead, the estimation is based on so-calledstructure
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function, which also scales in time with some characteristic scalingexponent. It is
defined as

Kq(s) =
〈|xi+s − xi|q〉

〈|xi|q〉
. (2.22)

The averaging is done over indexi. The averaging method is calledmoving time-window
averaging. We shall note, that forq = 2, the structure function is proportional to cor-
relation functionC(s) = 〈xi+sxi〉, which corresponds to the fact that the generalized
dimension is forq = 2 equal to correlation dimension. We shall note that the denomi-
nator〈|xi|q〉 is not depending on the lags and therefore does not influence the scaling
behavior. However, for largeq’s can the numerator lead to huge numbers and the de-
nominator tends to normalize the structure function.

TheGeneralized Hurst exponent(GHE) is then defined as

Kq(s) ∝ sqH(q) . (2.23)

The parameterH(q) is constant for monofractal series and is equal to (classic)Hurst
exponent. In case, whenH(q) is not constant, we obtain the Hurst exponent asH(1) =
H, while the other values are connected with the rest of multifractal scaling exponents.

When investigating time series, it is also possible to use exponential smoothing
method, which accentuates the most recent values and suppresses past values. The
exponentially weighted average is defined as follows:

〈x〉w =
N∑

j=1

wjxN−j (2.24)

wherewj = w0 exp
(
− j

θ

)
. Parameterθ represents the characteristic time decay. The

method represents an elegant and easy way to estimate scaling exponents. Following
method shows an alternative way of exponent estimation based on calculation of fluctu-
ations from local trends.

2.3.3 Detrended Fluctuation Analysis

Detrended fluctuation analysis(DFA) is a method based on estimation of local linear/
quadratic/ . . . trends and measuring fluctuations from localtrends. It was originally in-
troduced in Refs. [33, 34]. Similarly to R/S analysis we begin with subtraction of mean.
If we begin with noise-like series, i.e. the series of returns (or successive differences, so
ξi = xi+1 − xi), we have to create a aggregated series, so

yi =

i∑

j=1

(ξj − 〈ξ〉) . (2.25)
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When we start with the series{xi}Ni=1, we create the series of successive differences
and make the mean subtraction after that. We divide the series into parts of lengths and
estimate the local trendŝyν. The local fluctuation function is then defined as

F (ν, s)2 =
∑

(ys(ν−1)+i − ŷνi )
2 . (2.26)

The total fluctuation function can be calculated (similarlyto calculation of generalized
dimension in Sect. 2.2) as axq-power mean, so

F (q, s) =

{
1

Ns

Ns∑

ν=1

[F (ν, s)2]q/2

}1/q

. (2.27)

Let us assume that the Fluctuation function scales with exponenth(q), i.e. we have
F (q, s) ∝ sh(q). Therefore, we obtain that

Ns∑

ν=1

[F (ν, s)2]q/2 ∝ sqh(q)−1 . (2.28)

When the series{xi}Ni=1 is stationary, normalized (successive differences have zero
mean) and positive, it is possible to omit the detrending procedure, because the de-
trending procedure is in this case equivalent to subtraction of the mean value of returns.
Correspondingly, it is convenient to rewrite the followingsum as

Ns∑

ν=1

|F (ν, s)|q =
Ns∑

ν=1

|yνs − yν(s−1)|q , (2.29)

where can be recognized estimated probabilities

ps(ν) = |yνs − yν(s−1)| =
νs∑

j=ν(s−1)+1

ξj . (2.30)

Consequently, the sum of local fluctuations is equal to the partition function

Z(q, s) =
∑

ν

ps(ν)
q (2.31)

and therefore
τDFA(q) = qh(q)− 1 . (2.32)

The method was originally constructed in mono-fractal version for q = 2. For q = 1,
the procedure is related toR/S-analysis and Hurst exponent.

Short discussion is necessary at this place. The validity ofthe previous relation is
restricted by necessity of detrending procedure for general series. From mathematical
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point of view, if the empirical probability was created fromdetrended series, sops(ν) =∑νs
j=ν(s−1)+1(ξj − 〈ξ〉), the probability is properly defined, which means that it is not

a proper measure on the probability space. More discussion is contained in Ref. [35].
Apart from that, the generalized dimension calculated fromscaling function is equal to

DDFA(q) =
qh(q)− 1

q − 1
. (2.33)

If the generalized dimension is a finite number, we automatically obtain thath(1) = 1,
but it does not have to be true for an arbitrary series. This isagain connected with the
detrending issue. Some authors, as e.g. [36] use an alternative approach in estimation of
generalized dimension. It is based on definition ofcumulant generating functionK(q)

τ(q) = D(q − 1)−K(q) (2.34)

whereD is topological dimension. When dividing the previous equation by (q − 1) we
can define thecodimension function

D(q) = D − C(q) . (2.35)

In case of monofractal series, i.e., when the codimension function is equal to Hurst
exponent, we obtain the familiar relation between Hurst exponent and fractal dimension

DF = D −H . (2.36)

We shall note that similarly to multifractal spectrum, there exists acodimension spec-
trumassociated withK(q) through Legendre transform:

c(γ) = sup
q
(qγ −K(q)) . (2.37)

It is possible to show that working with codimension function can partially overcome
the problems with estimation of fractal dimensions that arepresent in techniques asR/S
analysis or DFA. Alternatively, we can directly estimate the probability distributions and
therefore obtain less pathological estimation of generalized dimension. The approach
is based on estimation of Rényi entropy. After an introduction, we briefly compare the
method with other methods discussed in this chapter.

2.3.4 Diffusion Entropy Analysis

In previous sections were presented methods that are built on descriptive statistical mea-
sures as rescaled range, mean, variance or more generallyq-cumulants. In the cases
when the underlying model exhibits power-law decay in probability distribution due
to presence of extreme events or long-term memory, the theoretical statistics can be
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indeterminable or infinite and the empirical counterparts are not describing the theoret-
ical model correctly. Moreover, as discussed in previous sections, the above described
approaches may not work properly for every series. As a consequence, we turn our
attention to another multifractal method based on estimation of Rényi entropy called
Diffusion entropy analysis, introduced originally by Scafetta et al. [37], in monofractal
version based on Shannon entropy, and further generalized by Huang et al. [38]. The
method is based on estimation of Rényi entropy. The advantage of entropy-based ap-
proaches is that they manage working with distribution withscaling exponents. As an
example, let us consider a probability distribution with a single scaling exponentδ. This
distribution can be directly written in the form

p(x, t)dx =
1

tδ
F
( x
tδ

)
dx . (2.38)

To this class of distributions belong e.g. Gaussian distribution or Lévy-stable distribu-
tions (their definition and basic properties can be found in Appendix A). The scaling
exponent can be detected by calculation of differential (orcontinuous) Shannon entropy
which is defined as

H(t) = −
∫

R

dx p(x, t) ln[p(x, t)] (2.39)

which is in the case of distribution with single scaling exponent equal to

H(t) = −
∫

R

dx
1

tδ
F
( x
tδ

)
ln

[
1

tδ
F
( x
tδ

)]
=

= −
∫

R

dy F (y) ln

[
1

tδ
F (y)

]
= A + δ ln t . (2.40)

When the system has several scaling exponents, we can measure its spectrum by mea-
suring generalized dimension determined from Rényi entropy

Iq(t) =
1

1− q
ln

∫

R

dx p(x, t)q . (2.41)

For monofractal distribution with scaling exponentδ is the Rényi entropy equal to

Iq(t) =
1

1− q
ln

∫

R

dx
1

tqδ

[
F
( x
tδ

)]q
=

=
1

1− q
ln

∫

R

dy
1

t(q−1)δ
[F (y)]q = Bq + δ ln t (2.42)

For distributions with more scaling exponents, we generally obtain the scaling expo-
nents depending onq, so

Iq(t) = Bq + δ(q) ln t . (2.43)
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The procedure of estimation of scaling exponentδ(q) is straightforward: we estimate
the empirical probability distribution̂p from the time series, calculate the Rényi en-
tropy and extract the scaling exponents from linear regression Iq(t) ∼ Bq + δ̂(q) ln t.
The main challenge is the estimation of probability distributions such that the empirical
Rényi entropy is approximated optimally. This is slightly different situation from the
ordinary procedures known from theory of histograms. For our purposes, depending on
parameterq, we do not have to estimate onlŷp, but also its powers, i.e.̂pq. Generally,
this is the important point for all methods based on entropy estimation, not only mul-
tifractal methods. The next section is devoted to the properestimation of probability
histograms for estimation of Rényi entropy and subsequently δ-spectrum.

2.4 Estimation of Rényi Entropy andδ-spectrum

Estimation of entropies in general brings about several aspects that have to be properly
discussed. The discussion covers the topics of probabilitydistribution estimations, limi-
tations in estimation procedure according to the particular value ofq, and calculation of
optimal bin-width for estimation of probability histograms. The discussion was done in
Ref. [21] in connection with Diffusion entropy analysis, but can be also helpful in con-
nection with other methods based on estimation of Rényi entropy. Similar discussions
about applicability of particular methods and all technical details are done for DFA in
Ref. [39] and for GHE in Ref. [31] .

2.4.1 Fluctuation Collection Algorithm

Most of the methods used for probability distribution estimation are established on the
principle of repeating experiment and law of large numbers.It sets down that the
empirical probability converges to the underlying theoretical probability distribution.
This can be a problem in the case of time series, because the evolution of time series
does not exhibit such behavior. Nevertheless, when we confine ourselves to the case
of stationarytime series, the estimation becomes tractable, because theproperties of
the stationary process do not depend on the particulary position in the series. This can
be usually achieved by taking thesuccessive differences(or returns in financial termi-
nology) ξj = xj − x0. For estimation of probability distribution, we use, as in the
case of GHE, the method ofmoving time-window. The fluctuation functions are for
j = {1, . . . , N − s} defined as

σj(s) =

j+s∑

i=j

ξi+s = xj+s − xj . (2.44)

The first expression is used when we work directly with noise-like series, in the case of
walk-like (non-stationary) series, it is equivalent to useboth approaches. All fluctuations
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Figure 2.1: Fluctuation collection algorithm for the time series S&P500 in 2008. From above:
a) Time series of S&P500 from January 1950 to March 2013, containing approximately 16000
entries.b) S&P500 for the year 2008. c) Fluctuation collection algorithm for the first two months
of 2008 ands = 8 days. The series is partially integrated, i.e., fluctuationsumsσj(8) are
collected into the histogram (right). d) Fluctuation collection algorithm for the whole year 2008
for s = 64 days. This histogram was estimated independently of the first histogram.

are divided into equidistant regionsKi of bin-widthh(s) and the probability is estimated
as a normalized equidistant histogram

p̂i(s) ≡
card{j |σj(s) ∈ Ki}

N − s+ 1
. (2.45)

For multidimensional data is the procedure similar, butKi become hypercubes of vol-
umehD. The choice of bin-width influences substantially the estimated histogram and
therefore it is necessary to find an optimal value of the bin-width. The algorithm is called
Fluctuation collection algorithmbecause of its striking resemblance with diffusion of a
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particle over the given time period. In the case of estimation of scaling exponents, we
need to be able to estimate the scaling behavior simultaneously for several time scales.
Fig. 2.1 illustrates the fluctuation collection algorithm on an example of financial time
series S&P 500. The two histograms are estimated separately, i.e. on different scales
leading to different bin-widths. We need to incorporate theparallel estimation on multi-
ple scales to the calculation of optimal bin-width. This issue is broadly discussed in the
next sections.

2.4.2 Histograms and Probability Distances

In this section we revise two classic topics of probability theory, namely histograms and
distances on a probability space. Let us start with histograms. An equidistant histogram
is a discrete approximation of an underlying probability distributionp(x) defined as

p̂(x) =
∞∑

i=−∞

pi
h
χi(x) , (2.46)

whereχi is the characteristic function ofKi andpi =
∫
Ki
p(x)dx. In practical estima-

tions, we work with finite data and the histogram is understood as an approximation of
underlying PDF obtained from the data, so

p̂(x) =
1

Nh

nB∑

i=1

ν̂iχi(x) , (2.47)

whereN is the length of the dataset{xj}Nj=1, nB is number of bins,χi is the characteris-
tic function ofi-th binKi = [xmin+(i−1)h, xmin+ih] andν̂i is the number of elements
that fall intoKi. The bin-width determines the number of bins, because it holds

nB = ⌈xmax − xmin

h
⌉ , (2.48)

where⌈·⌉ denotes the ceiling function, i.e. the smallest exceeding integer. Naturally,
theq-th power of a histogram is equal to

p̂q(x) =
1

N qhq

nB∑

i=1

ν̂qi χi(x) . (2.49)

Our aim is to find such a histogram which is the optimal approximation of the under-
lying probability distribution with respect the Rényi entropy. The natural measure of
discrepancy is the Rényi information divergence [40]:

Dq(p||p̂) =
1

q − 1
ln

∫

R

dx p̂1−q(x)p(x) , (2.50)
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which represents the information lost (measured in Rényi entropy sense) when a dis-
tribution p is approximated by histogram̂p. For q → 1, we get the famous Kullback-
Leibler information divergence [41]. Because we do not wantto restrict ourselves to
one histogram, which is only one representative outcome ofN-times repeated joint ex-
periment, we have to introduce theexpected Rényi information divergence,

〈Dq(p||p̂)〉H =
1

q − 1

〈
ln

∫

R

dx p̂1−q(x)p(x)

〉

H
, (2.51)

where〈·〉H denotes the ensemble average over all admissible histograms. Unfortunately,
working with this measure is intractable because of thelog function in the expression.
Therefore, we would have to really calculate the average over all possible histograms.
The issue can be circumvented by approximation of Rényi divergence by other statistical
distances with similar properties and yet computationallytractable. For this end, we
firstly approximate the logarithm using Jensen inequality

1− 1

z
≤ ln z ≤ z − 1 (2.52)

and obtain that

|Dq(p||p̂)| ≤
cq

q − 1

∫

R

dx |p̂q(x)− pq(x)| . (2.53)

This is a generalization of Csiszár—Kullback inequality [42] between Rényi divergence
andL1-distance betweenq-th powers. In Ref. [21] is shown that the constantcq is equal
to

cq = max

{
1,

(∫

R

dx p̂1−q(x)pq(x)

)−1
}
. (2.54)

Finally, from previous inequality together with Hölder inequality we obtain that

|Dq(p||p̂)|2 ≤
c2q

(q − 1)2

(∫

R

dx |p̂q(x)− pq(x)|
)2

≤ c2q
(q − 1)2

∫

R

dx|p̂q(x)− pq(x)|2.
(2.55)

The main advantage of usingL2 (or L1) norm consists in the fact that the ensemble
average can be interchanged with the integral, so

〈
‖p̂q − pq‖2L2

〉
H =

∫

R

dx〈(p̂q(x)− pq(x))2〉H (2.56)

and therefore ensemble averaging acts to the histogram onlylocally. Consequently, we
do not have to average over all frequencies{ν̂i}nB

i=1 such thatνi ∈ {1, . . . , N} and∑nB

i=1 νi = N . We can average only over one frequencyνi, which is a significant
simplification in calculations.
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Let us mention that it is also possible to work with the previously mentionedL1-
distance. The reason of working rather withL2-distance is twofold: first, it is computa-
tionally slightly more tractable and second, most of the authors work withL2-distance
and therefore we can compare our results with classic results known from theory of
histograms. Generally, it is plausible to assume that in this 1-dimensional optimiza-
tion problem (the only parameter is the bin-width) are optimal results under previously
mentioned distance measures to similar results.

2.4.3 Dependence of Bin-width onq and Optimal Bin-width

At this place arises a natural question: is the optimal bin-width depending on the Rényi
parameterq or is it enough to estimate the optimal bin-width for one parameter, e.g.,
for q = 1, and use it for all entropies? In the following discussion weshow that it is
necessary to calculate the optimal bin-width separately for eachq. We denote∆(x) =
p(x)− p̂(x). TheL2 squared distance between probability distribution and histogram is
equal to

‖pq − p̂q‖2L2
=

∫

R

dx (pq(x)− p̂q(x))2 =

∫

R

dx

(
pq(x)− 1

hq

nB∑

i=1

p̂qiχi(x)

)2

=

=

∫ xmin

−∞
dx p2q(x) +

nB∑

i=1

∫

Ki

dx

(
pq(x)− p̂qi

hq

)2

+

∫ ∞

xmax

dx p2q(x)

Assuming that∆(x) is sufficiently small, we can approximate the distribution as

p(x)q =

[
p̂i
h

]q
+

(
q

1

)[
p̂i
h

]q−1

∆(x) +O(∆(x)2) (2.57)

Subsequently, the distance can be approximated as

‖pq − p̂q‖2L2
≈

∫ xmin

−∞
dx p2q(x) + q2

nB∑

i=1

([
p̂i
h

]2(q−1)

∆2
i

)
+

∫ ∞

xmax

dx p2q(x) ,

where∆2
i =

∫
Ki

dx∆(x)2. We use the following notation

‖pq − p̂q‖2L2
≈ ∆2q

0 + S
2
q + ∆2q

nB
. (2.58)

The middle sumS2
q depends only on the choice of histogram and therefore onh. We

divide the discussion into three cases:

• q ≤ 0: the sum accentuates extremely small probabilitiesp̂i. This can be compen-
sated by larger bin-width. However, especially for distributions with extremely
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small probabilities it is very hard to decide whether the probability is zero or not,
and corresponding problem with definition0q for q < 0. Consequently, the es-
timation of Rényi entropy is extremely sensitive (forq < 0 is Rényi entropy not
a properly defined information measure; see Sect. 4.3.1) andmost authors do not
calculate histograms for negativeq’s.

• 0 < q < 1: the exponent in the sum is larger that−1, therefore the small proba-
bilities are accentuated, but not in a drastic way.

• 1 ≤ q: the error is diminished, because the error inp
2(q−1)
i is suppressed. Against

this is the factorh2(1−q) which is accentuated for smallh, thus it is convenient to
choose larger bin width and not to over-fit the histogram.

The previous discussion indicates that it is necessary to choose different bin-widths for
different values ofq and one common bin-width for all Rényi parameters would not
sufficiently approximate the underlying probability distribution.

In order to find the optimal bin-width, there have been used several approaches. In
this connection it is necessary to mention the popularSturges rule[43], which is based
on estimation of histograms for binomial distributions. Itestimates the optimal number
of bins asnB = 1 + log2N . However, this rule is good rather for data visualization,
but in case of probability distribution approximation, most authors prefer the approach
based onintegrated mean square error minimization. We utilize the previously dis-
cussedL2 distance betweenq-th powers and formulate the problem as minimization of
the term

min
h>0

∫

R

dx
〈
(pq(x)− p̂q(x))2

〉
H = min

h>0

nB∑

i=1

∫

Ki

dx

〈(
pq(x)−

νqi
N qhq

)2
〉

νi

. (2.59)

First, the integrand, which is nothing else than thelocal mean squared error, can be
rewritten as (we omit the subindexνi)
〈(

pq(x)−
νqi

N qhq

)2
〉

=

〈(
νqi

N qhq
−
〈

νqi
N qhq

〉)2
〉

+

(〈
νqi

N qhq

〉
− pq(x)

)2

(2.60)
where the first term represents variance ofp̂q(x) and the second term corresponds to
squared bias of̂p(x) with respect top(x). In both cases, we need to calculate at first
the expectation value ofνqi . In the theory of histograms can be easily shown that the
frequency fulfills the binomial distributionνi ∼ Bi(N, pi), wherepi is the probability
of i-th bin. Hence, we have to calculate the fractional moment ofbinomial distribu-
tion, which is not analytically possible. In the case when wehave enough statistics,
we can approximate the distribution by Gaussian distribution (this is a consequence of
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Central limit theorem), soBi(N, p) ∼ N (Np,Np(1 − p)). Consequently, we are able
to calculate the fractional moment as

〈νqi 〉 ≈
∫

R

dz|z|q 1√
2Npi(1− pi)

exp

(
− (z −Npi)

2

2Npi(1− pi)

)
(2.61)

which can be expressed in the closed-form in terms ofconfluent hypergeometric func-
tions. The procedure is also presented in [21]. We have used the absolute moment〈|z|q〉,
because it ensures that the results remains real. Using the leading term approximation,
the fractional moment can be expressed as

〈νqi 〉 = N qpqi

(
1 +

q(q − 1)

2

1− pi
Npi

+O(N−2)

)
. (2.62)

With that is the local variance equal to
〈(

νqi
N qhq

−
〈

νqi
N qhq

〉)2
〉

=
q2p2q−1

i (1− pi)

h2qN
+O(N−2) ≤ q2p2q−1

i

h2qN
+O(N−2)

(2.63)
Similarly, 〈

νqi
N qhq

〉
− pq(x) =

pqi
hq

− pq(x) +O(N−1) . (2.64)

When calculating the integrated error, we approximate the probabilitypi, so forξ ∈ Ki

pqi = hqpq(ξ) + qhq−1pq−1(ξ)h

(
h

2
− ξ

)
dp(ξ)

dξ
+O(hq+2) . (2.65)

With this leading order approximationis possible to show that the mean squared inte-
grated error is equal to
∫

R

dx 〈pq(x)− p̂q(x)〉H l.o.
=

q2

Nh

∫

R

dx p2q−1(x)dx+
h2

12

∫

R

dx

(
dpq(x)

dx

)2

. (2.66)

The only dependence on the histogram parameters is now remaining on the bin-width
h. The dependence on parameterh is depicted in Fig. 2.2. When we minimize the error
with respect toh, we obtain

h∗q =

(
6q2

N

∫
R
dx p2q−1(x)∫

R
dx(dpq(x)/dx)2

)1/3

. (2.67)

When we assume that the underlying model is driven by the normal distributionN (µ, σ2),
the integral converges forq > 1

2
, and the formula can be rewritten as

h∗q = σN−1/3 3

√
24
√
π

q1/2

6
√
2q − 1

= h∗1ρq . (2.68)
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Figure 2.2: Left: Shape of asymptotic mean squared error forq = 1 as a function ofh (the
choice ofN andσ determinesMSE(h) = 1
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12 ). Right: Plot ofρq. For largeq’s it is similar
to q1/3, but it starts to diverge for values close toq = 1

2 .

For q = 1 we recover the classic result of Scott [44], which is for other values ofq
only multiplied by factorρq =

q1/2
6
√
2q−1

(the functionρq is shown in Fig. 2.2). In practical
estimation, the theoretical standard deviation is replaced its empirical counterpart, so
we obtain a generalization of familiarScott rule[44]

ĥScq = 3.5σ̂N−1/3ρq . (2.69)

Alternatively, in cases when the standard deviation is not agood statistics (because of
distribution kurtosis, presence of heavy-tails or asymmetry), we can replace the standard
deviation by a multiple of theinterquartile range(IQR), i.e. the difference between first
and third quartile of the distribution. The transformationcoefficient is given by theIQR
of normal distribution, which is

IQR(N (µ, σ2)) = 2
√
2erfc(−1)(1/2)σ ≈ 1.349σ . (2.70)

With replaced interquartile range, the bin-width rule is expressible as

ĥFD
q = 2.6 ÎQRN−1/3ρq . (2.71)

The approach is inspired by the original method of Freedman and Diaconis [45].
Whenq ≤ 1

2
, the integral in Eq. 2.67 does not converge for distributions with un-

bounded support. The situation can be in principle patched by the assumption oftrun-
cated distribution, i.e. distribution with finite support. Nonetheless, the choice of the
particular distribution heavily influences the optimal bin-width and one would need to
know exactly the theoretical form of the underlying distribution.

For comparison, when the Normal distribution is replaced bythe Lévy-stable distri-
bution with stability parameterα < 2, one immediately derives a new limit for conver-
gence of the integral in Eq. 2.67, which is

qL >
1

2
+

1

2(α + 1)
. (2.72)
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Figure 2.3: Un-normalized (frequency-based) histograms of the fluctuation sums obtained from
time seriesS&P500, with s = 8, 64 and512 with bin-widthsh = 100, 10, 1, 0, 1 and0, 01;
measured in unitsu = 3×104 for better visualization. We can observe underfitted and overfitted
histograms.

In the case of estimation ofδ-spectrum, one has to estimate the Rényi entropy on several
bin-widths to be able to estimate the scaling exponent from the linear regression. Let us
have a set of characteristic scalesSc = {si}mi=1. The particular choice of characteris-
tic scales depends on the problem, but one can find a general rule which is working in
most cases thatSc = {K2i}imax

i=1 , whereimax is determined by the length of the dataset.
This choice is desirable because of two reasons: in log-linear plot, the entropies are dis-
tributed uniformly, and the complexity of algorithm remainsO(N logN). The optimal
bin-width is determined by thetotal asymptotic mean integrated squared error, so we
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Figure 2.4: Linear fits of estimated RE vs.ln s. The error from is from histograms distributed to
fitting procedure ofδ(q) spectrum.

have to optimize

min
h>0

imax∑

i=1

(
q2(2π)1−qσ

2(1−q)
si

Nsih
√
2q − 1

+
h2

12
q1/2π−(1/2+q)σ−(1+2q)

si

)
. (2.73)

WhereNsi = N−si+1 andσsi is the standard deviation on the scalesi. From previous
relations one immediately obtains the optimal bin-width as

h∗q(S) = (24
√
π)1/3ρq

3

√√√√
∑imax

i=1 σ
2(1−q)
si /Nsi∑imax

i=1 σ
−(1+2q)
si

(2.74)

Unfortunately, we do not obtain the bin-width in the factorized form, i.e., as the prod-
uct of ρq and aq-independent part. The empirical bin-width is obtained similarly to
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the previous cases. To illustrate necessity of proper estimation of histogram bin-width,
Figs. 2.3 show the histograms of one particular financial time series (S&P 500) es-
timated for several bin-widths. One clearly distinguishesthat the histograms for too
large bin-width areunderfitted(i.e., loose too much information), while histograms
for too small bin-width areoverfitted(i.e., we do not obtain enough statistics for most
bins). Moreover, Fig. 2.4 shows subsequent fits ofδ(q) estimated from the presented
histograms. We see that the errors are transferred to spectrum estimations, too.

2.5 Applications of Multifractals in Physics

In this section, we discuss possible applications of multifractal analysis into physics and
other related fields. Interestingly, the presented concepts find their applications also in
financial models. This conjunction was a cornerstone for theformation of econophysics,
and multifractal models still remain one of the most important parts in the branch. We
focus on applications in hydrodynamics and meteorology conveyed by the concept of
multiplicative cascades and the connection of multifractals with thermodynamical sys-
tems.

2.5.1 Multifractal Cascades and Deformations

The theory of multiplicative cascades was formulated by A.N. Kolmogorov in 1940 [3].
The theory was originally used in the connection with description of fully developed
turbulence, however, it found many other applications as e.g. description of chaotic
systems [46], or rainfalls in climatic models [47]. The theory is based on assumption
that large vortices are compound of eddies on smaller scale in some characteristic way.
We define a sequence of typical scalesr0 > r1 > . . . rn. One can define a typical ratio
between two typical scales, i.e.,li = rn

rn−1
< 1 , sorm = r0

∏m
j=1 lj . These scales define

a set of distinct regions on each scalerj , which is denoted as{Kj
i }imax

i=1 , whereimax

is determined by the nature of the system. We denote a characteristic quantity (often
energy of the system) asE. This quantity is defined by its density functionǫ(x), so

E(Ω) =

∫

x∈Ω
ǫ(x)dx . (2.75)

In the framework of multiplicative cascades, the quantity is defined on the typical scales
as a product ofmultipliers, so

Ern(K
j
i ) = Er0

n∏

j=1

Mj, ij . (2.76)

The limit n→ ∞ should converge to the density function. Thus, the cascade is defined
set of scaleslj and multipliersMj. There are two classes of multiplicative cascades. In
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the first case, we assume that all multipliersMj,i are for all regionsKj
i deterministic

functions. The constantEr0 therefore represents a normalization of the quantity in the
regionK0. The straightforward generalization enables to define multipliers as random
variables. The normalization is then determined by the meanvalues〈Er0〉.

Let us mention a few popular models of multiplicative cascades. In the original work
of Kolmogorov [3] was considered an isotropic distributionof multipliers, so the only
parameter of the model is the normalization〈Er0〉. The other popular examples provide
cascades with multipliers obeying log-normal distribution, β-model, where a fraction
(usually denoted asβ) of multipliersMj is nonzero and the rest is equal to zero.

Let us turn the attention to another class of multiplicativecascades which incor-
porates several characteristic scaling exponents and therefore with a good potential to
describe multifractal systems. The definition of cascades based on scale multipliers is
naturally predestined for modeling multifractal systems.The simplest version ofmul-
tifractal cascadeis binomial cascade, which serves as a springboard for more sophis-
ticated models. It is a deterministic cascade with binomialdivision rule (i.e.,lj = 1

2
),

when the multipliers areMj,1 = p andMj,2 = (1− p). Analogously, one could define
a multinomial cascadefor lj = 1

n
. The important property is theconservationof the

cascade, so
nj∑

i=1

Mj,i = 1 . (2.77)

A straight generalization of binomial cascade is themicrocanonical cascade, where we
assume that multipliersp and1 − p are randomly assigned toMj,1 andMj,2. Also
this model represents a cascade with conservation. The disadvantage of the system
is the fact that the multipliers are not statistically independent random variables. The
statistical independence of variables can be reanimated when we assume onlystatistical
conservation, i.e., we assume only

〈
nj∑

i=1

Mj,i〉 = 1 . (2.78)

If the multipliers are identically distributed, we obtain〈Mj,·〉 = lj. This model is called
canonical cascade, because the analogy with (micro)canonical ensembles in thermody-
namics, where the conservation rules are also expressed either in the strict form or in
the statistical form.

Multifractal properties can be naturally investigated with help of codimension func-
tion defined in Sect. 2.3.3. When we assume thatlj =

1
λ
, i.e.,rn = r0

λn . We suppose that
moments of multipliers fulfill the following scaling rule

〈Mq〉 ∝ λK(q) (2.79)
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Figure 2.5: Simulation of time-dependent volatility modeled as a multifractal cascade and com-
parison with 20-day volatility of S&P 500 index.

When we generalize the scaling rule to any positive scaleλ, the scaling exponentK(q)
corresponds to cumulant generating function (defined in Sect. 2.3.3). The relation to
multifractal spectrum is discussed in [36].

In one-dimensional case, the cascade defines amultifractal measure, which can be
successfully used in modeling of multifractal systems. Letus have a multifractal canon-
ical cascademn(x) = m0

∏n
j=1Mj

i (x). The cascade forms a sequence of measures, so
we have

µn[a, b] =

∫ b

a

mn(x)dx . (2.80)

The limit µ = limn→∞ µn is defined in the natural sense of the measure theory. We
define thetime deformationas

θ(t) = µ[0, t] . (2.81)

The time deformation can bring the multifractal nature intoa processX(t) with a simple
scaling. The time deformation has a nice interpretation, which says that it is a transfor-
mation between two times: one, physical, objective time of external observer and the
second, inner time of the system. In the inner time is the process simplyX(t), but of an
external observer, one has to transform the internal time into the clock timeτ = θ(t),
so the process becomesX(τ) = X(θ(t)). In many systems, the time difference is
proportional to standard deviation of the system, so alternatively, the time deformation
can be interpreted as time-dependent standard deviation (in financial theory known as
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Figure 2.6: Example of recursive generation of multifractal patterns. The top-left figure rep-
resents the Wiener pattern with constant scaling∆x = (∆t)1/2. The top-right figure shows
possible changes of Wiener pattern to obtain multifractal patterns. These patterns are chosen
randomly in each step. The bottom-left pattern represents the resulting multifractal pattern. The
difference between the Wiener pattern and a representativemultifractal pattern (displayed in
bottom-right figure) generates the time deformation.

volatility) of the underlying probability distribution. As an example, Fig. 2.5 shows
comparison of multifractal cascade and volatility of a financial series.

Alternatively, the time deformation can be created by generation of so-calledmulti-
fractal patterns. This approach was invented by B. B. Mandelbrot [48] and is based on
generation of patterns with typical scaling exponents. An example of such multifractal
pattern is illustrated in Fig. 2.6.

2.5.2 Multifractal Thermodynamics

The connection of multifractal formalism with concept of thermodynamics represents
another important interpretation of multifractal analysis and shows us possible appli-
cations in thermodynamical systems. Identification of multifractal scaling exponents
with thermodynamical quantities was a starting point for many applications in many
fields, chaotic systems are just one example [49]. It is also agood argument for using
associated Rényi entropy in thermodynamical systems [50].The connection to thermo-
dynamics can be established via the partition function

Z(q, s) =
∑

i

pqi (s) =
∑

i

exp(−βEi) (2.82)
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whereEi are energies of the system. When probabilities are scaling as pi(s) ∝ sαi ,
we can immediately identify multifractal exponents with thermodynamical quantities.
Therefore we obtain

Ei(s) = − ln(pi(s)) = −αi ln s . (2.83)

Additionally, we can interpret the Rényi parameterq as

q = β . (2.84)

whereβ is the inverse temperature. The connection to Rényi entropyis given as

I(q, s) = 1

1− q
Ψ(q, s) =

1

q − 1
lnZ(q, s) . (2.85)

The functionΨ(q, s), the negative logarithm of partition function, is nothing else than a
multiple of thermodynamicalfree energy

Fq =
1

β
lnZ(q, s) = − 1

β
Ψ(q, s) . (2.86)

It is also connected to the escort distribution

ρqi (s) =
pqi (s)∑
j p

q
j(s)

∼ exp(Ψ(q, s)− βEi(s)) . (2.87)

An interesting is the relation to the multifractal spectrum. When we use abbreviation

V = − ln s , (2.88)

the functionΨ(q, s) can be rewritten (similarly to Sect. 2.2)

Ψ(q, s) = − ln

∫
dα exp[(f(α)− qα)V ] . (2.89)

According to stationary phase approximation we obtain that

Ψ(q) ∼ [qα(q)− f(α(q))]V . (2.90)

From the correspondence ofΨ(q) to free energy and the fact that the Legendre structure
of the thermodynamics is preserved even for the general case[51], we end with

Ψ(q) = qUq − Sq = qα(q)V − f(α(q))V . (2.91)

Naturally, the termα(q)V = α(q) ln s represents the average energy given byq-averaging

a(q) = 〈a〉q =
∑

i

ρqiai (2.92)
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and correspondingly we obtain that

Uq = 〈E〉q =
∑

i

ρqiEi = a(q) ln s . (2.93)

The second term in Eq. (2.90) can be interpreted as the thermodynamical entropy of the
system, so we obtain that

lim
V→∞

(Sq/V ) = f(α(q)) (2.94)

lim
V→∞

(Ψ(q)/V ) = τ(q) . (2.95)

The limit V → ∞ corresponds to multifractal limits → 0. As a result, we obtain
analogical relations to thermodynamic Maxwell equations

∂Ψ(q)

∂q
= Uq (2.96)

∂Sq

∂Uq
= q . (2.97)

These thermodynamical relations ordain the relation between informational entropy and
thermodynamical entropy, because we have

Iq =
Sq − q Uq

q − 1
. (2.98)

For q → 1 the relation boils down to the classic relation between thermodynamical and
information entropy. Apart from multifractal thermodynamics, there exist other con-
cepts of thermodynamics going beyond classic scope of Shannon entropy, for example
non-extensive thermodynamics based on Tsallis entropy which is briefly discussed in
Section 4.3.2.

This section has presented some possible applications of multifractals in physical
systems. Indeed, there exist many other interesting multifractal models in biology, cos-
mology, theory of complex systems, etc. A nice overview of applications of multifrac-
tals provide Refs. [25].
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Chapter 3

Models of Anomalous Diffusion

Diffusion can be observed in many processes in the nature. Nevertheless, sometimes
is the description quite complicated because of emergent phenomena, long-range cor-
relations, etc. In this chapter we go through several modelsof anomalous diffusion
and discuss their properties. For this end, we also introduce so-called fractional calcu-
lus, a mathematical tool which is a generalization of ordinary calculus for non-natural
orders. Thereafter, we compare several models of generalized diffusion. Particularly
interesting is the double-fractional model, which incorporates both spatial and temporal
anomalous scaling exponents and can be expressed in severalrepresentations, including
kernel representation and integral representation.

3.1 Brownian Motion and Diffusion Equation

Brownian motion is the most popular and easy-to-understandmodel of random move-
ment. It was firstly experimentally discovered by a biologist R. Brown during obser-
vation of pollen grains in the water. Since that time, it has found many theoretical
descriptions as well as practical applications in many fields not only including physics,
but basically in every scientific branch, where some uncertainty is present in the system.
Theoretical description of the Brownian motion was done by A. Einstein and M. Smolu-
chowski at the beginning of twentieth century. They have found that the mean squared
displacement is proportional to time〈x(t)2〉 ∝ t. Theoretical description was done by
P. Langevin, N. Wiener and many other scientists. The most common mathematical
description of diffusion processes is given by the diffusion equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (3.1)
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To determine the solution completely, it is necessary to impose some boundary condi-
tions. The most common is to set two initial conditions

p(x, t)|t=0 = f0(x) ,
∂p(x, t)

∂t
|t=0 = f1(x) . (3.2)

Whenf0(x) = δ(x) andf1(x) = 0 we obtain the well-known Gaussian distribution

p(x, t)dx =
1√
2πD

exp

(
− x2

2Dt

)
dx . (3.3)

From the mathematical point of view, Brownian motion can be described as a stochas-
tic process. This process is calledWiener process[1] and is usually denoted asW (t).
The process is defined as a process with stationary increments with Gaussian distribu-
tion proportional to time. As discussed in the chapter aboutmultifractals, the Wiener
process has the fractal dimension equal to2 in two or more dimensions, and therefore
the representative trajectories are not differentiable. This is easy to see from the scaling
relation

〈|x(t + h)− x(t)|〉
h

∝
√
h

h
→ +∞ for h→ 0 . (3.4)

To the important properties of Wiener process belongs theMarkov propertywhich
points to the absence of long-term memory in the diffusion. Hence, the full information
about the process is encoded in the last observed value. As discussed in Sect. 2.1, the
diffusion process has the scaling discovered by Einstein, i.e. |∆x| ∝ ∆t1/2. The scaling
properties are the most important in the possible generalizations of diffusion processes.
The resulting scaling is determined by theCentral limit theorem. From this perspective,
the Diffusion process can be seen as a limit of a discrete process of random variables
with independent increments and finite variance. The diffusion process is also impor-
tant from the perspective of entropies, because it is the MaxEnt distribution under the
constraint of zero mean and standard deviation proportional to time, i.e.〈x2(t)〉 = Dt.

T Brownian motion the most popular diffusion process, nevertheless, models based
on Brownian motion are not able to describe certain types of systems. It is usually
the situation when some kind of complex behavior is observed. As an example, let us
mention processes with presence of memory effects. This is usually the motivation for
using some generalizations of Brownian motion which servesas a springboard for more
sophisticated methods. It is possible to follow two directions: the most common is to
allow correlations/memory effects. This can be done in plenty of ways; nonetheless, we
introduce the approach based on scaling properties. The second possibility is to admit
distributions with infinite variance. Models with these distributions can be for long
times, i.e., many independent increments, described via the class ofLévy processes.
The is a consequence ofGeneralized central limit theorem. We introduce both previous
concepts and briefly show some differences. Finally, we combine both concepts in the
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model of anomalousdouble-fractionaldiffusion. Before we turn our attention to the
particular models, we have introduce a mathematical apparatus which will be used in
generalizations of diffusion equations. It is based on definition of derivative operators
for non-natural values. Because there are several existingdefinitions, we choose a few
of them and compare their properties.

3.2 Fractional Calculus

In order to describe the models that generalize the diffusion process to anomalous
regime, it is necessary to generalize the classical calculus to operators (integrals and
derivatives) of non-natural orders. These operators were studies for quite a long time,
for example the “half-derivative” was studied by Leibnitz.The first systematic attempts
were done by Liouville and Riemann in the first half of nineteenth century. Presently,
the exhaustive overview of fractional calculus is given e.g., by Ref. [52].

We begin with the definition of fractional integral. Let us remind the well-known
Cauchy formula for repeated integration:

∫ x

x0

∫ x1

x0

. . .

∫ xn−1

x0

f(xn)dxn . . .dx1 =
1

(n− 1)!

∫ x

x0

(x− y)n−1f(y)dy . (3.5)

Indeed, it is possible to use the similar expression for the integrals with upper bound.
The Cauchy formula can be naturally generalized for fractional orders

x0I
ν
xf(x) :=

1

Γ(ν)

∫ x

x0

(x− y)ν−1f(y)dy . (3.6)

It is apparent that the fractional integral is a linear operator. The fractional integrals
form a semigroup, because

x0I
ν1
x ◦ x0I

ν2
x = x0I

ν1+ν2
x . (3.7)

The baseline for definition fractional derivative is the relation between ordinary deriva-
tive and fractional integral

d

dx

(
x0I

ν+1
x

)
= x0Iν

x . (3.8)

We want to generalize the relation also for negative values of ν. Nevertheless, the
generalization is not unique and there are several possibleways which are not equal.
We introduce a few types of fractional derivatives in the following sections, discuss
their main properties.
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3.2.1 Riemann-Liouville Derivative

The relation between ordinary derivative and fractional integral is the motivation for
introduction ofRiemann-Liouvillefractional derivative as a derivative of fractional in-
tegral with exponentν0 ∈ (0, 1). Similarly for νn ∈ (n, n+ 1), we use the derivative of
ordern+1 = ⌈νn⌉, where⌈n⌉ is the ceiling function, i.e. the smallest integer exceeding
νn. For arbitraryν, the definition of derivative is given as follows:

x0Dν
xf(x) :=

d⌈ν⌉

d⌈ν⌉x

(
x0I

⌈ν⌉−ν
x [f ]

)
(x) , (3.9)

Unfortunately, the Riemann-Liouville fractional derivative does not follow all properties
of ordinary derivatives. For example, the derivative is notcommutative

x0Dν1
x ◦ x0Dν2

x 6= x0Dν2
x ◦ x0Dν1

x . (3.10)

which means that the derivative operator does not form the semigroup. On the other
hand, for particular values ofx0 is possible to recover some of the properties of ordinary
derivatives. Forx0 = 0, we recover the derivative of polynomial function, because

0Dν
xx

µ =
Γ(µ+ 1)

Γ(µ− ν + 1)
xµ−ν . (3.11)

This is not only true forµ > 0 but also for any real value. Paradoxically, the derivative
of a constant is not zero:

0Dν
x1 =

x−ν

Γ(1− ν)
. (3.12)

The expression becomes zero only for natural values ofν, because the Gamma function
has poles forν ∈ N. we omit the subindex in the rest of section and assume only the
case whenx0 = 0.

Another paradox is connected with fractional diffusion equations. In the Laplace
image, it is apparent that using Riemann-Liouville derivative demands to impose so-
calledfractional initial conditions, i.e. values of fractional derivative in the initial point,
because:

L [Dν
xf(x); s] ≡ [̂Dν

xf ](s) = sαF (s)−
⌊ν⌋∑

k=0

sk
[
Dν−k−1

x f(x)
]
x=0

. (3.13)

One has to note that these initial conditions do not have any clear physical meaning,
as position and velocity in the case of ordinary derivatives[53]. The previous issues
motivate the introduction of some other definitions that would overcome these problems.
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3.2.2 Caputo Derivative

Due to the objectionable properties of Riemann-Liouville derivative which limits the
applicability especially for physical systems, it is necessary to form another definition
of fractional derivative which would recover some properties of ordinary derivatives.
The main idea is to interchange ordinary derivative operator and fractional integral in
the definition of Riemann-Liouville derivative. The resulting derivative is calledCaputo
derivativeand is defined as

x0

∗Dν
xf(x) := x0I

⌈ν⌉−ν
x

(
d⌈ν⌉f(x)

d⌈ν⌉x

)
=

1

Γ(⌈ν⌉ − ν)

∫ x

x0

f ⌈ν⌉(y)

(x− y)ν+1−⌈ν⌉ dy . (3.14)

Again, unless specified differently, we assumex0 = 0. The Caputo derivative is more
restrictive on its domain, because the functionf has to have alt least⌈ν⌉ derivatives. On
the other hand, because the derivative is inside the integral, the derivative of constant
function is now zero∗Dν

x1 = 0 . Laplace transform of Caputo derivative is

L [∗Dν
xf(x); s] ≡ [̂∗Dν

xf ](s) = sνF (s)−
⌊ν⌋∑

k=0

sν−k−1f (k)(0) (3.15)

so the natural initial conditions are recovered. Caputo differential operators and frac-
tional differential equations of Caputo type have been studied e.g. in Ref. [54]. The
eigenfunctions of Caputo derivative operators

∗Dν
xf(x) = λf(x) (3.16)

are expressible in terms ofMittag-Leffler functions(defined in Appendix C)

fλ(x) = Eν(λx
ν) . (3.17)

Finally, Riemann-Lioville derivative and Caputo derivative can be connected through
the relation (the proof can be found in Ref. [55])

∗
x0
Dν

xf(x) = x0Dν
xf(x)−

⌊ν⌋∑

k=0

xk

k!
f (k)(x0) . (3.18)

In the next section we show yet another definition of the fractional derivative operator,
which is the most common in physical applications.

3.2.3 Riesz-Feller Derivative

Previous definitions of derivatives depend on the particular value of the lower bound
of the integral, which influence the necessary initial conditions. In many cases, as e.g.
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in probability theory, we want to set the normalization conditions rather than particular
function values. This can be reached, when we send the pointx0 to minus infinity, so

D
ν
xf(x) := lim

x0→−∞ x0Dν
xf(x) . (3.19)

The derivative operator is calledRiesz-Feller derivative. Because of the Eq. (3.18), the
Riesz-Feller derivative operator can be alternatively defined by the Caputo derivative.
It is clear, that because of the convergence of the integral,the first⌈ν⌉ derivatives has
to vanish in minus infinity. Thus, the domain of such functions is much smaller than in
case of Riemann-Liouville or Caputo derivative.

Riesz-Feller derivative possesses several important properties. First, eigenfunctions
of Riesz-Feller derivative are exponentials function, similarly to ordinary derivatives

D
ν
x exp(λx) = λν exp(λx) . (3.20)

Second, the Riesz-Feller derivative naturally generalizes derivative operator in the Fourier
space, because its Fourier transform is equal to

F [Dνf(x); p] ≡ [Dνf ](p) =

∫

R

dx eipx
∫ x

−∞
dy (x− y)−ν−1f(y) = (−ip)νf(p).

(3.21)
This is shown in Ref. [53]. Particularly important are Riesz-Feller derivatives in connec-
tion with Lévy processes, because they belong to the wider class of pseudo-differential
operators defined through the Fourier transform. Definitionof these processes, also with
help of fractional calculus, is the subject of the next section.

3.3 Anomalous Diffusion

In the first section of this chapter was presented the description of regular diffusion pro-
cess. Nonetheless, as objected before, in the case of complex processes as processes
with long-term correlations, memory effects or sudden jumps, it is necessary to use
more appropriate diffusion models that are capable to describe the aforementioned phe-
nomena. In the rest of the chapter are introduced some examples of these processes. In
is not the aim of this chapter to describe every single existing generalization of diffu-
sion processes (which is anyway not possible due to the enormous number of existing
processes), but to show some possible directions and concepts used in the theory of gen-
eralized diffusion. We start with thefractional Brownian motion, model with long-range
correlations and Hurst exponent not equal to1

2
. Then, we move to the class ofLévy pro-

cesses, based on stable distributions with power-laws. Finally, we generalize the Lévy
processes to anomalousdouble-fractional diffusion, is a straight generalization of Lévy
process and combines the elements of both previous models ina way. These models
are not only important in physics, but also play a crucial role in biology, sociology and
economics.
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3.3.1 Fractional Brownian Motion

One possible direction in diffusion process generalization is to introduce correlations
into the system. We have shown that for Brownian motion are the increments statisti-
cally independent. When we put correlations into the system, it also affects the scaling
properties. Positivite/negative correlations cause the persistent/antipersistent behavior
which is reflected in the different scaling exponents. As a result, the fractal dimension of
the process changes as discussed in Sect. 2.1. From the mathematical point of view, the
process is defined as a fractional integral of the stochasticWiener measure, originally
introduced by Mandelbrot [8]

WH(t) := I
H− 1

2 (dW (t)) =
1

Γ(H + 1
2
)

∫ t

0

(t− s)H− 1
2dW (s) . (3.22)

The Hurst exponent is defined in the intervalH ∈ [0, 1]. More details about definition
of stochastic measures and the stochastic calculus can be found in Refs [56].

The definition leads to non-trivial correlations in increments. When we calculate the
autocorrelation function of the process, we obtain

〈WH(t)WH(s)〉 =
1

2HΓ(H + 1
2
)2

(s2H + t2H − |s− t|2H) . (3.23)

According to the parameterH, which corresponds to the Hurst exponent, we can
divide the fractional Brownian motion into three classes:

• for H ∈ [0, 1
2
) has the process negative correlations and anti-persistent, sub-

diffusive behavior, which causes larger fractal dimensions

• for H = 1
2

we recover the Brownian motion with uncorrelated increments

• for H ∈ (1
2
, 1] is the process positively correlated, super-diffusive with presence

of more trends than in case of uncorrelated Brownian motion.

These processes based on fractional Brownian motion are observed in finance, biology,
dynamical systems and in many other fields. The fractional Brownian motion is only
one simple example of processes with long-term memory. There exist a broad literature
about stochastic processes and applications to physics, e.g. [57].

Alternatively, one can assume processes with uncorrelatedincrements, but with lim-
iting distributions with infinite variance. This opens another whole class of processes
with heavy tails driven by so-called Lévy distributions. These processes are described
in the next section.
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3.3.2 Lévy Flights

Lévy flights are processes with uncorrelated increments based on stable distributions.
Lévy distributions constitute a class of distributions obtained as the limiting distribu-
tions of sums of i.i.d. random variables. This statement is aconsequence of theGen-
eralized central limit theorem. Gnedenko and Kolmogorov [12] have shown that these
distributions corresponds to the class of distributions which are functionally invariant
under convolution. This is not surprising, because the probability distribution of sum
of two independent random variables is given by their convolution. Unfortunately, the
probability density function is not expressible in most cases. It is necessary to use the
Fourier representation, i.e., the characteristic function. According to the analogy with
physics, the logarithm of the characteristic function is called stable Hamiltonian. The
properties of stable distributions are summarized in Appendix A. Here we only mention
the most important aspects necessary to definition of Lévy flights. At first, the stable
Hamiltonian is expressible as

Hα,β;x̄,σ̄(p) ≡ ln〈eipx〉 = ix̄p− σ̄α|p|α (1− iβsign(p)ω(p, α)) , (3.24)

where the exact form of functionω is shown in Appendix A. The four parameters
of the distribution have the following meaning:α ∈ (0, 2] is the stability parameter,
which influences the shape of the distributions, the decay oftails parts and existence of
fractional moments〈xµ〉. Parameterβ ∈ [−1, 1] is the asymmetry parameter, forβ = 0
we obtain a symmetric distribution around its mean value (orlocation parameter), for
β = ±1 we have totally asymmetric distribution. This means that for α ∈ (1, 2) one
tail decay exponential and the other tail decays polynomially (this shows Eq. A.12 in
Appendix). The parameters̄x ∈ R and σ̄ ∈ R+ are location and scale parameters
and are equal to mean and variance, whenever these moments exist and are finite. In
Appendix A is also presented an alternative representationof stable Hamiltonian, which
is sometimes more advantageous to use.

There is a tight relation between Lévy distributions and Riesz-Feller fractional deriva-
tives [58]. In Sect. 3.2.3 is shown that the representation of Riesz-Feller derivative in
Fourier image is equal to multiplication by term(±ip)ν , which is exactly the stable
Hamiltonian of totally asymmetric Lévy distribution. Thisallows to define the class of
pseudo-differential operators [53] defined in the Fourier image as

[βDν
xf ](p) = Hν,β(p)f(p) , (3.25)

which is forβ = ±1 equal to the Riesz-Feller fractional derivative (forβ = 1 we have
the fractional derivative with integration fromx to +∞.) Consequently, the solution of
generalized diffusion equation

∂

∂t
f(x, t) = βDν

xf(x, t) (3.26)
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is the Lévy distribution with stable HamiltonianHν,β(p).
Regarding the scaling properties of Lévy processes, it has been already discussed

that sample paths of Lévy processes are equal tomax{1, α} and for process inx-t
space ismax{1, 2 − 1

α
}, which is smaller than3

2
. This is not surprising, because pres-

ence of polynomial tails in the distribution cause large jumps in the process and these
trends cause the decrease of fractal dimension. This is in contrast to fractional Brownian
motion, because fractional Brownian motion can also acquire fractal dimension larger
than 3

2
. In the case of anti-persistent behavior is necessary to introduce correlations to

the system.
Usually, the real systems are not described exactly by Lévy processes, but they can

be used as limiting process, especially for large timescales. Thus, it is convenient to
introduce other more realistic models valid also for short timescales. We introduce
a concept of double-fractional diffusion, where we use not only the spatial fractional
derivative, but also a temporal derivative operator. This gives us wider class of diffusion
processes which possess more realistic behavior.

3.3.3 Double-Fractional Diffusion

Double-fractional diffusion is a model based on diffusion equation with fractional deriva-
tives in both spatial and temporal coordinates. The Green function (also called funda-
mental solution) is therefore the solution of equation

(
K∂γτ + µ[βDα

x ]
)
g(x, t) = 0 , (3.27)

whereγ is the degree of temporal derivative calledspeed diffusion parameter, α is
the degree of Riesz-Feller spatial fractional derivative calledstable parameter, µ is the
diffusion parameter (forα = 2 is proportional to parameterD) andK denotes the type
of temporal fractional derivative. We consider two types oftemporal derivatives, namely
Riesz-Feller and Caputo derivative. Both diffusion equations belong to the wide class
of pseudo-differential operators which can be expressed inthe Laplace-Fourier image
(i.e. Laplace transformt → s in temporal coordinate and Fourier transformx → p in
spatial coordinate) as

a(s)ˆ̄g(p, s)− a0(s)ḡ0(p) = b(p)ˆ̄g(p, s) (3.28)

wherea(s) is the Laplace representation of the temporal fractional derivativeaγ(s) = sγ ;
b(p) is the Fourier representation of spatial fractional derivative. It is for Riesz-Feller
derivative equal tobα(p) = Hα,β(p). ḡ0(p) is the Fourier transform of the first initial
condition, which is usually equal tōg0(p) = F [δ(x)] ≡ 1. Finally, a0(s) is the term
depending on the type of derivative. It is expressible asa0(s) = sγ−κ, whereκ = 1 for
Caputo derivative andκ = γ for Riesz-Feller derivative. We have to mention that for
1 < γ ≤ 2 is necessary to impose another initial condition, which adds another term to
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Eq. (3.28). In order to preserve the above presented form of double fractional equation
also in this case, we have to assume that the second initial condition has the following
form:

∂g

∂t
(x, t)|t=0 ≡ 0 . (3.29)

Nevertheless, this type of initial condition is quite natural, so it is reasonable to consider
only this type of diffusion . The important question is, whether the solution of this class
of double-fractional diffusion equations is positive so that it is interpretable as a Green
function. In Ref. [59] is possible to find that this is possible if the two parameters fulfill
the condition

0 < γ < α ≤ 2 . (3.30)

We turn our attention to a kernel representation of the fundamental solution, which
is useful forγ < 1, because in this case is the distribution a continuous superposition
of Lévy distributions. Sometimes it can also be called “superstatistical” representation
because of similarity to superstatistics. We have to note, that this representation can
be only formal and the real superstatistics can be observed only in case when we can
recognize two distinct characteristic time scales [60].

The kernel representation can be obtained from the Laplace-Fourier image, because
according to Eq. (3.28), the Green function can be represented with help of Schwinger
formula (1

A
=
∫∞
0
e−A for ℜ(A) > 0) as

ˆ̄g(p, s) =
a0(s)ḡ0(p)

a(s)− b(p)
=

∫ ∞

0

dl
[
a0(s)e

−laγ(s)
] [
ḡ0(p)e

lbα(p)
]

=

∫ ∞

0

dl ĝ1(s, l)ḡ2(l, p) . (3.31)

The solution is given by superpositions of Lévy stable distribution with stable param-
eterα at different times, weighted bysmearing kernelg1(s, l). The double-fractional
diffusion is decomposed into set of two fractional equations for two kernels

d

dl
ĝ1(s, l) = −a(s)ĝ1(s, l), ĝ1(s, 0) = a0(s) (3.32)

d

dl
ḡ2(l, p) = b(p)ḡ2(l, p), ḡ2(0, p) = ḡ0(p) (3.33)

and the connection to the resulting Green function is given by the Eq. (3.31). Now, we
discuss two kinds of considered fractional derivatives. When we take into account the
Riesz-Feller derivative, i.e.κ = γ, we obtain the fractional equation exactly same as in
case of Lévy stable process, but only with stable parameterγ and asymmetry parameter
+1. Forγ < 1 is the support of such distribution bounded to the positive half-line. The
normalization of the Green function requires normalization of the smearing kernel [61],
so we have
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∫ ∞

0

dl gRF
1 (t, l) =

∫ ∞

0

dl

∫

R

dp
e−ipt

2π
e−lµ(ip)γ =

∫

R

dp
e−ipt

2π

1

µ(ip)γ
=

tγ−1

µΓ(γ)
.

(3.34)
Thus, the smearing kernel is for the Riesz-Feller derivative equal to

gRF
1 (t, l) =

(
Γ(γ)

tγ−1

)
1

l1/γ
Lγ,1

(
t

l1/γ

)
. (3.35)

In the case of Caputo derivative is the solution slightly different. According to
Ref. [59], the solution is expressible via Wright M-function

gC1 (t, l) =
1

tγ
Mγ

(
l

tγ

)
, (3.36)

where Wright M-function can be defined as an infinite series:

Mν(z) =
∞∑

n=0

(−z)n
n!Γ(−νn + (1− ν))

. (3.37)

The M-function has a tight relation to Lévy distribution, because

1

c1/ν
Lν,1

( x

c1/ν

)
=

cν

xν+1
Mν

( c
xν

)
(3.38)

for ν ∈ (0, 1), c > 0 andx > 0. Altogether, the smearing kernel for Caputo derivative
can be represented also through Lévy stable distribution with slightly different coeffi-
cients

gC1 (t, l) =

(
t

lγ

)
1

l1/γ
Lγ,1

(
t

l1/γ

)
. (3.39)

In Appendix E are compared the properties of Riesz-Feller and Caputo smearing
kernels. These two kernels are depicted in Fig. 3.1. It is necessary to note that to the
main differences belongs different behavior forl = 0. Riesz-Feller kernel goes to zero
while the Caputo kernel does not vanish. This difference also influences the possible
applications to the real systems. When the dependence on theinitial configuration of
the system remains strong also in later times, we use the Caputo derivative, on the other
hand, if the most contributing parts are the pseudotimesl ≈ t we use Riesz-Feller
derivative.

For practical calculations as well as for theoretical description is convenient to use
another representation of double-fractional Green function based onMellin-Barnesin-
tegral representation. Eq. (3.28) has for Double-fractional diffusion the following form

ˆ̄g(p, s) =
sγ−κ

sγ −Hα,β(p)
. (3.40)
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Figure 3.1: Comparison Riesz-Feller kernelgRF (τ, l) (purple line) and Caputo kernelgC(τ, l)
(blue line) forτ = 1.

l

g(τ, l)

From symmetry reasons, we can take into account only solutions for positive values of
x, because the negative part can be obtained from relationgα,β(x, t) = gα,−β(−x, t), and
therefore we leave the asymmetry parameterβ formally undetermined. In Appendix C
is shown that the inverse Laplace transform of Eq. (3.40) is expressible as the Mittag-
Leffler function, so

ĝ(p, t) = tκ−1Eγ,κ (Hα,β(p)t
γ) . (3.41)

It is advantageous to represent the Mittag-Leffler functionthrough an integral form
called Mellin-Barnes representation. It is based on the Mellin transform introduced in
Appendix B. According to Eq. (C.7), it is possible to rewriteEq. (3.41) as

ĝ(p, t) =
tκ−1

2πi

∫ c+i∞

c−i∞

Γ(s′)Γ(1− s′)

Γ(κ− γs′)

[
−µ|p|αexp

(
−iπθ sign(p)

2

)
τ t
]−s′

ds′

(3.42)
where0 < ℜ(c) < 1 andθ = 2−α for β = −1 andα > 1; resp.θ = α− 2 for β = +1
andα > 1. Note that the parameterθ is known from an alternative representation of
stable Hamiltonian introduced in Appendix A. Inverse transform is straightforward,
because

g(x, t) = N tκ−1

2πix

∫ c+i∞

c−i∞

Γ(s′)Γ(1− s′)

Γ(κ− γs′)Γ(s′α)

[
−µ t

γ

xα

]−s′

ds′ (3.43)

whereN = τκ−1

Γ(κ)
is a normalization constant. Finally, we apply a change of variables
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Figure 3.2: Comparison of Green functions for ordinary derivative (γ = 1), Riesz and Caputo
derivative forγ = 0.9 (slow diffusion) andγ = 1.1 (fast diffusion) forα = 2 andα = 1.6 . The
Caputo Green function highlights the peak of the distribution, while Riesz-Feller Green function
has slower decay in tails of the distribution. Note that forγ > 1, the green function exhibits
fast-diffusion behavior with two peaks receding in time.

αs′ = s and we end with

gDF (x, t) =
Γ(κ)

2απi|x|

∫ c+i∞

c−i∞

Γ
(
s
α

)
Γ
(
1− s

α

)
Γ(1− s)

Γ
(
κ− γ

α
s
)
Γ
(

(α−θ)s
2α

)
Γ
(
1− (α−θ)s

2α

)
[

x

(−µtγ)1/α
]s

ds.

(3.44)
We see that the Green function follows the scaling rulegDF (x, t) ∝ tΩ, whereΩ = γ

α
is

calleddiffusion scaling exponentand plays the similar role as Hurst exponent. The main
advantage of the Mellin-Barnes representation is the fast convergence of the complex
integral, which allows to calculate the values of Green function much faster than in other
representations. In Fig. 3.2 are displayed Green functionsfor several parameters. We
can also compare differences between Riesz-Feller and Caputo derivatives.
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Chapter 4

Generalized Entropies and
Applications in Thermodynamics

Role of entropy in mathematics and physics is extremely important, since it is a corner-
stone for the whole statistical physics and many other disciplines. This chapter describes
origins of the concept of entropy and presents several possible generalizations that are
able to describe nonextensive systems, open systems or systems with long-range corre-
lations. We discuss the properties of the entropy for all presented generalizations and
derive corresponding MaxEnt distributions.

4.1 Role of Entropy in Physics and Mathematics

The motivation for using entropy is coming from several scientific branches. Especially
its role in in physics, statistics and other fields is extremely important. This section
summarizes the main arguments for introduction of entropy and discusses its main prin-
ciples. We start with the classical theory of thermodynamics and information theory.
The original works of Clausius, Boltzmann and Gibbs defined the classic role of en-
tropy in the theory of thermodynamics, including several formulations of second law
of thermodynamics. Probably the most popular definition, carved on the gravestone of
Ludwig Boltzman, introduces the entropy of a microcanonical ensemble as

S = kB lnW , (4.1)

wherekB is the Boltzman constant andW is the number of states. The other important
definition came from the information theory where the term entropy is defined as a mea-
sure of ignorance. In other words, it is the amount of information which is not not known
about the system. As introduced by Shannon in his paper [62] and followed by Fein-
stein [63], the entropy can be interpreted as the minimal amount of information needed
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in order to fully determine the system. Statistical physicsestablishes the relation be-
tween Boltzmann thermodynamical entropy and Shannon informational entropy - they
are (up to the multiplicative factor) the same. The entropy is also crucial in a general
procedure proposed by Jaynes [64] which is used for calculation of the most descriptive
distribution of a system. The procedure is calledMaximum entropy principle(Max-
Ent) and determines the most probable probability distribution as a distribution which
maximizes the entropy under given constraints. In other words, the MaxEnt probability
distribution contains only information included in the setof constraints. The important
point in the theoretical description of entropy was given byKhinchin [65] who intro-
duced an axiomatic definition of entropy. We dedicate the next section to the axiomatic
definition of the entropy, because it serves as a springboardfor various generalizations.

The concept of entropy one of the most important tools not only for physicists but
also for many other scientists. In information theory represents the concept of diver-
gences (and derived information measures and entropies) animportant way how to mea-
sure distances between probability distributions a the amount of information encoded in
the probability distribution. Moreover, disciplines as statistics, numerical mathematics
or theory of partial differential equations have adopted entropy as one of the successful
methods for solution of various problems. Last but not least, applied sciences which are
using some mathematical or physical methods for modeling and analysis use entropy in
modeling as well. Among others, let us mention biology, sociology, theory of networks,
econometrics or applications in finance. For all previouslymentioned fields is impor-
tant to find some appropriate techniques and models that would be able to describe the
complex behavior appearing in the systems. Thus, we introduce several generalizations
of classic Shannon(-Boltzmann-Gibbs) entropy in the following sections to be able to
deal with systems which are not isolated or are not in equilibrium.

4.1.1 Axiomatic Definition of Shannon Entropy

It is possible to define entropy in several ways. We follow theapproach of A. Khinchin [65],
who expressed Shannon entropyH(P) uniquely by four axioms. Let us denote the
discrete arbitrary probability distribution asP = (p1, . . . , pn). The four axioms are
formulated in the following way:

1. Continuity axiom: for givenn and probability distributionP isH(P) a continuous
function with respect to all its arguments.

2. Maximality axiom: for givenn takesH(P) the largest value for uniform distribu-
tion, i.e.Pn =

(
1
n
, . . . , 1

n

)
.

3. Expansibility axiom: H(p1, . . . , pn, 0) = H(p1, . . . , pn).
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4. Additivity axiom: H(A ∪B) = H(A) +H(B|A),
whereH(B|A) =∑i pi,AH(B|A = ai) is the conditional entropy
andPA = (p1,A, . . . , pn,A) is the distribution corresponding to experimentA.

In the last axiom, we adopt the abbreviation thatS(A) denotes the entropy belonging
to probability distributionPA of the random variableA. Similarly, S(A ∪ B) is the
entropy belonging to joint distributionPA∪B. If A is independent ofB, the conditional
entropy reduces toS(B).

Alternatively, Shannon [66] and other authors use slightlydifferent set of axioms,
which are equivalent to Khinchin’s. The four axioms determine uniquely the functional
form of entropy (up to normalization constant) which can be expressed as

H(P) = −
n∑

i=1

pi ln pi . (4.2)

It should be mentioned that the Shannon entropy has also the operational definition [63].
The entropy (defined in terms of binary logarithm, i.e.

∑
i pi log2 pi) represents the

amount of information (measured in bits) which is necessaryto fully determine the
system. In other words, it is the minimal number of binary YES/NO question that
has to be answered to reduce all uncertainty. Once can also say that it represents the
minimal length of binary code that uniquely describes the system. As a consequence,
the Shannon entropy is a measurable quantity. In the next section are discussed some
of the properties of information measures particularly interesting for applications in
thermodynamics.

4.2 Important Properties of Entropies

Shannon(-Boltzmann-Gibbs) entropy is the most important information measure with
enormous number of applications. It is the central concept in the theory of classical
thermodynamics and statistical physics. Nevertheless, complex systems, systems with
long-range interactions or systems far from equilibrium cannot be fully described within
the framework of classical thermodynamics. As a consequence, these systems require
more sophisticated description based on generalized entropies that go beyond standard
thermodynamics. In this section, we discuss the main properties of entropy classes,
which are important in description of non-equilibrium systems. Among the other prop-
erties, we discuss additivity, extensivity and Legendre structure of thermodynamics re-
sulting from the MaxEnt procedure. Finally, we present someproperties sufficient for
validity of maximality axiom. Most of the properties are discussed in general case. Only
if necessary, we restrict the discussion to some more specific classes of entropies. As an
example, in some cases is advantageous to work with the classof trace entropies(used
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e.g., in Ref. [67]) which can be defined in a simple form

Sg(P) =
∑

i

g(pi) . (4.3)

This class covers many important classes of entropies, including Shannon and Tsallis
entropy. It has some nice properties. For example, the concavity of the entropy func-
tional is equal to concavity of functiong, because the Hessian matrix (matrix of second
derivatives) has the diagonal form

H(Sg) = diag

(
d2g(p1)

dp21
, . . . ,

d2g(pn)

dp2n

)
. (4.4)

On the other hand, not all entropies belong to the class of trace entropies. Still, some
of them are expressible asgeneralized trace entropies, i.e. in the form

SG,g(P) = G

(
∑

i

g(pi)

)
. (4.5)

For instance, Rényi entropy belongs to the class of generalized trace entropies.

4.2.1 Additivity versus Extensivity

Additivity and extensivity are widely discussed properties of all entropies, but there exist
some misconceptions about these two terms. One should clearly distinguish between
them and discuss their relation [4]. First, we start with theterm additivity, which is
connected more with the informational origin of entropy. InKhinchin axiomatic, the
additivity of the entropy means that

S(A ∪B) = S(A) + S(B|A) = S(B) + S(A|B) (4.6)

whereS(B|A) is the conditional entropy. For independent events, the entropy is sim-
ply the sum of entropies of particular subsystems. Additivity is the major property of
Shannon entropy and it is also valid for the Rényi entropy. Generally, the consequence
of additivity is that the conditional entropy is defined in the usual way

S(B|A) = S(A ∪ B)− S(A) . (4.7)

For other entropies is the formula not valid. We define for many cases a generalized
form of additivity. Tempesta [68] and other authors introduce for this end a termcom-
posability, which means that the entropy of a composed system is expressible in terms
of entropies of its subsystems, so it is possible to write

S(A ∪B) = Φ(S(A), S(B)) . (4.8)
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As an example, in Refs. [68, 69] are discussed properties of such general classes of en-
tropies. One particular case of the generalized additivitylaw represents Tsallis entropy.
The generalized additivity is for Tsallis entropy defined as(see Sect. 4.3.2)

Sq(A ∪ B) = Sq(A)⊕q Sq(B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) . (4.9)

The addition law can be described with help of so-calledq-sum,q-deformation of addi-
tion, which is defined as

Φq(x, y) = x⊕q y = x+ y + (1− q)xy . (4.10)

FunctionΦ is nothing else than a group operation. As a consequence, theentropies can
be classified with respect to its generalized additivity law[67].

Extensivity is, on the other hand, a property which is connected with the thermo-
dynamical properties of the system. Let us have a compound systemA =

⋃N
i=1Ai

of not necessarily independent variables. Let us denote a state space ofN variables
asW (N). If the maximality axiom holds, then the entropy becomes maximal for the
uniform distribution{1/W (N), . . . , 1/W (N)}. We say that the entropy is extensive if

lim
N→∞

S(W (N))

N
= ω (4.11)

whereω ∈ (0,∞). That means that the entropy scales for large systems (i.e. systems
with N ≫ 1) as

S(W (N)) ∝ N . (4.12)

This condition ensures that the thermodynamical entropy (in the limit for largeN) is
an extensive function of its variables, i.e.S(αN, αE, αV ) = αS(N,E, V ). Indeed,
contrary to additivity, extensivity is property dependingon the actual system, i.e. de-
pending on the state functionW (N). When the system is compound of independent
variables with no restrictions, then the state space grows exponentially, because it holds
thatW (N) = W (N1)W (N2) for N = N1 +N2, which determines the state space vol-
ume asW (N) ∝ µN . Hence, Shannon entropy is extensive for such systems, because

H(W (N)) = −
W (N)∑

i=1

1

W (N)
log

1

W (N)
= N log µ . (4.13)

If the state space grows not exponentially, but rather polynomially, i.e., asW (N) ∝ Nρ,
then we should use Tsallis entropy (see, e.g., Ref. [70]), because the Tsallis entropy is
for these systems extensive:

S1−1/ρ(W (N)) =
1

1/ρ
W (N) ·W (N)1/ρ−1 − 1 ∝ ρN . (4.14)
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Similarly, if the state space grows subexponentially, i.e.W (N) ∝ νN
γ
, then so-called

δ-entropy
∑W

i=1 pi(ln pi)
δ represents an extensive entropy for this system.

Although some authors interchange terms additivity and extensivity, it is important
to distinguish them. On the other hand, they are often tightly connected. Of course,
there exist nonextensive systems with additive entropy (Shannon entropy for systems
with long-range correlations) and non-additive but extensive systems (Tsallis entropy
for systems with long-range correlations). Indeed, the most common case is the case
of an additive and extensive system described by Shannon(-Boltzmann-Gibbs) entropy
which leads to classical thermodynamics. Anyway, for complex systems with long-
range correlations, which are nonextensive under Shannon entropy, is advantageous
to use non-additive entropies, because many thermodynamical properties remain pre-
served.

4.2.2 MaxEnt Principle and Legendre Structure

The importance of entropy in statistical physics lies in thefact that the realized distribu-
tion maximizes the entropy under given constraints. This principle is calledMaximum
entropy principle(MaxEnt) and was firstly formulated by Jaynes [64]. The essence of
the principle consists in the fact that the resulting distribution obtained from the MaxEnt
procedure contains only information included in the constraints and does not contain any
other additional information. Consequently, the particular entropy determines the form
of MaxEnt distribution and the constraints only change the parametric description. This
classic procedure is one of the basic techniques in statistical physics. Let us consider
a particular form of entropy, for example Shannon entropy. We maximize the entropy
with respect to the given constraints. This can be done through the techniques of La-
grange multipliers. Let us restrict ourselves into the mostcommon class of constraints,
i.e. fi(P) = 0, for i ∈ {1, . . . , m}. We define the Lagrange functional as

L(P, λ) = G(P)− λ · f(P) = −
n∑

j=1

pj ln pj −
m∑

i=1

λifi(P) (4.15)

whereG(P) is the given entropy functional andλi are Lagrange multipliers. The max-
imization of Lagrange function leads to set of equations:

∂L(P, λ)
∂pj

= 0 for j ∈ {1, . . . , n}, (4.16)

∂L(P, λ)
∂λi

= 0 for i ∈ {1, . . . , m}. (4.17)
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The type of constraints determines the resulting MaxEnt distribution. In all cases is
necessary to normalize the probability distribution, so wedemand

n∑

j=1

pj = 1 . (4.18)

When we demand only the normalization condition, we end withthe uniform distri-
bution pi = 1

n
. In thermodynamics, we usually impose the constraint on theaverage

energy of the system, so
n∑

j=1

pjEj = 〈E〉 . (4.19)

In the case of Shannon entropy leads the condition to the well-known Boltzmann-Gibbs
distribution

pi =
1

Z
e−βEi =

e−βEi

∑
j e

−βEj
(4.20)

whereZ is called partition function andβ is the Lagrange multiplier belonging to the
energy constraint and is connected to the temperatureβ = 1

kBT
. As a consequence,

we obtain typical thermodynamical relations of macroscopic quantities which can be
expressed in terms of partition function and its derivatives:

U = 〈E〉 = −∂ lnZ
∂β

(internal energy) (4.21)

F (U, T ) = − 1

β
lnZ (free energy) (4.22)

S(U, T ) = kB(lnZ + βU) =
U − F

T
. (thermodynamic entropy) (4.23)

The last relation is known as the Legendre transform betweenthermodynamical poten-
tialsU andF , becauseF = U−TS. We also obtain that the temperature can be defined
as the derivative of entropy with respect to internal energy

∂S(U, T )

∂U
=

1

T
. (4.24)

The previous set of relations and the so-called Legendre structure of thermodynamics is
valid not only for Shannon entropy, but it is preserved for a wider class of entropies [51].
We have already observed this structure in the case of multifractal thermodynamics in
Sect. 2.5.2 and we will discuss it also for nonextensive thermodynamics based on Tsallis
entropy in Sect. 4.3.2. Once we are able to calculate the partition function, we are able
to calculate all other thermodynamical quantities (see e.g. Ref. [71])
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4.2.3 Concavity and Schur-concavity

Concavity is an important concept that is widely discussed in connection with entropy
and is crucial in equilibrium thermodynamics as well as in information theory. At this
place, we need to distinguish between two types of concavity. The first type is the
concavity of thermodynamical entropyS(E). In equilibrium thermodynamics, it is de-
manded that the thermodynamical entropy is strictly concave function of its extensive
variables (energy, volume, number of particles, etc.). In the case of homogenous entropy
we have

S(2E) = 2S(E) ≥ S(E −∆E) + S(E +∆E) . (4.25)

Thus, the system remains in equilibrium state and existenceof subsystems in inhomo-
geneous states is suppressed. More discussion is e.g., in Ref. [72].

In information theory ensure the concavity of entropyG(P) (together with symme-
try in all arguments) validity of the maximality axiom, i.e.,

argmaxP G(P) =

(
1

n
, . . . ,

1

n

)
. (4.26)

Nevertheless, concavity condition is only sufficient but itis not necessary. An alterna-
tive approach, weaker than concavity, is called Schur-concavity [73] and it is based on
the concept ofmajorization[74]. We define majorization in the following way: a distri-
butionP = (p1, . . . , pn) is majorized by a distributionQ = (q1, . . . , qn), i.e.,P ≺ Q, if
for ordered probability vectorsp(1) ≥ p(2) ≥ · · · ≥ p(n), resp.p(1) ≥ p(2) ≥ · · · ≥ p(n)
holds

j∑

k=1

p(k) ≤
j∑

k=1

q(k) for j ∈ {1, . . . , n} . (4.27)

For j = n is the inequality automatically fulfilled because of the normalization condi-
tion. A symmetric functionG(p1, . . . , pn) is calledSchur-concaveif for all P ≺ Q
is G(P) ≥ G(Q) (Analogously, the function is Schur-convex if for allP ≺ Q is
G(P) ≤ G(Q)). There exists also a handy criterion for Schur-concavity.A symmet-
ric function is Schur-concave if for all probabilitiespi, pj holds

(pi − pj)

(
∂G

∂pi
− ∂G

∂pj

)
≤ 0. (4.28)

The proof can be found in Ref. [73], together with more criteria. The Schur-concavity
of entropy also ensures validity of the maximality axiom because it is easy show that
the uniform distribution

(
1
n
, . . . , 1

n

)
is majorized by every other probability distribution.

We shall also note that for trace-class of entropiesG(P) =
∑n

i=1 g(pi) is the Schur-
concavity equivalent to concavity of functiong(x). On the other hand, other entropies,
as e.g., Rényi entropy are not concave, but one can show that they are Schur-concave
(see Sect. 4.3.1).
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4.3 Special Classes of Entropies

This section compares three special classes of entropies. The first two classes, Rényi en-
tropy and Tsallis entropy (also sometimes called Tsallis-Havrda-Charvát entropy, after
czech mathematicians J. Havrda and F. Charvát) are popular classes extensively used by
large scientific communities. In the first chapter were discussed various applications of
Rényi entropy to multifractals. We present another important property of Rényi entropy
commonly used in information theory in description of additive systems. On the other
hand, Tsallis entropy represents a popular description of nonextensive systems and sys-
tems with long-range correlations. Finally, the last classcalledhybrid entropycombines
properties of two former entropies.

For each class of entropy, we show its axiomatic definition, its actual functional
form, its properties (concavity, extensivity, etc.) and calculate the MaxEnt distribution.
When necessary, we mention some other interesting problems. For the last class of
entropies, we broadly discuss the properties of MaxEnt distribution and briefly sketch
the possible physical meaning of energy gaps present in distributions. Additionally, we
also show some asymptotical expansions.

4.3.1 Rényi Entropy: Entropy of Multifractal Systems

Rényi entropy was firstly introduced in 1961 by Alfréd Rényi [75], in connection with
distances for probability distributions. The main importance consists in existence of op-
erational definition, as shown in [76]. Apart from that, the entropy has wide applications
in theory of multifractals, chaotic systems and similar systems. The Rényi entropy can
be axiomatized in a very similar way to Shannon entropy. It consists of four axioms:

1. Continuity axiom: for givenn and probability distributionP is Iq(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom: for givenn takesIq(P) the maximal value for uniform distri-
bution.

3. Expansibility axiom: Iq(p1, . . . , pn, 0) = Iq(p1, . . . , pn).

4. Rényi additivity axiom: Iq(A ∪B) = Iq(A) + Iq(B|A),
whereIq(B|A) = g−1 [

∑
i ρi,A(q) g(Iq(B|A = ai))]

is conditional entropy and̺A(q) = (ρ1,A(q), . . . , ρn,A((q)) is escort distribution
corresponding to experimentA. Functiong is a positive, invertible function on
[0,∞) .
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These axioms lead to the functional form of Rényi entropy which can be expressed
as

Iq(P) =
1

1− q
ln

n∑

i=1

pqi . (4.29)

When solving the four axioms, it is easy to show that the function g(x) pertaining
to the conditional entropy can be only in the formgq(x) = exp[(1 − q)x] for q >
0. Interestingly, the definition of conditional entropy can be done without the actual
knowledge of probability distribution, i.e., only from theknowledge of unconditional
entropies

I(B|A) = I(A ∪ B)− I(A) . (4.30)

Thus the last relation is valid not only for the Shannon entropy, but also for the whole
class of Rényi entropies. Indeed, Rényi entropy is generalization of Shannon entropy
and limq→1 Iq(P) = H(P). Consequently, the only difference between Shannon en-
tropy and Rényi entropy is that the conditional entropy is defined in a slightly different
way. Both entropies are additive and share many common properties.

Some authors, including Rényi, used an alternative axiomatic approach [17], which
differs particularly in the presence of escort distribution ρ(q), which are not present
in their definitions. The escort distribution has been originally used in description of
dynamical systems [49]. The escort distributionρi(q) = pqi/

∑
j p

q
j is also sometimes

called “zooming distribution”, because the parameterq serves as a magnifier which
accentuates different parts of distribution for differentvalues o parameterq. Therefore,
the escort distribution has a clear interpretation.

At this place, it is necessary to mention the recent discussion on definition of con-
ditional Rényi entropy (see e.g., Ref. [77]). Apart from thedefinition arising from the
aforementioned axioms, there are several other definitionsof conditional entropy [78].
Nevertheless, we have to note that the definition of conditional entropy is inherently
connected with the axiomatic definition and different definitions of conditional entropies
lead generally to different properties of the entropy. The importance of previously men-
tioned definition of conditional entropy is in the relation to unconditional entropies. This
is important from both theoretical and practical reasons. The conditional entropy can
be in this case measured without an actual knowledge of probability distribution, it can
be measured only on the basis of unconditional entropy measurements as a difference
between entropy of the whole system and the subsystem.

Regarding the observability of Rényi entropy, it has been shown that it is a mea-
surable quantity [79]. This is closely related to the existence of an operational infor-
mational definition. Campbell [80] showed that Rényi entropy represents the minimal
average price of a message code when the prior occurrences are described by the prob-
ability distributionP and the price is an exponential function of message code-length.

Following points summarize the most important properties of Rényi entropy:
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• Iq(P) is a symmetric function of all its arguments

• Iq({1, 0, . . . , 0}) = 0

• maxP Iq(P) = Iq({1/n, . . . , 1/n}) = lnn

• H(P) ≤ Iq(P) for q ≤ 1 andIq(P) ≤ H(P) for q ≥ 1

• Iq(P) is a strictly decreasing function ofq for every distribution. This can be
easily seen from

∂Iq(P)

∂q
=

1

1− q
(〈lnP〉q + Iq(P)) ≤ 0 (4.31)

• Iq(P) is a concave function forq ≤ 1

• Iq(P) is a Schur-concave function forq ≥ 0. This is easy to show with help of
criterion presented in Sect. 4.2.3, so

(pi − pj)

(
∂Iq(P)

∂pi
− ∂Iq(P)

∂pj

)
=

(
pi − pj∑

k p
q
k

) (
pq−1
i − pq−1

j

q − 1

)
≤ 0 . (4.32)

In Fig. 4.1 is depicted Rényi entropy for several values ofq for binary system.
We can observe several aforementioned properties. Mainly the concavity issue and
q-monotonicity. Now, we turn the attention to the MaxEnt distribution obtained by
maximization of Rényi entropy under constraints.

We discuss the MaxEnt distribution under two types of constraints: first, classic
linear average energy

∑
j pjEj = 〈E〉, and second, theq-average energy in terms of

escort distribution
∑

j ρj(q)Ej = 〈E〉q. The Lagrange function can be written in form

LIq(P) = Iq(P)− α
∑

i

pi − β
∑

i

ρi(r)Ei (4.33)

wherer is either equal to1 or q depending on chosen averaging. In the case of linear
averaging, one obtains the equation:

q

1− q

pq−1
i

Z(q)
− α− βEi = 0 , (4.34)

whereZ(q) =
∑

i p
q
i is the partition function. The parameterα can be deduced from

normalization condition and we getα = q
1−q

− β〈E〉, so end with the probability distri-
bution

pi =
1

Z(q)1/(1−q)

[
1 + (q − 1)

β

q
(Ei − 〈E〉)

]1/(q−1)

. (4.35)
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Figure 4.1: Rényi entropy for a binary system with probability distributionP = (p, 1− p). We
can recognize several important properties. Namely, the entropy is concave only forq < 1 and
it is a decreasing function ofq.

In the case ofq-averaging we obtain very similar equation

q

1− q

pq−1
i

Z(q)
− α− qpq−1

i

Z(q)
(Ei − 〈E〉q) = 0 , (4.36)

resulting intoα = q
1−q

. The distribution can be expressed as

pi =
1

Z(q)1/(1−q)
[1 + (q − 1) β (Ei − 〈E〉)]1/(q−1) . (4.37)

The distribution is calledq-Gaussian distribution. It is a generalization of Gaussian
distribution (or Boltzmann distribution in case of energy)and has power-law decay. The
distribution was described in connection with nonextensive systems [81]. The analog
of inverse temperature (inversely proportional to standard deviation, when it exists) is
for r = 1 equal toΩ1 = β

q
and forr = q is equal toΩq = β. The connection between

linear averaging andq-averaging is therefore established by rescaling of the inverse
temperature parameter. The functional form of the distribution remains the same.

We have seen that the Rényi entropy is a powerful tool in the analysis of many sys-
tems, from multifractal systems to systems with power-law decays. Although it does
not belong to popular classes of entropies as e.g., class of trace entropies (defined in
the beginning of this chapter) or class off -entropies (widely discussed e.g. in [82]),
it has many common properties with these two classes. Apart from that, it possesses
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many other important properties as e.g., additivity or Schur-concavity. The next section
is devoted to another generalization of Shannon entropy, i.e., Tsallis entropy, which rep-
resents an approach to nonextensive systems with long-range correlations and confined
state space.

4.3.2 Tsallis Entropy: nonextensive Thermodynamics and Long-
range Correlations

Tsallis entropy (also called Tsallis-Havrda-Charvát entropy [50]) is another generaliza-
tion of Shannon entropy. It was firstly introduced in connection with theory of diver-
gences by Havrda and Charvát [18]. The entropy remained for some time unknown
to physicists until the pioneering work of Tsallis [19]. Theentropy was used for the
description of nonextensive thermodynamics. Since that, there have been found many
other applications of Tsallis entropy, as systems with long-range interactions, granular
systems or financial markets. From classification point of view it belongs to class of
trace entropies and also tof -entropies.

The difference from Shannon entropy lies in the generalization of additivity axiom.
Tsallis entropySq(P) is defined by these four axioms:

1. Continuity axiom: for givenn and probability distributionP is Sq(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom: for givenn takesSq(P) the largest value for uniform distribu-
tion.

3. Expansibility axiom: Sq(p1, . . . , pn, 0) = Sq(p1, . . . , pn).

4. Tsallis additivity axiom: Sq(A∪B) = Sq(A)+Sq(B|A)+(1−q)Sq(A)Sq(B|A),
whereSq(B|A) =∑i ρi(q)Sq(B|A = ai).

Tsallis entropy can be expressed as

Sq(P) =
1

1− q

(
∑

i

pqi − 1

)
(4.38)

for q > 0. There is a close relation between Tsallis entropy and Rényientropy, because

Iq(P) =
1

1− q
ln (1 + (1− q)Sq(P)) . (4.39)

Naturally, forSq(P) close to zero (P is close to pure state) isIq ≈ Sq.
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Contrary to Rényi entropy, the conditional entropy cannot be simply expressed as a
difference of entropies, but we obtain different relation

Sq(B|A) = Sq(A ∪B)− Sq(A)

1 + (1− q)Sq(A)
. (4.40)

Tsallis entropy is closely connected to so-calledq-deformed calculus. Defining the
operation ofq-addition as

x⊕q y = x+ y + (1− q)xy (4.41)

we obtain that the entropy isq-additive, soSq(A ∪ B) = Sq(A) ⊕q Sq(B|A). It is
possible also to defineq-analogs of elementary functions asq-exponential

e{q}(x) = [1 + (1− q)x]1/(1−q) (4.42)

and its inverse function, i.e.q-logarithm

ln{q}(x) =
x1−q − 1

1− q
. (4.43)

For q → 1 we obtain the ordinary functions. Tsallis entropy can be expressed in an
elegant way in terms ofq-deformed calculus:

Sq(P) = −
∑

i

pi ln{q}(pi) =
∑

i

pi ln{q}

(
1

pi

)
. (4.44)

We summarize the main properties of Tsallis entropy. The entropy is depicted in
Fig. 4.2. To the main properties belong:

• Sq(P) is a symmetric function of all its arguments

• Sq({1, 0, . . . , 0}) = 0

• maxP Sq(P) = Sq({1/n, . . . , 1/n}) = ln{q} n

• H(P) ≤ Iq(P) ≤ Sq(P) for q ≤ 1 andSq(P) ≤ Iq(P) ≤ H(P) for q ≥ 1

• Sq(P) is a strictly decreasing function ofq for every distribution, because

∂Sq(P)

∂q
=

1

1− q

(
Sq(P) +

∑

i

pqi ln pi

)
≤ 0 (4.45)

• Sq(P) is a concave function for allq > 0. Because Tsallis entropy belongs to
class of trace-entropies, we only investigate the functiong(p) = pq−p

1−q
. Its second

derivative is
d2g(p)

dp2
= −qpq−2 ≤ 0 . (4.46)
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Figure 4.2: Tsallis entropy for a system with probability distribution(p, 1− p). We can observe
the concavity of the entropy and the fact that the maximal valueis equal toln{q}(2). Moreover
Tsallis entropy is a monotonic function ofq.

Similarly to the previous section, we turn the attention to the MaxEnt distribution.
We derive the distribution again under the constraint of linear energy averaging and
underq-average. The Lagrange function is

LSq(P) = Sq(P)− α
∑

i

pi − β
∑

i

ρi(r)Ei . (4.47)

In the case of linear averaging, we get the relation for probability distribution
q

q − 1
pq−1
i = −α− βEi . (4.48)

By elimination ofα we get the MaxEnt distribution in the form

pi =
1

Z(q)1/(1−q)

[
1 + (q − 1)

β

qZ(q)
(Ei − 〈E〉)

]1/(q−1)

. (4.49)

In case ofq-averaging, we get the similar relation

q

q − 1
pq−1
i = −α − βqpq−1

i

Z(q)
(Ei − 〈E〉q) (4.50)

resulting into the probability distribution in the form

pi =
1

Z(q)1/(1−q)

[
1 + (q − 1)

β

Z(q)
(Ei − 〈E〉q)

]1/(q−1)

. (4.51)
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In both cases is the distribution very similar to MaxEnt distributions of Rényi en-
tropy, i.e., it is expressible in terms ofq-gaussian (or deformed Boltzman) distribution.
The only difference is that inverse temperature is equal toΩ1 =

β
qZ(q)

, resp.Ωq =
β

Z(q)
.

Thus, the inverse temperature is the same as in case of Rényi,but it is divided by par-
tition function. When the entropy is influenced by some particular properties of the
probability distribution itself, the distribution is calledself-referentialand has some in-
teresting properties in connection with shifts in energy spectrum [83].

One important application of Tsallis entropy is nonextensive thermodynamics. The
term “nonextensive” refers to the fact that systems which are usually described are not
extensive, (i.e., there exist correlations in the system, such that the state space grows
polynomially [84]). The overview and various applicationsof nonextensive thermo-
dynamics based on Tsallis entropy can be found in Refs. [4]. The cornerstone of the
thermodynamical approach is the definition of partition function, which is in case of
Tsallis statistics equal to sum ofq-deformed Boltzmann factors

Z(q) =
n∑

j=1

eq(Ω(Ej − 〈E〉r)) (4.52)

and the probability distribution is equal toq-gaussian distribution

pi =
eq(Ω(Ei − 〈E〉r))

Z(q)
. (4.53)

As discussed in Sect.4.2.2, the Legendre structure of thermodynamics remains un-
changed and therefore remain valid all relations that are derived from partition function,
including

∂Sq(Uq, T )

∂Uq
=

1

T
. (4.54)

In the next section, we combine the axiomatics of Rényi and Tsallis entropy and
obtain the new class of entropies with interesting properties.

4.3.3 Hybrid Entropy: Overlap between Nonadditivity and Multi-
fractality

In previous sections we have met two generalizations of Shannon entropy. In both
cases were the generalizations obtained by adjusting the additivity axiom. The Rényi
additivity axiom changes the definition of conditional entropy which is defined in terms
of escort distributions. On the other hand, Tsallis additivity axiom changes the whole
addition rule of entropies. When taken into account both nonadditivity and multifractal
conditionality, a new class of entropies arises. The entropy is calledhybrid entropy
(Dq(P)) and was firstly introduced in [85] by following four axioms:
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1. Continuity axiom: for givenn and probability distributionP is Dq(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom: for given n takes theDq(P) the largest value for uniform
distribution.

3. Expansibility axiom: Dq(p1, . . . , pn, 0) = Dq(p1, . . . , pn).

4. J.-A. additivity axiom: Dq(A∪B) = Dq(A)+Dq(B|A)+(1−q)Dq(A)Dq(B|A),
whereDq(B|A) = f−1 [

∑
i ρi(q) f(Dq(B|A = ai))] andf is a positive and in-

vertible function on[0,∞).

The generalized additivity axiom combines both nonadditivity and generalized con-
ditioning with the same parameterq, which corresponds also to the parameter of escort
distribution. In Appendix E is shown the derivation of a functional form of the entropy.
There are also discussed the allowable forms of functionf and the uniqueness of the
solution. Hybrid entropy can be expressed in the form

Dq(P) =
1

1− q

(
e−(1−q)2

dIq(P)

dq

(
n∑

j=1

pqj

)
− 1

)
=

=
1

1− q

(
e−(1−q)

∑n
j=1 ρj(q) ln pj − 1

)
= ln{q} e

−〈lnP〉q . (4.55)

We can also recognize that the functional form of entropy consists of parts typical for
Tsallis entropy (q-logarithm) and expressions typical for Rényi entropy (q-average).
First, it is necessary to discuss, which values of parameterq are obeying all axioms.
Particularly important is the maximality axiom which is used in the proof only in spe-
cial cases (see Appendix E). We have to verify if the uniform distribution actually
maximizesDq. Becauseln{q}(x) and exp(x) are monotonic functions, we can treat
only 〈lnP〉q. For sake of simplicity, let us make the discussion for the case of binary
distributionP = (p, 1− p). The stationary points are determined by the equation

∂〈lnP〉q
∂p

=
1

Z(q)2
[
p2q−1 − (1− p)2q−1 + pq−1(1− p)q − pq(1− p)q−1

−qpq(1− p)q−1 ln

(
1− p

p

)
+ qpq−1(1− p)q ln

(
p

1− p

)]
= 0 . (4.56)

After substitutiony = p
1−p

and a few straightforward transformations we end with

Ψq(y) ≡ q ln y − 1− yq−1 + yq − y2q−1

yq + yq−1
= 0 . (4.57)
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In Ref. [24] is shown that the equationΨq(y) = 0 has forq ≥ 1
2

the only one
solution, i.e.,y = 1 leading top = 1

2
. On the other hand, forq < 1

2
there exist two

other solutions leading to two other stationary points. From the nature of the entropy
is apparent that these two points are local maxima, whilep = 1

2
is the local minimum.

Consequently, forq < 1
2
, the entropy does not fulfill the maximality axiom.

We summarize the main properties of hybrid entropy in the following points:

• Dq is a symmetric function of all arguments

• Dq({1, 0, . . . , 0}) = 0

• Dq(P) ≥ 0

• limq→1Dq = limq→1 Iq = limq→1 Sq = H

• maxP Dq(P) = Dq({1/n, . . . , 1/n}) = ln{q} n for q ≥ 1
2

• H(P) ≤ Iq(P) ≤ Sq(P) ≤ Dq(P) ≤ ln{q} n for q ≤ 1 and
Dq(P) ≤ Sq(P) ≤ Iq(P) ≤ H(P) ≤ lnn for q ≥ 1

• Dq is a strictly decreasing function ofq, i.e., ∂Dq

∂q
≤ 0

• Dq is a concave function forq ∈ [1
2
, 1]. Becauseln{q} is concave and nondecreas-

ing function for allq > 0, we have to treat only

∂2

∂p2i

(
e−〈lnP〉q) = e−〈lnP〉q

[(
∂〈lnP〉q
∂pi

)2

− ∂2〈lnP〉q
∂p2i

]
. (4.58)

It can be shown that in the intervalq ∈ [1
2
, 1] is the second derivative always

negative, but forq ≥ 1 there are regions, where it is positive.

• Dq is a Schur-concave function for allq ≥ 1
2
. Shi et al. have shown [86] that a

subset of functions called Gini means, which can be expressed in the form

G(q; x, y) = exp

(
xq ln x+ yq ln y

xq + yq

)
, (4.59)

is Schur-concave forx > 0 andy > 0 in the intervalq ≥ 1
2
. As a consequence,

the hybrid entropy is Schur-concave in the whole region, where it fulfills the max-
imality axiom.

The entropy is depicted in Fig. 4.3 for several values ofq. Let us turn our attention
to the derivation of MaxEnt distribution. Similarly to previous sections, we treat two

72



0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

1.2

DHpL

q=0.3 q=0.5 q=1 q=2 q=4

Hybrid entropy

Figure 4.3: Hybrid entropy for a binary system with probability P = (p, 1 − p). The entropy
does not fulfill the maximality axiom forq = 0.3. We observe two local maxima equal to1.34
given by probabilityp

.
= 0.98 and a local minimum equal toln{0.3}(2)

.
= 0.89 for p = 1

2 .

types of energy averaging, i.e. linear average andq-average. The Lagrange function
reads:

LDq(P) = Dq(P)− α
∑

i

pi − β
∑

i

ρi(r)Ei . (4.60)

For the case of linear averaging we obtain that the MaxEnt distribution is the solution
of the equation

α = e(q−1)〈lnP〉q [q (〈lnP〉q − ln pi)− 1]
(pi)

q−1

∑
k(pk)

q
− β(Ei − 〈E〉) . (4.61)

The Lagrange parameterα can be determined by multiplying the previous equation by
pi and summing up overi. We get thatα = −e(q−1)〈lnP〉q . Plugging back into the
original equation, we obtain

Z(q)p1−q
i =

α

α + β(Ei − 〈E〉)

[
q ln pi −

q ln(−α)
q − 1

+ 1

]
. (4.62)

The equation can be solved in terms of LambertW–function (The main properties of
Lambert function are summarized in Appendix F). The resulting distribution is equal to
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pi =

[
qα

(q − 1)Z(q)(α+ β∆Ei)
W

(
−Z(q) (q − 1)e(

q−1
q )

αq

(
1 +

β

α
∆Ei

))]1/(1−q)

=
1

(−α)1/(1−q)e1/q
exp

{
1

(q − 1)
W

(
−Z(q) (q − 1)e(

q−1
q )

αq

(
1 +

β

α
∆Ei

))}
. (4.63)

The second representation is a direct consequence of definition of Lambert W-function.
A few comments should be noted now. First, from the properties of Lambert function
is clear that the probability is always positive. This is apparent from the second rep-
resentation. Second, for the limitq → 1, the original Boltzmann-Gibbs distribution is
recovered. Third, contrary to the previous cases, Eq. (4.62) does not have solution for
all energies, which is reflected in the fact that LambertW–function is not defined on the
whole domain of real numbers, but only on the interval[−e−1,∞).

In the case ofr = q, we obtain very similar equation defining the MaxEnt distribu-
tion:

αp1−q
i Z(q) = e(q−1)〈lnP〉q [q (〈lnP〉q − ln pi)− 1]− qβ(Ei − 〈E〉q) . (4.64)

Similarly to linear averaging,α can be determined asα = −e(q−1)〈lnP〉q and the previous
equation becomes

Z(q) = (pi)
q−1

[
q ln pi +

(
1− q ln(−α)

q − 1
− qβ

α
(Ei − 〈E〉q)

)]
. (4.65)

This equation can be again solved in terms of LambertW–function and eventually we
arrive at a very similar distribution as in the first case:

pi =

[
q

Z(q)(q − 1)
W

(
Z(q)(q − 1)

q
e

q−1
q {1− q ln(−α)

q−1
− qβ

α
(Ei−〈E〉q)}

)]1/(1−q)

= exp




W
(

Z(q)(q−1)
q

e
q−1
q

Ei
)

q − 1
− Ei

q



 (4.66)

whereEi = 1− q ln(−Φ)
q−1

− qΩ
Φ

(Ei − 〈E〉q).
Particularly interesting is the case, when the system is additionally fulfilling mul-

tifractal scaling. In this case we have some typical multifractal spectrum. When the
scales goes to zero, all scaling exponentsαi are dominated by the most likely value
〈α〉q, while contributions of other scaling exponents have zero fractal dimension, i.e.,
have probability equal to zero. This is a consequence ofcurdling theorem[87]. As
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shown in the Section 2.5.2, the inverse temperature is equalto q and energy is equal to
Ei(s) = −αi ln s. Now, applying the multifractal formalism to the equation (4.62), we
obtain the interesting relation

ετ(q)+αi(1−q) ∼ 1 + q [αi − 〈α〉q(ε)]
(
1 +

β̃

α̃

)
ln ε , (4.67)

whereα̃, resp. β̃ are the Lagrange multipliers (the tilde is used to distinguish them
from the scaling exponents) and〈α〉q =

∑
j ρj(q)αj is related toq-mean of logarithm

of probability distribution, so

〈lnP〉q =
∑

j

ρj(q) ln pj =
∑

j

ρj(q)αj ln ε = 〈α〉q ln ε . (4.68)

Similarly to conventional thermodynamics, also in multifractal case are the fluctuations
proportional to square root of characteristic scale, so|ai − 〈a〉q| ∼ 1√

− ln ε
. The only

non-trivial scaling is obtained when
∣∣∣∣∣q
(
1 +

β̃

α̃

)∣∣∣∣∣ <
1√

− ln ε
. (4.69)

In this case, the probability distribution can be recast as

pi ∼ [1 + (1− q)(ai − 〈a〉q) ln ε]1/(1−q) . (4.70)

In connection with multifractals is more conventional to estimate the total probabil-
ity of a phenomenon with scaling exponentα, which is proportional to

Pi(α, s) ∝ s−f(αi)+αi , (4.71)

which is in the quadratic expansion equal to

Pi ∝
[
1 − (1− q)

(αi − 〈α〉q)2
2(∆α)2

]1/(1−q)

, (4.72)

where∆α is the standard deviation around the mean value. As a consequence of pre-
vious relations, we mention that the relation between Lagrange multipliers is̃β = q|α̃|.
More details can be found in Ref. [24]. In the case of linear averaging we obtain af-
ter a straightforward derivation very similar results, butin terms of〈α〉1. The inverse
temperature is given as̃β = (q − 1)|α̃|.
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Apart from multifractal systems, it is also important to study the high-temperature
and low-temperature regimes. In Appendix F are thoroughly discussed the asymptotical
expansions of LambertW–function. For so-called “high-temperature” expansion, i.e.,
when β̂ ≪ 1, it is possible to use the Taylor expansion of LambertW–function and
exponential function and obtain that

pi ≈
1

Z
[1− (1− q)β∗

r∆rE]
1/(1−q) (4.73)

with β∗
1 = − q

q−1
β̂W (x)

α̂(W (x)+1)
, resp.β∗

q = − β̂
α̂(W (x)+1)

wherex = −Z(q)(q−1)
α̂q

exp
(

q−1
q

)
.

The partition function is

Z =
∑

k

[1 − (1− q)β∗
r∆rEk]

1/(1−q) =

[
q

κ(q − 1)
W (x)

]1/(q−1)

. (4.74)

The distribution obtained by the high-temperature expansion is theq-gaussian distribu-
tion similar to distribution obtained by Rényi or Tsallis entropy. Similarly to Tsallis en-
tropy, the temperature is depending on the probability distribution, i.e.,self-referential.

The situation with “low-temperature” expansion is much more complicated. De-
pending on parameterq, constraint parameterr and the sign of∆rE, there can arise
several different situations. The argument of Lambert function can be either close to
zero, infinity, can have two possible solutions because of existence of two real branches
of complexW–function, or does not have to exist at all. Also the resulting distribu-
tion approximations can have form of exponential functions, q-Gaussian distributions or
even more complicated forms of distributions. The whole discussion is realized again
in Ref. [24].

It is a challenging task to find some systems, where the hybridentropy can be suc-
cessfully applied. LambertW–function can be found in connection with such systems
as Lotka–Volterra models, Tonks gas or quantum systems. These systems are possible
candidates for application of hybrid entropy. Also multifractal systems with long-range
interactions can be an example of system driven by hybrid entropy. All these aspects
provides interesting directions for further research.
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Chapter 5

Applications in Financial Markets

In this chapter are presented applications of models discussed in previous chapters to
financial markets. The connection between physical models and financial markets has
been observed first in the beginning of twentieth century. Inthe work of L. Bache-
lier [88], Brownian motion was firstly applied to predictionof financial markets. Still,
for many decades, the practitioners from finance did not takeenough attention to other
disciplines and more sophisticated mathematical models. The situation changed in
early 90’s, because there arose a new scientific field combining models familiar from
physics, which found new applications is financial markets.The branch is calledecono-
physics. The main contributions to that field are summarized in the classic books by
E. Stanley and R. Mantegna [27], J. P. Bouchard and M. Potters[2] or W. Paul and
J. Baschangel [1].

We focus on some specific applications connected to previoustheoretical chapters.
Firstly, the applications of multifractal models into financial markets have become a hot
topic. We apply the methods introduced in Chapter 2 to measure multifractal scaling
exponents of financial series and try to compare advantages and problems of each par-
ticular method. Secondly, we discuss the possibility of applications of diffusion mod-
els based on double-fractional diffusion to option pricing. We compare it with classic
Black-Scholes model and the Lévy fractional model based on totally asymmetric stable
distributions and briefly discuss the possibility of applications to other types assets.

5.1 Estimation of Multifractal Spectra of Financial Time
Series

Our aim is to compare methods presented in Sections 2.3, 2.4 and discuss their applica-
bility to real complex time series. We divide the discussioninto several steps. First, we
illustrate the necessity of precise estimation of underlying histograms in case of Multi-
fractal diffusion entropy analysis (MFDEA) in order to obtain relevantδ-spectrum. We
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Figure 5.1: Estimatedδ-spectra (central line) and 99% confidence intervals (shaded regions) of
daily time series of S&P 500 for different values of bin-width h. For bin-width far from the
optimal width is the spectrum diminished and the confidence intervals get wider. Particularly,
for under-fitted histograms the error is most dramatic for small q’s, for over-fitted histograms the
error visible for largeq’s.

h = 100 h = 10 h = 1 h = 0.1 h = 0.01

δ(q)

q

method optimal bin-width forq = 1 in multiples ofu = 3× 10−4

Scott 0.00470 14.10
Freedman–Diaconis 0.00384 12.81

Table 5.1: Optimal values ofh∗1 for different methods,h∗q can be easily obtained from Eq. (2.68).
The results are also converted to the same units like in Fig. 2.3, so that the reader can easily
compare the results with previous values.

test the two methods, i.e., Scott and Freedman-Diaconis method, on the sample time
series of daily returns of S&P 500 in time period 1950-2013 (approximately 16000 en-
tries). This is a good example of complex series with multiple scaling exponents. The
procedure of histogram estimation is depicted in Fig. 2.1. The necessity of proper bin-
width estimation is presented in Figs 2.3, resp. 2.4. The resulting δ-spectra estimated
with different bin-widths are depicted in Fig. 5.1. The under-fitted histograms (too large
bin-width) contain not enough information about the time series, while the over-fitted
histograms (too small bin-width) cannot also describe properly the dynamics of the se-
ries due to the finite amount of measured data. For not enough data it is probable that
the histogram is disintegrated into a normalized count function and does not recover the
proper nature of the series. This is reflected in the estimated spectra, indeed. We ob-
serve that the spectra differ and also the confidence intervals are different for different
values ofq. This supports the necessity ofq-dependent bin-width. Especially for too
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Figure 5.2: Left: δ-spectrum for bin-widths estimated by Scott rule and Freedman-Diaconis
rule. Spectra for both methods coincidence. Right: Optimalbin-widths ĥ∗q for both methods.
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for comparison with Fig. 5.1

q

δ(q)

q

h∗q

a) b)

small bin-width is the spectrum deformed from the optimal case and the confidence in-
tervals are large. We have calculated the optimal bin-widthfor both presented methods.
The valuesq = 1, corresponding to classic Scott, resp. Freedman-Diaconismethod are
listed in Tab. 5.1. The optimal bin-width function depending onq and optimal spectra
for both methods are shown in Fig. 5.2. Although the Scott method estimates the op-
timal bin-width slightly larger than Freedman-Diaconis method, the spectra practically
coincide. This is caused by the fact that the prices are rounded to dollars and cents and
therefore the data have finite precision. Hence, the small change in bin-width does not
necessarily change estimated histograms.

The second part of the analysis is to apply the methods used for estimation of mul-
tifractal exponents to several kinds of financial assets on different time scales. We want
to test the robustness of each methods, discuss their limitations and to find optimal pol-
icy when analyzing the multifractal properties of time series. The main results of the
analysis are presented in Ref. [22]. We have done the comparison mainly betweenf -
spectrum obtained from Multifractal detrended fluctuationanalysis (MFDFA, defined
in Sect. 2.3.3) andδ-spectrum obtained from Multifractal diffusion entropy analysis
(MFDEA, defined in Sect. 2.3.4). There were chosen four assets for the analysis, namely
the stock index Nikkei 225 (main index of Tokyo stock exchange), ASE Composite in-
dex (main index of Athens stock exchange), IBM stock and the VIX index (implied
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Figure 5.3: Multifractal spectra of daily time series. We observe that multifractal exponents of
VIX differ from spectra of other series. This is caused by different nature of volatility. Conse-
quently, the Hurst exponent of VIX series is noticeably lower than for other series.

volatility of S&P index), all recorded on the daily basis andthe high-frequency basis.
High-frequency data are from year 2013 and have approximately 100000 records and
daily data are recoded during the last 10-20 years (depending on particular index) and
contain 5000-10000 entries. We also estimate Hurst exponent, f -spectrum obtained
from MFDFA andδ-spectrum obtained from MFDEA. Fig. 5.3 shows the spectra for
daily series and Fig. 5.4 depicts the spectra for high-frequency series. It is possible to
observe discontinuities in all spectra which can be caused by the presence of correla-
tions or power-laws in financial series. The discontinuities are observed in the case of
daily data of VIX and in several cases of high-frequency data. This is quite natural,
because VIX has different characteristic scaling from the other series, which is given by
the nature of the index. In the case of high-frequency data, we often work with illiquid
data with calm periods and sudden jumps. Generally, we see that the high-frequency
data possess a richer structure of scaling exponents, whilein case of aggregated daily
data, some scaling exponents disappear, which is expected.Because all methods are
based on linear regression, it is always better to combine several methods in order to
obtain a real picture of multifractal nature of our system.
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Figure 5.4: Multifractal spectra of high-frequency data. The data are illiquid and exhibit power-
law behavior. This is reflected in discontinuities in both spectra, mainly in the multifractal
f -spectrum.

5.2 Option Pricing Based on Double-Fractional Diffu-
sion

The first mathematically rigorous option pricing model, based on Brownian motion, was
published in 1973 [89] by F. Black and M. Scholes. Scholes together with Merton re-
ceived later the Nobel prize in economics. The model became very popular and most of
the finance community still use the Black-Scholes model for option pricing. Neverthe-
less, as discussed in chapter about diffusion, the classic Brownian motion does not re-
flect the complex behavior of financial markets, including large jumps, long-range corre-
lations or regime switching and leads to improper risk estimation. This motivated many
scientists to generalize the Black-Scholes model and to invent more sophisticated option
pricing models which are able to model the risk more realistically. Among others, let
us mention models based on Lévy distributions [90], truncated Lévy distributions [91],
multifractal volatility [11], jump processes [15], fractional Brownian motion [92, 93]
and double-stochastic equation [94]. We focus on the approach based on stable distri-
butions, because for systems without long-range correlations are distributions limiting
distributions of diffusion processes [3]. As discussed in Sect. 3.3.2, Lévy flights are so-
lutions of (spatially) fractional diffusion equations. Wegeneralize Lévy option pricing
to double-fractional model, which brings about some more complex behavior and also
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All options
parameter Black-Scholes Lévy stable Double-fractional

α - 1.493(0.028) 1.503(0.037)
γ - - 1.017(0.019)
σ 0.1696(0.027) 0.140(0.021) 0.143(0.030)

agg. error 8240(638) 6994(545) 6931(553)

Call options
parameter Black-Scholes Lévy stable Double-fractional

α - 1.563(0.041) 1.585(0.038)
γ - - 1.034(0.024)
σ 0.140(0.021) 0.118(0.026) 0.137(0.020)

agg. error 3882(807) 3610(812) 3550(828)

Put options
parameter Black-Scholes Lévy stable Double-fractional

α - 1.493(0.031) 1.508(0.036)
γ - - 1.047(0.017)
σ 0.193(0.039) 0.163(0.034) 0.163(0.037)

agg. error 3741(711) 3114(591) 2968(594)

Table 5.2: Estimated mean values and standard deviations ofmodel parameters(α, γ, σ) and
aggregated errors of three considered models, i.e., Black-Scholes model, Lévy stable model
and Double-fractional model. The results are presented forthree cases: estimation done for all
options and for calls and puts separately. We see that the mean value ofγ is very close to one for
all options. On the other hand, in the case of separate estimation for call options and put options
is γ larger than one.

the aforementioned regime switching between kernel mode and long-memory mode.
We test the model on European options of index S&P 500 traded in November 2008.
The price of European call option can be determined as

C(α,γ,κ)(St, K, τ) = e−rτ

∫

R

dy
[
Ste

τ(r−q+µ)+y −K
]+
gDF (y, τ) = (5.1)

= e−rτ

∫

R

dy
[
Ste

τ(r−q+µ)+y −K
]+ Γ(κ)

2απiy

∫ c+i∞

c−i∞

Γ
(
s
α

)
Γ
(
1− s

α

)
Γ(1 − s)

Γ
(
κ− γ

α
s
)
Γ
(

(α−θ)s
2α

)
Γ
(
1− (α−θ)s

2α

)
[

y

(−µτγ)1/α

]s
ds.

The corresponding put price can be calculated from theput-call partityrelation

P(α,γ,κ)(St, K, τ) = C(α,γ,κ)(St, K, τ)− Ste
−qτ +Ke−rτ . (5.2)

Green functions and corresponding option prices are shown in Fig. 5.5. Forα =
2 andγ = 1 we recover the Black-Scholes model. The parameters play therole of
risk redistribution parameters. In the case ofα the lower the parameter means higher
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probability of drops and higher price of those options, for whichK < Ste
−qτ is higher.

On the other hand, the price is lower for options, for whichK > Ste
−qτ . Similarly,

the parameterγ influences the temporal redistribution. Forγ < 1, the options with
short expiration become more expensive and the options withlong expiration become
cheaper, and vice versa forγ > 1. This usually reflects the situation, when the actual
market evolution is hard to predict, on the other hand, the long-term dynamics is not
affected by actual evolution.

The calibration of the model is done on the example of S&P 500 options traded in
November 2008. Following related works [90], we use out-of-the-money options to find
the set of parameters, which minimize theaggregated error:

(αO, γO, σO) = arg min
(α,γ,σ)

∑

τ∈T ,K∈K
|Oα,γ,κ −Omarket| . (5.3)

The optimization is done for each trading day for three models: Black-Scholes model [89],
Lévy stable model [90] and double-fractional model [23]. Because all values ofγ are
close to one, the differences between particular types of derivatives are negligible, so we
use Caputo derivatives in the whole analysis. The results are presented in Tab. 5.2. For
comparison, for each method is also presented the aggregated error. It is obvious that
in comparison with Black-Scholes model, the latter two models represent a substantial
improvement. In the case of Double-fractional model the improvement of parameters
for all options is not significant. Nonetheless, in the case of separate calibration of call
options and put options, the improvement is more significant. In Fig. 5.6 are presented
daily estimates of parametersα, γ and the ratioΩ = γ/α, which is the scaling exponent
of Green function. Apart from the parameters is also presented the ratio between aggre-
gated errors of Lévy stable model and double-fractional model. In some particular days
is the difference between error of Lévy model and double-fractional model quite large.
The second finding is that while parametersα andγ fluctuate, the scaling parameterΩ
is more stable.

The main advantage of the double-fractional model is the presence of temporal risk
redistribution, which allows to distinguish between actual, short-term risk and long-
term evolution. From the theoretical point of view, the presence “superstatistical”, slow
diffusion regime with two distinguishable time scales, andfast-diffusion mode with
long-range memory allows to describe different situations. This regime-switching ap-
proach is applicable in other scientific fields a could be possibly combined with other
similar models.
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Figure 5.5: linear plots of Green functions (top), semi-logplots of Green functions (center) and
corresponding option prices (bottom) forα = 1.8 (left) andα = 1.6 (right) and comparison with
the Black-Scholes model (grey dashed lines). There exist some particular choices of parameters
for which are the option prices cheaper than BS model and viceversa.
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Figure 5.6: Estimated values of stability parameterα, diffusion speed parameterγ, scaling expo-
nentΩ and the ratio of aggregated errors between Lévy model and Double-fractional model for
each particular day. The calibration is done for all optionsand for calls and puts separately. We
see that for call and put options treated separately is the improvement of the Double-fractional
model more significant. The parameterΩ measures the ratio betweenγ andα and corresponds
to the temporal scaling exponent, sog(x, t) ∼ tΩ. For BS model (Ω = 1

2 ) corresponds to Hurst
exponent of Brownian motion. The graphics shows thatΩ exhibits more stable behavior thanα
andγ.
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Chapter 6

Conclusions and Perspectives

The thesis presented several subject matter related to the currently broadly discussed
topic of complex systems. All of these models are based on very universal ideas of
scaling, similarity, additivity and generalized statistics. We discussed both their theoret-
ical aspects and practical applications mainly to financialmarkets and thermodynamics.
Nevertheless, the universality of the presented models predestines them for further ap-
plications in physics, biology or chemistry.

The main aim in the case of multifractal analysis was to compare several methods for
multifractal spectrum estimation. Among others, to the most discussed models belong
Detrended fluctuation analysis and Diffusion entropy analysis. We have compared their
effectiveness in the matter of heavy-tailed data. We have also discussed technical details
of both methods and compared both methods on the real financial time series for daily
data and high-frequency data. In the case of Diffusion entropy analysis we have pointed
out that the crucial point for the proper calculation of scaling exponents is the estimation
of histogram bin-width. Too large or too small bin-width (i.e. too many boxes or too
few boxes) does not describe the underlying distribution properly. We have also derived
the formula for the optimal bin-width depending on the Rényientropy parameterq.

In the chapter on generalized diffusion we have compared several existing models
of anomalous diffusion. Some of them include long-term memory (fractional Brownian
motion) or are based on heavy-tailed distributions (Lévy flights). We have also pre-
sented a generalization of these models based on the diffusion equation with derivatives
with non-natural (or fractional) orders. The main part of the chapter was dedicated to
derivation and properties of Green functions for Double-fractional diffusion equation.
We have discussed several representations including Mellin-Barnes integral represen-
tation and smearing-kernel representation forγ < 1. It is also possible to introduce a
novel option pricing model based on the double-fractional diffusion which generalizes
the Lévy-stable option pricing and introduces risk-redistribution also for the time scale.

The concept of entropy is very important in statistical physics and thermodynamics.
By introduction of generalized entropies it is possible to deal with non-extensive sys-
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tems and systems with heavy-tailed distributions. The two most popular examples are
represented by Rényi entropy and Tsallis entropy. We have shown that there is a possi-
bility of obtaining a completely new class of entropies by combining of axioms of Rényi
entropy and Tsallis entropy. This class is called Hybrid entropy. The respective MaxEnt
distribution can be expressed in terms of Lambert W-function. Because Lambert W-
function is defined only on a subinterval of real numbers, we come to a conclusion that
there exist energy regions which remain unoccupied. Therefore, Hybrid entropy has a
potential to describe systems with energy gaps.

There are still interesting questions on the issues remaining. In the case of multifrac-
tal analysis,there exist many sophisticated models based on multifractal analysis [11].
These models can be a good inspiration for further applications in other fields. It is
therefore interesting to compare these models and to find some common properties of
them. Similarly, double-fractional diffusion representsa promising model for many ap-
plications in description of biological processes or in cosmological models. In the case
of generalized entropies, one of possible directions is to generalize the entropy clas-
sification [67, 84] to canonical ensembles and/or more generalized form of entropies.
Further applications of nonextensive thermodynamics would probably shed some light
on sources of nonextensivity.

Apart from the topics discussed in the thesis, there are evenmore closely related top-
ics that are extremely interesting and worth investigating. Let us mention, for instance,
two other applications of Rényi entropy. The first isRényi transfer entropy[95]. Trans-
fer entropy is a model-free measure of information transferbetween two time series and
can be used in forecasting of evolution in various systems with multiple time series.
The second isPoint information entropy[96], a measure used in image recognition and
classification, which is uses multifractal analysis to decode the information hidden in
images. All previously mentioned topics represent a potentially fruitful background for
new ideas and for applications in new scientific fields.
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Appendix A

Basic Properties of Stable Distributions

We summarize basic properties and representations of stable distributions. Sometimes
are the distributions called Lévy distributions (or Lévy-stable distributions), after math-
ematician Paul Lévy, who studied some special examples of stable distributions [97].
Gnedenko and Kolmogorov [12] studied the infinite sums of random variables. In the
case of i.i.d. random variablesXn, probability distributions of infinite sums

S =
∞∑

n=1

anXn − bn (A.1)

belong to a special class of distributions. In the case, whenthe variance ofXn is finite,
the Central limit theoremdetermines that the resulting distribution is Gaussian [98].
When we assume that the variance is not necessarily finite, weobtain the class of limit-
ing distributions. This class has one important property: they are form-invariant under
the operation of convolution. The convolution of two probability distributions

p(x) = p1(z) ⋆ p2(z) =

∫

R

p1(z)p2(x− z)dz (A.2)

is nothing else than the probability distribution of sum of two random variablesX =
X1 +X2 with probability distributionsp1, respp2. Therefore, the probability is stable,
if the convolution of a distribution with itself does not change the functional form of the
distribution, i.e.,

p(a1z + b1) ∗ p(a2z + b2) =

∫ ∞

−∞
p (a1[x− z] + b1) p(a1z + b1)dl = p(ax+ b). (A.3)

The last relation can be nicely reformulated in Fourier transform image. In fact, the
convolution is in Fourier image represented as product

F [f ∗ g](k) = F [f ](k) · F [g](k) . (A.4)
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Thus, Fourier images of stable distributions are invariantunder multiplication. From
this is possible to determine the functional form of stable distributionsLα,β(x) as a
four-parametric class of distribution with parameters0 < α ≤ 2, −1 ≤ β ≤ 1,
σ̄ ≥ 0, x̄ ∈ R in thestable Hamiltonian representation:

Hα,β;x̄,σ̄(p) ≡ ln〈eipx〉 = ix̄p− σ̄α|p|α (1− iβsign(p)ω(p, α)) , (A.5)

ω(p, α) =

{
tan(πα/2) if α 6= 1
2
π
ln |p| if α = 1.

(A.6)

As already discussed in Sect. 3.3.2, each parameter has its particular interpretation.
Parameters̄x andσ̄ are location, resp. scale parameters and equal to mean value, resp.
standard deviation, if they exist.

Parameterα is calledstability parameter. It influences the shape of the distribution,
the degree of tail decay and also existence of fractional moments. At the end of the sec-
tion we show that the distribution decays as1/|x|α+1, except for extremely asymmetric
cases. Parameterβ is asymmetry parameter, because it influences the skewness of the
distribution. From relation

Lα,β(x) = Lα,−β(−x) (A.7)

is obvious that forβ = 0 is the distribution symmetric around the location parameter. In
extreme cases, i.e., whenβ = −1, the right tail (forβ = 1 the left tail) does not decay
polynomially. Namely, forα > 1, it decay subexponentially

Lα,−1(x) ∼
1

2(α− 1)

(
x

αcα

) α
2(α−1)

−1

exp

[
−(α − 1)

(
x

αcα

)− α
(α−1)

]
for x→ +∞ .

(A.8)
Forα < 1, the support of the distribution is bounded to(−∞, x̄) for β = −1.

There exists an alternative representation of stable Hamiltonian, which is useful in
some applications. It can be expressed as

Hα,θ;x̄,c(p) ≡ ln〈eipx〉 = ix̄p− c|p|αei sign(p) θ π
2 , (A.9)

wherec andθ are uniquely determined by parametersα, β andσ̄ [99]. Parameterθ plays
analogous role asβ and it is bounded by condition|θ| ≤ min{α, 2 − α}. The region
of accessible values in(α, θ)-plane is sometimes calledFeller-Takayasu diamond. The
boundary of the diamond corresponds toβ = ±1.

For the purposes of financial applications, it is important to calculate the log-Lévy
distribution, which is the distribution of random variableexp(X), whereX is stable
random variable. It is equal to two-sided Laplace transformof Lα,β , which exists only
for β = 1. Hence, forℜ(λ) > 0 (see Ref. [100]) the logarithm of Laplace transform
can be expressed as

ln〈e−λx〉 = −λx̄− λασ̄α sec
πα

2
. (A.10)
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Finally, we derive the asymptotic expansion of Lévy distribution. We present the
case whenβ = 0 because of simplicity, the other cases can be derived analogously. The
probability distribution is given by the inverse Fourier transform of its characteristic
function

Lα,0(x) =
1

2π

∞∫

−∞

dp e−γ|p|αeikx =
1

2π

∞∫

0

dp e−γpα
(
eipx + e−ipx

)

=
1

2π

∞∫

0

dp e−γpα2ℜ
(
eipx
)
=

1

π
ℜ




∞∫

0

dp e−γpαeipx


 .

We expand the exponential in the integral to the power series, integrate and express the
integral in terms ofΓ function. We therefore obtain

1

π
ℜ
[ ∞∑

n=0

(−γ)n
n!

∫ ∞

0

dp pαneipx

]
=

1

π
ℜ
[ ∞∑

n=0

(−γ)n
n!

Γ(αn+ 1)

(−ix)αn+1

]
.

The real part can be easily expressed with help of the identity

ℜ
(
(±i)αn+1

)
= − sin

(παn
2

)
, (A.11)

so we end with the final expansion

Lα(x) = −1

π

∞∑

n=1

(−γ)n
n!

Γ(αn+ 1)

|x|αn+1
sin
(παn

2

)
. (A.12)

From the previous expansion is also clear that the tails decay as1/|x|α+1.
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Appendix B

Mellin Transform

Mellin transform is an integral transform useful in many applications in physics, num-
ber theory and theory of asymptotic expansions. Mellin transform is also used for the
Mellin-Barnes integral representations [101], which can be advantageous, e.g., from
computational reasons. More details can be found in Ref. [102].

The Mellin transform is defined as follows:

M[f ](z) :=

∫ ∞

0

xz−1f(x)dx . (B.1)

Conversely, inverse transform is given by the formula

M−1[f ](x) :=
1

2πi

∫ c+i∞

c−i∞
x−zf(z)dz , (B.2)

wherec is given by theMellin inversion theorem[102].
Mellin transform is closely related to Fourier transform and two-sided Laplace trans-

form:

L[f ](z) = M[f ◦ (− ln x)](z) (B.3)

F [f ](z) = M[f ◦ (− ln x)](−iz) . (B.4)

In other words, Mellin transform can be considered as a multiplicative version of two-
sided Laplace transform. As a consequence, the main properties of Mellin transform
are

M[f(ax)](s) = a−sF (s) (B.5)

M[xaf(x)](s) = F (s+ a) (B.6)

M[f(xa)](s) = |a|−1F (s/a) (B.7)

M[log xnf(x)](s) = F (n)(s). (B.8)
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As an example, the Mellin transform of exponential is forℜ(s) > 0 equal to Gamma
function

M[e−x](s) =

∫ ∞

0

e−xxs−1dx = Γ(s) . (B.9)

As a consequence, forexp(−xn) we obtain

M[e−xn

](s) =
1

n
Γ
( s
n

)
. (B.10)

Interestingly, many functions can be expressed in terms of Gamma function in
Mellin image. This is a motivation for introduction of so-called Mellin-Barnes inte-
grals. The resulting function is calledH-function. In the most general form it is defined
as

Hm,n
p,q (z) =

1

2πi

∫ c+i∞

c−i∞

Γ(α1 + a1s) . . .Γ(αm + ams)

Γ(β1 + b1s) . . .Γ(βn + bns)

Γ(γ1 − c1s) . . .Γ(γp − cps)

Γ(δ1 − d1s) . . .Γ(δq − dqs)
z−sds .

(B.11)
The poles ofΓ(αi+ans) are separated from poles ofΓ(βi−bns). The integration is taken
between the poles in the common strip of analycity. In this class of integrals are included
hypergeometric functions, confluent hypergeometric functions [103] or Mittag-Leffler
functions, as shown in Appendix C. More details about H-function can be found e.g., in
book [104].
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Appendix C

Mittag-Leffler Function

Mittag-Leffler function is a class of special functions discovered by Swedish mathe-
matician G. M. Mittag-Leffler. It is a generalization of several classes of functions. It
includes exponentials, hyperbolic functions, trigonometric functions and several other
functions. The Mittag-Leffler function is most commonly defined as the infinite series

Eα,β(z) =
∞∑

n=0

zn

Γ(β + αk)
(C.1)

for α, β ∈ C, ℜ(α) > 0, ℜ(β) > 0 and for complexz. Particularly important is the
case whenβ = 1. In this case we use notationEα,1(z) = Eα(z). The Mittag-Leffler
function incorporates several important functions, for example

E0(z) =
∞∑

n=0

zn =
1

1− z
(C.2)

E1(z) =

∞∑

n=0

zn

n!
= ez (C.3)

E2(z) =

∞∑

n=0

zn

(2n)!
= cosh(

√
z). (C.4)

Moreover, the relation between Mittag-Leffler functions ofa double parameter is given
by the relation

E2α(z
2) =

1

2
[Eα(z) + Eα(−z)] (C.5)

which is a nice generalization of a relation betweencosh function and exponentials. In
Ref. [105] are presented even more relations and it is also shown there the relation to
hypergeometric functions.
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One of the most important properties is the fact that the Mittag-Leffler functions are
eigenfunctions of Caputo derivative operators:

∗Dν
xEν(λx

ν) = λEν(λx
ν). (C.6)

Another important property of Mittag-Leffler function is its Laplace a Mellin trans-
form. The Laplace transform of Mittag-Leffler function is important theory of integro-
differential equations, which is also case of fractional derivative operators [106]. It is
possible to show that the transforms are [54]

L[Eα,β(λz
α)](s) =

sα−β

sα − λ
, (C.7)

M[Eα,β(z)](s) =
Γ(s)Γ(1− s)

Γ(β − αs)
. (C.8)

The second relation can be used for the Mellin-Barnes intregral representation, as dis-
cussed in Appendix B.
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Appendix D

Properties of Smearing Kernels

In this appendix we compare smearing kernels of Green functions obtained as a solution
of double-fractional diffusion equations for Caputo derivatve and Riesz-Feller derivative
whenγ < 1. The Green function is equal to

gα,γ(x, t) =

∫ ∞

0

dl ψK(t, l)
1

l1/γ
Lγ,1

(
t

l1/γ

)
gα(x, l) , (D.1)

whereψK(t, l) differs according to derivative

ψK(t, l) =

{ Γ(γ)
tγ−1 for Riesz derivative,
τ
lγ

for Caputo derivative.
(D.2)

We are interested in the asymptotic behavior of smearing kernel for small and large
values. First, for small values, i.e., whenl → 0 and constantt, the argument of the
stable distribution goes to infinity. Thus, we can use the asymptotic expansion similar
to (A.12)

1

l1/γ
Lγ,1

(
t

l1/γ

)
∼ Γ(γ + 1) sin(πγ)

cos
(
πγ
2

) l

tγ+1
for l → 0 . (D.3)

Hence, For Riesz-Feller derivative is the kernel

gRF
1 (t, l) ∼ l

τ 2γ
Γ(γ)Γ(γ + 1) sin(πγ)

cos
(
πγ
2

) for l → 0 . (D.4)

On the other hand, for Caputo derivative we obtain a non-zerovalue forl = 0, namely

gC1 (t, 0) =

(
1

tγ

)
Γ(γ) sin(πγ)

cos
(
πγ
2

) . (D.5)

In case of asymptotic expansion forl → ∞, the argument of the stable distribution
goes to zero. According to Ref. [107], we have

Lγ,1(x) ∼ Aγx
−1−λγ

2 exp
(
−Bγx

−λγ
)

for x→ 0+ , (D.6)
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with λγ = γ
1−γ

andγ-dependent constantsAγ , Bγ . Thus, the asymptotic behavior can
be described as

gRF
1 (τ, l) ∼ CRF (τ)Aγl

1
2(1−γ) exp

(
−BγD(τ)l

1
1−γ

)
for l → +∞, (D.7)

respectively

gC1 (τ, l) ∼ CC(τ)Aγl
1

2(1−γ)
−1 exp

(
−BγD(τ)l

1
1−γ

)
for l → +∞. (D.8)

Normalization factorsCRF (τ), resp.CC(τ) can be determined from previous expres-
sions. Both kernels are depicted in Fig. 3.1.
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Appendix E

Derivation of Hybrid Entropy from
J.-A. Axioms

In this appendix we present the main steps of derivation of hybrid entropy from J.-A.
axioms. The proof was firstly published in [85], together with broad discussion. The
proof follows the Khinchin machinery firstly used by himselfto derive the functional
form of Shannon entropy.

Let us denoteD(1/r, . . . , 1/r) = L(r). From expansibility axiom and maximality
axiom we immediately obtain

L(r) = D
(
1

r
, . . . ,

1

r

)
= D

(
1

r
, . . . ,

1

r
, 0

)
≤ D

(
1

r + 1
, . . . ,

1

r + 1

)
= L(n+ 1) ,

(E.1)
i.e.,L(n) is a non-decreasing function ofn. By repeated application of the additivity
axiom to i.i.d. variablesA(m) with uniform distribution(1/r, . . . , 1/r), we obtain that

D(A(1) ∪A(2) ∪ . . . ∪ A(m)) = L(rm) =
m∑

k=1

(
m

k

)
(1− q)k−1Dk(A(k))

=
1

(1− q)
[(1 + (1− q)L(r))m − 1] .(E.2)

The equation can be extended form ∈ R+. Afterwards, we take the derivative of both
sides w.r.t.m and setm = 1, so

(1− q) dL
(1 + (1− q) L) [ln (1 + (1− q) L)] =

dr

r ln r
. (E.3)

The general solution of this equation can be found in the form

L(r) ≡ Lq(r) =
1

1− q

(
rc(q) − 1

)
, (E.4)
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where integration constantc(q) has to be determined. Because forq = 1, theL(rm) is
equal tomL(r), and thereforec(1) = 0. Furthermore, monotonicity ofL(r) requires
conditionc(q)/(1 − q) ≥ 0. It is clear that the functional form ofL(r) corresponds to
the form of Tsallis entropy. Indeed, in microcanonical ensemble description gives the
hybrid entropy the same description as Tsallis entropy. Thedifference is in the different
definition of conditional entropy, i.e. the canonical ensemble description.

In order to proceed, let us consider a special example of two experiments with out-
comesA = (a1, . . . , an) and distributionPA = (p1, . . . , pn) andB = (b1, . . . , bm) and
distributionQB = (q1, . . . , qm). Let us assume thatpk are rational numbers, sopk =

gk
g

,
whereg =

∑n
k=1 gk. We assume thatm = g, so the experimentB hasg possible out-

comes. The dependence ofB toA is chosen so that ifai happens, then all outcomesk-th
groupbk happen with equal probability1/gk and other outcomes have zero probability.
Therefore,

D(B|A = ak) = D(1/gk, . . . , 1/gk) = Lq(gk) , (E.5)

and the additivity axiom implies that

D(B|A) = f−1

(
n∑

k=1

̺k(q)f(Lq(gk))

)
. (E.6)

On the other hand, the entropy for joint experimentA ∪ B can be easily determined,
because the joint probability distribution is

R = {pkql | k} = {p1
g1
, . . . ,

p1
g1
,

︸ ︷︷ ︸
g1×

p2
g2
, . . . ,

p2
g2
,

︸ ︷︷ ︸
g2×

. . . ,
pn
gn
, . . . ,

pn
gn︸ ︷︷ ︸

gn×

} = {1/g, . . . , 1/g} ,(E.7)

So D(A ∪ B) = Lq(g). It is now straightforward to compare both representations
of joint entropy given by additivity axiom and plug in the form obtained in Eq. (E.4).
Consequently, we obtain the functional equation

D(A)

(
1 + (1− q)f−1

(
∑

k

̺k(q)f(Lq(pk)[1 + (1− q)Lq(g)] + Lq(g))

))

= Lq(g)− f−1

(
∑

k

̺k(q)f(Lq(pk)[1 + (1− q)Lq(g)] + Lq(g))

)
. (E.8)

Definingf(α,β)(x) = f(−αx+ β) anda = [1 + (1− q)Lq(g)], we get
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D(A) =
f−1
(a,L(g))

(∑
k ̺k(q)f(a,Lq(g))(−L(pk))

)

1− (1− q)f−1
(a,L(g))

(∑
k ̺k(q)f(a,Lq(g))(−L(pk))

) . (E.9)

When we reformulate the entropy in termsL(1/pk), which represents an elementary
information ofak

Lq(pk) = − Lq(1/pk)

1 + (1− q)Lq(1/pk)
. (E.10)

When we define

g(x) = f(a,L(g))

(
x

1 + (1− q)x

)
, (E.11)

the entropy can be written as

D(A) = g−1

(
∑

k

̺k(q)g(Lq (1/pk))

)
. (E.12)

Moreover, if we set in the definition of conditional entropyA = B, then we get

D(A) = f−1

(
∑

k

̺k(q)f(Lq (1/pk))

)
. (E.13)

. Because the left-hand sides are the same, so have to the right-hand sides. According to
[75], the two quasi-linear means are the same if and only if their Kolmogorov-Nagumo
functions are linearly related

g(x) = f

( −x+ y

1 + (1− q)x

)
= θq(y)f(x) + ϑq(y) . (E.14)

By definingϕ(x) = f(x)− f(0), we end with

ϕ

( −x+ y

1 + (1− q)x

)
= θq(y)ϕ(x) + ϕ(y). (E.15)

In Ref. [24] is shown that the only non-trivial class of solutions is

ϕ(x) =
1

α
ln [1 + (1− q)x] . (E.16)

α is a free parameter. When inserted back into E.13,α is canceled and we end with

Dq(A) =
1

1− q

(
e−c(q)

∑
k ̺k(q) ln pk − 1

)
=

1

1− q

(
∏

k

(pk)
−c(q)̺k(q) − 1

)
(E.17)

From additivity axiom we finally obtain thatc(q) = 1 − q. As discussed before, we
have used the maximality axiom only in certain cases, i.e. for the functionL(r), and it
is necessary to verify additionally the validity of maximality axiom for eachq.

99



Appendix F

Lambert W-function

Lambert W-function is defined as the complex inverse ofzez. It has been firstly defined
by Lambert in eighteenth century. Since that time it has found many applications in
pure mathematics, hydrodynamics, quantum theory and many other fields. The Lambert
W-function has many interesting properties in both real andcomplex domain and we
discuss some of them in the next lines. The Lambert W-functionW (z) is defined from
equation

z = W (z)eW (z) for z ∈ C . (F.1)

In the complex plane has the previous equation an infinite number of solutionsWk(z)
for everyz 6= 0. Nevertheless, for real arguments we observe only two branches of real
solutions. From the theory of branch cuts (more details can be found e.g. in Ref. [108])
we have the principal cutW0(x), which exists on the interval[−1/e,∞) and the branch
cutW−1(x), which exists on the interval[−1/e, 0). The two real branches are depicted
in Fig. F.1. It is easy to show that many equations combining logarithmic functions and
polynomicals can be solved in terms of Lambert W-function. The solution of equation

ln z + bzc = d (F.2)

can be expressed as

z =
1

bc
W
(
b c edc

)1/c
. (F.3)

Now we turn our attention to asymptotic expansions of the Lambert W-function.
First, we are interested in the Taylor series ofW0(x)aroundx0 = 0. This can be obtained
in the form

W (x) =

∞∑

n=1

(−1)n−1nn−2

(n− 1)!
xn . (F.4)

The radius of convergence is1/e. When we are interested in the linear expansion, i.e.
very close to zero, we ge thatW (x) ≈ x. On the other hand, forx → ∞ we get that
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Figure F.1: Two real branches of Lambert W-function

W0(x) can be approximated by [108]

W (x) ≈ ln x− ln ln x+ o(1) for x→ ∞. (F.5)

In case of branchW−1(x), we are interested in behavior asymptotic expansion close to
zero, because

lim
x→0−

W−1 (x) = −∞ . (F.6)

The expansion is functionally quite similar to asymptotic expansion of the principal
branch

W−1 (x) ≈ ln(−x)− ln(− ln(−x)) + o(1) for x→ 0−. (F.7)
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