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Abstrakt

Tato prace se zabyva vybranymi tématy z teorie komplexnistémil a ekonofyziky.
Zamgfuje se zejména na multifraktalni analyzu, anomalni diutorii zobecanych
entropii. Tyto modely jsou zaloZeny nékolika univerzalnich konceptech - Skalovani,
zobec@na statistika a extenzivita. VSechna tato témata jsoeeistudovana z teo-
retického hlediska. PodroBrjsou diskutovany nejdlle&igi otazky kazdého z témat,
jako napiklad odhad Skalovacich parametrdl kigace multifraktalni analyzy, modely
s tezkymi rameny a fraéni modely v pipade anomalni difuze nebo specialfiidy zo-
becrénych entropii. V ndvaznosti na to to jsou také navrzeny agmt@vany aplikace
vySe uvedenych modelll na fin@arich trzich a v termodynamice.

Abstract

This thesis deals with selected topics from the theory ofgemsystems and econo-
physics. It is mainly focused on multifractal analysis, mmabous diffusion and theory
of generalized entropies. These models are based on semraisal concepts - scal-
ing, generalized statistics and extensivity. All of thesgits are broadly studied from
the theoretical point of view. Salient issues of each topugh as the estimation of
characteristic scaling exponents in the case of multéaabalysis, heavy-tailed and
fractional models in the matter of anomalous diffusion, peaal classes of general-
ized entropies are discussed in detail. Subsequentlyicapiphs of the aforementioned
models in financial markets and thermodynamics are predente
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Chapter 1

Introduction

A lot of systems observed in the nature - dynamical, biolalgichemical, quantum,
sociological or financial, just to name a few - exhibit a widgage of complex phe-
nomena including non-linearity, phase transitions, regswitching, sudden changes
and/or memory effects. Usually it is extremely hard to diéscdynamics of such sys-
tems within the conventional framework represented bysaotas mechanics, equilib-
rium thermodynamics and the theory of diffusion. Neveris| these theories often
serve as springboards for various generalizations andiattaps. The models which
are based on some kind of universal, generally applicalmeipites belong to the most
successful. In the thesis we particularly focus on modetet@nself-similarity, scal-
ing and the concept ajeneralized additivitylt is universality which makes the models
successful in many interdisciplinary areas including kb#oretical works as well as
practical applications. The amount of possible appliceticepresents a strong mo-
tivation for rapid development of these areas and encosrégking for new inter-
disciplinary fields, in which the aforementioned ideas aaprove effectiveness and
predicability of the models.

Let us mention a few examples of areas in which the ideas krioyvn theory of
complex systems have helped to establish new disciplingsplidation of methods
commonly used in physics on financial markets, knowreesnophysic$l, 2], was
established as a response to increased demand of readistt@asting in finance. In-
deed, financial markets are a very complex and complicats@isyand it is essential
to use appropriate sophisticated models for successfiihgga As an example of this
kind of connection we can mentionultifractal analysis Multifractals were originally
observed in dynamical systems but afterwards celebratsat guccess in financial mar-
kets. Generalized statisticE3] with generalized versions dimit theoremsand stable
distributionsserve as another example. Additionatpnextensive thermodynam[d$
have celebrated great success with the idea of replacingitaenon entropy by gener-
alized versions of entropy. As evolution of these researeasawas sometimes rather
precipitous and has brought many interesting moments, igyobsummarize some as-
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pects of historical evolution of research fields relatedheogreviously mentioned topics
and point out some of the rudimental and pioneering works.

1.1 Historical Overview

This section provides an overview of historical evolutioddhr current state of the
art of complex systems and related topics such as mult#racialysis or the theory of
generalized statistics. It is interesting that many modebased on very similar ideas,
although they might seem different on the first sight. Thathy these ideas have made
their way through the theory of complex systems. We gragugol through some of
the topics and present the most important works which hagel\acontributed to the
particular topics.

Scalingandself-similaritybelong to the most important properties of complex sys-
tems. They have been known for a very long time, since thepfea associated with
fractals. Fractal systems can be observed everywherelinataal systems. In the era
of differential calculus, i.e., in the times of Newton andl@tz, researchers believed
that most of the processes observed in nature can be debaniberms of derivatives
and integrals. However, later, it turned out that many psees cannot be described
in terms smooth trajectories. This was later confirmed bythkeery of stochastic pro-
cesses. These extremely rough processes are usually feogdifable, but they can be
described by a specific scaling rule, or, in more realistgesaby a set of scaling rules.
If the system can be described by a single dominant scalileg we refer to it as a
unifractal. On the other hand, if the system is described by a whole mootis set of
local scaling rules with different intensities, we talk abmultifractals The first works
related to the theory of scaling exponents were done by Ldétéhnd particularly by
H. .E Hurst, a British hydrologist who was the first one to sti@hg-term dependence
in hydrology [5]. Further important contributions were @oag., by H. Hentschel and
|. Proccacia [6, 7] and by the pioneer of multifractal anelya French and American
mathematician B. B. Mandelbrot [8, 9]. Since that time, nfigttals found wide ap-
plication in chemistry [10] or in finance [11]. Nowadays,ststill a hot topic with an
active community and many interesting open problems.

The theory ofgeneralized statisticis also connected to the topic of scaling expo-
nents. When a process is described by many independenticalndistributed (i.i.d.)
increments, then the infinite sum of these increments isritbest by the normal dis-
tribution. This is the result o€entral limit theoremunder the assumption of finite
variance. When we omit the assumption of finite variance, lataio the whole class
of Lévy distributionwhich are stable under the operation of convolution. Therhef
stable distributionsvas broadly studied by B. V. Gnedenko and A. N. Kolmogoroy.[12
Interestingly, these distributions are closely relatettactional calculus througfrac-
tional diffusion equationg~ractional calculus operates with generalizations oifnangy
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derivatives and integrals for non-natural, real ordersesehgeneralizations have been
studied since the nineteenth century, but the first attemyat ®ystematic description is
dated to the second half of the twentieth century. All thesghematical descriptions
lead to processes which can describe systems with suddegssj(aiso called “black
swans” [13]) more accurately. These black swans are obdefveinstance, in quan-
tum systems [14] or financial markets [15].

It is interesting that similar ideas incorporating scalemgd generalized statistics
can also be found in thermodynamics. In statistical physitsch is a link between
equilibrium thermodynamics and the theory of informatiloaye been investigated sys-
tems, in which the ordinary extensivity of variables is dged because of openness
of the system and/or information/energy flows. Such systeawe to be described in
the regime of non-equilibrium thermodynamics [16]. For soparticular cases, it is
nevertheless possible to recover some of the thermodyahprigperties by using gen-
eralized statistics. The two most important examples oegaized information mea-
sures are the Rényi entropy discovered by a Hungarian matieam A. Rényi [17] and
Tsallis entropy (also called Tsallis-Havrda-Charvatepy). Tsallis entropy was firstly
discovered in connection with the theory of informationedyences by Czech mathe-
maticians J. Havrda and F. Charvat [18] and applied to pbysicC. Tsallis [19]. These
two entropies opened a new playground for description dksys with long-range cor-
relations, open systems and multifractal systems, caltewxtensive thermodynamics

Generally, concepts based on general ideas which find tpplications in several
scientific fields open discussion about similarities of twarmre different fields and
bring new ideas adopted in other theories. That is one of thain benefits. Apart
from the aforementioned examples, let us mention for exartipd concept of path
integrals [20], which has found its applications in manydgeincluding quantum me-
chanics, solid state physics or financial markets. One o&iims of this thesis to point
out the existence of similar concepts which can be sucdissipplicable in several
fields.

1.2 Aims of the Thesis

The thesis has several targets. As outlined in the previectsoss, the thesis presents
several general concepts. To the main concepts discusdbe ithhesis belong scal-
ing, multifractals, generalized statistics, nonexteitgigand Legendre structure. It is
important to discuss their important theoretical aspestwell as to show the poten-
tial of practical applications. The thesis is mainly foadise applications in financial
markets, because such applications represent a hot toghe ifield of econophysics.
Nevertheless, we also mention other possible applicgtionsnstance applications in
thermodynamics or in models of developed turbulence. Aaltkdly, the second aim is
to cover the topics which have been investigated duringaaiststudies and to provide
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a comprehensive overview. There is usually not enough dpgmeesent some broader
perspective in the articles. All technical details or castimns to related topics have
to be omitted. Therefore, the thesis provides the optimah&s to cover all of these

interesting points, so that the reader gets a complete ieveabout the topic.

The thesis is based on several articles that have been petblikiring author’s stud-
ies or are currently in the submission process. The thesisexts all of these topics
and provides an additional space for more general perspectilamely, the results
from Ref. [21], which discusses some important technicpéeats of Diffusion entropy
analysis, are presented in Sect. 2.4. Applications to fiahiseries, done in several
papers, e.g. in Ref. [22], are presented in Sect. 5.1. R&f.dRows the application
of Double-fractional diffusion to the theory of option gng. Theoretical aspects of
Double fractional diffusion are discussed in Sect. 3.3@ @stimation on the real data
is presented in Sect. 5.2. Ref. [24] compares several impbctasses of nonextensive
generalized entropies and presents a new class of hybriopéed and corresponding
MaxEnt distributions. The results can be found in Sect.34.3.

The thesis is organized as follows: after this introducidrgpter come three theo-
retical chapters. Namely, chapter 2 covers the multifiastalysis, chapter 3 presents
several models of anomalous diffusion and chapter 4 dissyssssible generalizations
of Shannon entropy. Consequently, chapter 5 is dedicateghpbcations in finance.
The last chapter is devoted to conclusions and perspectiisof all author’s publica-
tions published or submitted during the period the doctstadies can be found at the
end of the thesis.

14



Chapter 2

Multifractal analysis

Scaling and (multi)fractals belong to the most popular emt€ in physics, chemistry,
biology and many other complex systems. This chapter briefjews the existing
mathematical framework and compares methods for estimafionultifractal scaling

exponents. We particularly discuss some theoretical éaspé&Diffusion entropy analy-
sis. At the end of the chapter, we also presents some posgiplieations of multifrac-

tals in physics.

2.1 Fractals and Self-similarity

There exist many real systems with characteristic scalioggrties and inner structure
which is determined by the scaling rules. This is often catedk with fractal prop-
erties of the system. Contrary to ordinary physical systdescribed by (systems of)
differential equations with smooth trajectories, fradgstems are systems with rough,
non-differentiable structure. When we define fractal disien, one of the necessary
conditions is that the fractal dimension of a smooth funti®the same as its topo-
logical dimension. As a consequence, a simple rule for neitog of fractal systems
can be formulated: if the fractal dimension differs fromddggical dimension, fractal
structure is incorporated in the system.

Popular examples of fractals commonly emerging in the eahelude snowflakes,
fern leaves, mountain ranges, Romanesco broccoli, ceastind many others. More-
over, fractals found their applications also in other stifierfields. Let us mention, e.g.,
astronomy and the rings of Saturn, electromagnetism anttbetgre of electric dis-
charge or biology with the structure of blood vessel [25]céwling to observations,itis
necessary to distinguish several kinds of fractals. The ngsrous argroper fractals
which obey the scaling rule for all scalddatural fractalsare fractals which follows the
scaling rule up to some particular scale determined usbgligicrostructure limitations
or by measurement accuracy. The most general type of fratatatistical fractals
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They fulfill the scaling rules only for some statistical gties. In the real systems are
usually observed the latter two types.

There exist several definitions of fractal dimension onedléht levels of mathemat-
ical rigor. We stick to the most illustrative one and sketct bther possibilities. The
most familiar is the so-calledox-countingdimension, which, as the name suggests, is
based on counting of boxes in the embedding space. Let usahsgt” ¢ R” and
let us divide the space into non-overlapping boxXesiesh, of volumé”. We count
the number of boxes which have non-empty intersection Withnd denote ad/x(1).
WhenF is a smooth curve, the number acquires the scaling¥ilg) = C1~!. We can
clearly recognize the dimension as the exponemf atSubsequently, we can generally
considerNg(l) in the form

Np(l) = c(l) 7%, (2.1)

wherec(l) is a slowly varying function of, i.e.

lim _c(al)

im0 =1 foralla>0. (2.2)

We can easily extraetr from previous equation, so

In Np(l)  Ine(l) . InNg(l)
=1
ml ' Inl 20 1/l

dp = lim (— (2.3)

[—0
which is nothing else then the definition of the box-countnagtal dimension. We have
to be aware that nothing guarantees the existence of thie Nuonetheless, in practical
applications, we are limited by the measurement precisixecution of the limit is
intractable. In these cases is the limit replaced by linegrassion ofn Ny () versus
—Inl.

More rigorous approach provides so-callddusdorff dimensionwhich is based
on [-covers. We definé-cover as a countable cover. The elements of the cover are
sets containing points which have their respective digtatcmost equal td. This
determines a class of measures define} ad’;|?, where{U,} is thel-cover (compare
with the definition of partition function in Sect. 2.2.) Faertain values of; € [0, dy)
is the measure infinite ih— 0 limit, while for ¢ € (dy, oo] tends the sum to zero. The
parameterly is therefore the Hausdorff dimension and the sum is nothsgtaan the
generalization ofD-dimensional volume for non-natural dimension. Indeedemvboth
fractal dimensions exist, they are both the same.

Many fractals can be generated trough self-similar transétions. The recursive
procedure of fractal creation is a very popular technigukthare exist dozens of meth-
ods based on simple recursive rules. Among others, Itefatettion systems or L-
systems [26] provide two examples. All these methods arecassimilarities Simi-
larity S is a transformation which just rescales the set but preseheeshape. It holds
that|S(z) — S(y)|| = ¢|lz — y]|. A self-similarobject is composed of similar copies of
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itself, therefore, it can be expressedras- | J; S;(F'), wheresS; are similarities. Fractal
dimensiond can be easily determined from equation

d =1, (2.4)

wherec; are characteristic coefficients 6f.

We can find self-similar properties not only in systems dbscr geometrically, but
also in probabilistic systems. Examples provide stocbgstcesses, random fields or
unifractal cascades. We have to slightly generalize theetof the fractal dimension
in these case. Firstly, because of probabilistic natureeétmbedding space, we should
work with probabilistic measures. These measures are lysuatiurally available in
the probability space, so it does not usually restrict ouestigations. Secondly, in
time-evolutionary systems, as e.g., stochastic systems$iave an additional structure
given by the time evolution. We have to admit that the timerdowte is conceptu-
ally different and this should be reflected when calculativegdimension in space-time
coordinate spacerft space). Additionally, there is no natural measure in tipaes
coordinate space, i.e., it is not possible (in non-relatigitheories) to mix space coor-
dinates with time and to measure the distances betWegn-points. Time is just the
parameter of the system. It can be overcome by definition -@ladled affinity, which,
loosely speaking, imposes the implicit scale ratio betwi@ae and space coordinates
which afterwards enables to define a distance on the spaeecbordinate space. Con-
sequently, this allows to define a conceptself-affinity defined as self-similarity in
space-time coordinate space with affinity.

At this point, we remind the basic fractal properties of sqmaeticular stochastic
processes. The most popular stochastic process is the Wisyeess, defined e.g., in
[27]. The scaling properties can be treated via its conaitialistribution

B 1 (x — 3)?
p(z, t|zg, to)dx = D) exp (—m) dx . (2.5)

The distribution has is invariant under the transform

Ar = aAd (2.6)

At = oAl (2.7)
Scaling parametetr cancels out and the distribution remains unchanged. Thas, w
become the scaling propetitkz| oc (At)/2. The exponent is calledurst exponentlt
is an important measure for estimation of (multi)-fractedgeerties and will be further

investigated in Sect. 2.3.1. In the following overview aresented fractal dimensions
of some familiar stochastic processes:

e sample paths of Wiener procesdift (n > 2) have dimension 2,

17



graphs of Wiener process it space have dimens@;

graphs of fractional Brownian motioi'; (¢) (see Sect. 3.3.1) im-¢ space have
dimensior2 — H.

sample paths of Lévy proceds () (see Sect. 3.3.2) have dimensianx{1, o},

graphs of Lévy process it spacemax{1,2 — é},

These processes serve often as a springboard for more copnptesses. However,
many systems cannot be completely described by procest#esné scaling exponent.
In the real systems are usually present several scalingexp®or even the whole spec-
trum of scaling exponents. Therefore, we introduce a canteg enables description
of processes with more scaling exponents.

2.2 Multifractal Analysis

For many systems are global scaling rules too restrictive. tii@ other hand, local
scaling rules can be often observed. Systems described b/ snaling exponents are
calledmultifractal systemsThese local scaling exponents are usually characteilstic
distributed for a given system and therefore can be useddssification. In multifractal
analysis is assumed that the distribution of scaling exptsnbas also some typical
spectrum of scaling exponents. This spectrum of scalingrempts is calledhultifractal
spectrumand fully characterizes the multifractal properties ofegivsystem [7]. In this
section we show an intuitive definition of multifractal Soglexponents. More rigorous
definitions based on multifractal measures can be foundie.Bef. [9].

Let us divide the space into distinct regioAs(s) depending on the typical scale
s. We suppose that there is defined a characteristic quantégcéh region. Usually, it
is the probability distributiom;. We consider that the probability distribution scales as
p; o s&. In the limit of smalls, we assume that the distribution of scaling exponents
can be expressed as a smooth function,dfe., in the form

P(a, s)da = c¢(a)s™ @ da, (2.8)

wherec(«) is a slowly varying function ofv. Scaling exponenf(«) is called multi-
fractal spectrum and is nothing else than the fractal dimoensf subset which scales
with exponenty. Hence, in multifractal analysis we assume that there avgtababil-
ity distributions. Scaling exponents of these distribnsidetermine the behavior of the
system. It is also convenient to introduce another approéchultifractal exponents
estimation. We introduce the partition functiéf{q, s), which is the analogue of its
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thermodynamical counterpart (more about multifractatriedynamics in Sect. 2.5.2).
We consider that the partition function scales with $lealing functionr(q):

Z(q,s) = Zpi<5)q = (P71 ocs7@. (2.9)

The relation to multifractal spectrum can be obtained bygging into the definition of
partition function:

Z(q,s) = /daP(a, s)p(s, ) = /da cla)s @ g2 o 57(@) (2.10)

In the limit of smalls is possible to use the steepest descent approximation., fteus
main term contributing to integral is the one with the snstlexponent. Finally, we get

7(q) = inf(ag — f(a)) = ga(q) — flalq)) (2.11)

wherea(q) is the exponent which minimizes previous expression. Thaissform is
called Legendre-Frenchel transform or convex conjugafidw properties of the trans-
form are summarized in Ref. [28]. Additionally, when we cioles differentiability of
scaling exponents, we end with classic Legendre relatitaragly

7(q) = qalq) — f(alq)), (2.12)
dr(q)
q a(q) (2.13)
g = Yel) (2.14)
dg

In this case, we can immediately write down analogous atior scaling exponent
«, because twice performed Legendre transform gives us baobriginal function.

The partition function is also closely related to Rényi eptr (which properties are
extensively discussed in Sect. 4.3.1), because

(P(s) = T,(s) = —n Z(g, ). (2.15)

The connection to Rényi entropy is important, because ibkesais to collate multifrac-
tal exponents to so-callegkneralized dimension

oL ) pi(s)! _ 7(9)
D(q) =1 : = . 2.16
(9) 30 qg—1 Ins qg—1 ( )

The generalized dimension is nothing else than scalingreeqoof2¢~!-power mean,

SO
Y/ (Pa1(s)) oc sP@ (2.17)
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Actually, it can be considered as a generalization of séwBnaension measures, as
topological dimensionsg(= 0), box-counting dimensiong(— 1) or correlation di-
mension { = 2) [6]. This provides a nice interpretation of the scalingdtion 7(¢),
which is proportional to generalized dimension and theeefoeasures the distortion
from monofractal behavior, which is represented by theeupfq) = D(q — 1).

The main issue in multifractal analysis is the problem ofiagecoefficients estima-
tion. Strictly speaking, the exponents should be extrafrtad relations in thes — 0
limit, which is in practical applications intractable, la@se we usually work with mea-
sured discrete data. The next section presents some methodsasuring the scaling
exponents.

2.3 Estimation of Scaling Exponents

Real applications demand a different approach of scalimpmeents estimation. As
discussed in previous sections, the estimation based dirsraée limit is unthinkable,
because the objects are usually not theoretical (mulijtids across all scales. They
are rather natural-fractals, with scaling laws perceptdnly up to some treshold. We
also have to face to the problem of finite amount of data whist eéhanges estimation
of relevant quantities. In practical applications, we Uisustart with some finite set of
elements{x;}¥ ,, which can be a time series, a sequence of measurementsjetc.
need to extract the scaling elements only from this limitedant of data. Because we
should make the estimation over at least a few scales, sa@sets are generally not
very suitable for such methods.

We gradually introduce some of the popular techniques fiomasion of multifractal
exponents and briefly compare their strong and weak asp®étsstart with a mono-
fractal technique calleRescaled range analysiRSA). Main reason is that it was his-
torically the first method based on the celebratkdst exponenaind also because of
its conceptual clearness. Subsequently, we discuss thdranibl version of HE called
Generalized Hurst expone(BHE). As next, we treat probably the most popular tech-
nique, calledetrended fluctuation analys{®FA) based on calculation of fluctuations
around local trends. Finally, we present thdfusion entropy analysi$DEA) based
on estimation of Rényi entropy. Apart from these methodsrglhave been developed
many other methods, among others let us mention Multiftaciaelet analysis [29].

We extensively discuss the related problems. For instastEnation of probability
distributions as histograms or estimation of the optimakidth belong to the most
important. All presented methods are demonstrated on onergional datasets, how-
ever, generalizations to more dimensions are straigh#faw
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2.3.1 Rescaled Range Analysis

Rescaled range analysis is a simple method based on estinzdtHurst exponent in
time series, introduced by H. E. Hurst [5, 30], a British hogldgist and pioneer of the-
ory of scaling exponents. The method is simply based on thestigation of range
measured on different scales. From knowledge of propeofietochastic processes
(particularly fractional Brownian motion), we deduce ttfa estimated scaling param-
eter corresponds to the Hurst exponent. Let us have a derig$,. For each partic-
ular scales, we divide the series to parts of lengthi.e., we haveX;(s) = {z;};_,,
Xo(s) = {a;}2,,,, etc. Similarly to other methods, we have to remove the ipaal
tion and scale dependence. For this end, we transform thes ¢B8r subtraction of local
means

yi = x; — X (2.18)
whereX; is the corresponding mean, e.g. foe {1,...,s} we haveX; = 3% u;,
etc. Analogously to previous notation, we havgs) = {y;};_,, and so on. For each
partj = 1,...|N/s], two quantities are calculated, nam&wgngeof the series

R;(s) = max{¥;(s)} — min{¥}(s)} (2.19)
andStandard deviation
S;(s) = M (2.20)

S

wherea - b denotes the scalar product. The rakigS is used for estimation of Hurst
exponent. We average all locA)/ S ratios to obtain the globak/ S ratio that scales as

_ L RRG
R/S(s) = /5] ; 5,(5) x s, (2.21)

Similarly to all other methods, we assume that the scalingeddence is not far from
exact scaling, i.e.R/S(s) = Ks*. Eventually, we can estimate the Hurst exponent
from doubly-logarithmic linear regression. Despite itmglicity, which can sometimes
cause improper estimations, Rescaled range analysis exthemely popular method
for detection of the characteristic scaling exponent.

2.3.2 Generalized Hurst Exponent

Morales et al. [31] introduced a method which enables to gdize Hurst exponent for
multifractal systems. It was successfully applied e.gtekt analysis [32]. The method
is slightly improved compared to thie/.S analysis and provides the whole spectrum of
exponents. The exponent is not based on estimation of Réorgehich is necessary to
work with large amount of data. Instead, the estimation geldaon so-calledtructure
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function which also scales in time with some characteristic scadirgonent. It is
defined as

K, (s) = s — il (2.22)

(lil7)

The averaging is done over indexT he averaging method is calletbving time-window
averaging. We shall note, that for= 2, the structure function is proportional to cor-
relation functionC'(s) = (z;1sz;), which corresponds to the fact that the generalized
dimension is foly = 2 equal to correlation dimension. We shall note that the denom
nator (|z;|?) is not depending on the lagand therefore does not influence the scaling
behavior. However, for largg's can the numerator lead to huge numbers and the de-
nominator tends to normalize the structure function.

TheGeneralized Hurst expone(BHE) is then defined as

K,(s) oc s7(@) (2.23)

The parameteH (¢) is constant for monofractal series and is equal to (clas$izkt
exponent. In case, whefi(q) is not constant, we obtain the Hurst exponentids$) =
H, while the other values are connected with the rest of mmattthl scaling exponents.

When investigating time series, it is also possible to uggoegntial smoothing
method, which accentuates the most recent values and ssppreast values. The
exponentially weighted average is defined as follows:

(x)* = Z WTN_j (2.24)

wherew; = wgexp (—%) Parametef represents the characteristic time decay. The
method represents an elegant and easy way to estimategseaponents. Following
method shows an alternative way of exponent estimationdo@sealculation of fluctu-
ations from local trends.

2.3.3 Detrended Fluctuation Analysis

Detrended fluctuation analys(®FA) is a method based on estimation of local linear/
guadratic/ .. .trends and measuring fluctuations from loealds. It was originally in-
troduced in Refs. [33, 34]. Similarly to R/S analysis we Ipegith subtraction of mean.

If we begin with noise-like series, i.e. the series of resujor successive differences, so
& = x;41 — 1), we have to create a aggregated series, so

7

yi=» (&-1(). (2.25)

j=1
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When we start with the serids; } Y |, we create the series of successive differences
and make the mean subtraction after that. We divide thessetie parts of lengtk and
estimate the local trendg. The local fluctuation function is then defined as

F(Vv S>2 = Z(ys(u—l)—l—i - Q;/)Q : (226)

The total fluctuation function can be calculated (similadycalculation of generalized
dimension in Sect. 2.2) asid-power mean, So

N

1/q
F(q,s) = {Nis Z[F(l/, 5)2]‘1/2} ) (2.27)

v=1

Let us assume that the Fluctuation function scales with egpt:(q), i.e. we have
F(q,s) oc s"9. Therefore, we obtain that

Ns
Z[F(l/, §)41/? o g1 (2.28)

v=1

When the seriedz;}Y , is stationary, normalized (successive differences have ze
mean) and positive, it is possible to omit the detrendingcedare, because the de-
trending procedure is in this case equivalent to subtracifdhe mean value of returns.

Correspondingly, it is convenient to rewrite the followisigm as

N N,
Z‘F(Vu 8)‘(1 = Z‘yl/s _yu(sfl)‘qa (229)
v=1 v=1

where can be recognized estimated probabilities

ps(”) = ‘yl/s - yu(s—1)| = Z fj . (2.30)

j=v(s—1)+1

Consequently, the sum of local fluctuations is equal to thtgen function
Z(g,5) =Y ps(v)? (2.31)

and therefore
Tpra(q) = qh(q) — 1. (2.32)

The method was originally constructed in mono-fractal mergor ¢ = 2. Forq = 1,
the procedure is related #®/S-analysis and Hurst exponent.

Short discussion is necessary at this place. The validith@forevious relation is
restricted by necessity of detrending procedure for géserses. From mathematical
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point of view, if the empirical probability was created frataetrended series, $0(v) =
Z;fiy(sfl)ﬂ(fj — (£)), the probability is properly defined, which means that ité$ n
a proper measure on the probability space. More discussioontained in Ref. [35].

Apart from that, the generalized dimension calculated fsmaling function is equal to

_aha) -1

o (2.33)

Dpra(q)
If the generalized dimension is a finite number, we autoraliyiobtain thath(1) = 1,
but it does not have to be true for an arbitrary series. Thagyan connected with the
detrending issue. Some authors, as e.g. [36] use an alterapproach in estimation of
generalized dimension. It is based on definitiomahulant generating functioR (¢)

7(q) = D(qg—1) — K(q) (2.34)

whereD is topological dimension. When dividing the previous egpraby (¢ — 1) we
can define theodimension function

D(q) =D —C(q). (2.35)

In case of monofractal series, i.e., when the codimensiation is equal to Hurst
exponent, we obtain the familiar relation between Hursbegmt and fractal dimension

Dp=D-H. (2.36)

We shall note that similarly to multifractal spectrum, thexists acodimension spec-
trum associated withi(¢) through Legendre transform:

c(y) = sup(gy — K(q)) - (2.37)

q

It is possible to show that working with codimension funatican partially overcome
the problems with estimation of fractal dimensions thapaesent in techniques &5 S
analysis or DFA. Alternatively, we can directly estimate grobability distributions and
therefore obtain less pathological estimation of genegdlidimension. The approach
is based on estimation of Rényi entropy. After an introdargtive briefly compare the
method with other methods discussed in this chapter.

2.3.4 Diffusion Entropy Analysis

In previous sections were presented methods that are budkscriptive statistical mea-
sures as rescaled range, mean, variance or more gengi@liyulants. In the cases
when the underlying model exhibits power-law decay in pholitst distribution due

to presence of extreme events or long-term memory, the éhieal statistics can be
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indeterminable or infinite and the empirical counterparésreot describing the theoret-
ical model correctly. Moreover, as discussed in previoutices, the above described
approaches may not work properly for every series. As a quesee, we turn our
attention to another multifractal method based on estomadf Rényi entropy called
Diffusion entropy analysjsntroduced originally by Scafetta et al. [37], in monofiac
version based on Shannon entropy, and further generalizétubng et al. [38]. The
method is based on estimation of Rényi entropy. The advaraégntropy-based ap-
proaches is that they manage working with distribution vgitaling exponents. As an
example, let us consider a probability distribution withregge scaling exponerdt This
distribution can be directly written in the form

1 x
p(z,t)de = t_5F (t_5> dz. (2.38)
To this class of distributions belong e.g. Gaussian distidim or Lévy-stable distribu-
tions (their definition and basic properties can be found ppéndix A). The scaling
exponent can be detected by calculation of differentiat{mtinuous) Shannon entropy
which is defined as

H(t) = —/]Rd:cp(x,t) In[p(z,t)] (2.39)

which is in the case of distribution with single scaling erpot equal to

1 T 1 T
Ht) = ‘/Rdl“ G F () m L—aF (t_‘sﬂ =
1
:—/RdyF(y) In [t—éF(y)]:AJrélnt. (2.40)
When the system has several scaling exponents, we can raetssspectrum by mea-

suring generalized dimension determined from Rényi egtrop

(1) = 1 i . ln/}Rdxp(:c,t)q. (2.41)

For monofractal distribution with scaling exponeris the Rényi entropy equal to

0=t e[ (3)] -
1 1

_ q_
=13 ln/Rdy sy [F (y)]" = B, +dInt (2.42)

For distributions with more scaling exponents, we gengralitain the scaling expo-
nents depending o so
Z,(t) = B, + 0(q) Int. (2.43)
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The procedure of estimation of scaling exponéfat) is straightforward: we estimate
the empirical probability distributiop from the time series, calculate the Rényi en-
tropy and extract the scaling exponents from linear regwass, (t) ~ B, + d(q) Int.
The main challenge is the estimation of probability disttibns such that the empirical
Rényi entropy is approximated optimally. This is slightifferent situation from the
ordinary procedures known from theory of histograms. Fenauposes, depending on
parameter;, we do not have to estimate ondy but also its powers, i.e?. Generally,
this is the important point for all methods based on entragiymeation, not only mul-
tifractal methods. The next section is devoted to the pregémation of probability

histograms for estimation of Rényi entropy and subsequérgpectrum.

2.4 Estimation of Rényi Entropy and d-spectrum

Estimation of entropies in general brings about severa@sghat have to be properly
discussed. The discussion covers the topics of probabibtyibution estimations, limi-
tations in estimation procedure according to the partrordéue ofq, and calculation of
optimal bin-width for estimation of probability histogramThe discussion was done in
Ref. [21] in connection with Diffusion entropy analysis tlman be also helpful in con-
nection with other methods based on estimation of RényoemgirSimilar discussions
about applicability of particular methods and all techhabetails are done for DFA in
Ref. [39] and for GHE in Ref. [31] .

2.4.1 Fluctuation Collection Algorithm

Most of the methods used for probability distribution estiron are established on the
principle of repeating experiment and law of large numbeltssets down that the
empirical probability converges to the underlying theiadtprobability distribution.
This can be a problem in the case of time series, because ohgien of time series
does not exhibit such behavior. Nevertheless, when we eooilimselves to the case
of stationarytime series, the estimation becomes tractable, becaugerdperties of
the stationary process do not depend on the particularyiposn the series. This can
be usually achieved by taking tlseiccessive differencésr returns in financial termi-
nology) §{; = x; — z,. For estimation of probability distribution, we use, as et
case of GHE, the method @hoving time-window The fluctuation functions are for
j=A{1,...,N — s} defined as

j+s

o;(s) = Z Eivs = Tjys — Tj. (2.44)

=)
The first expression is used when we work directly with ndilseseries, in the case of
walk-like (non-stationary) series, it is equivalent to bs¢h approaches. All fluctuations
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Figure 2.1: Fluctuation collection algorithm for the timaries S&P500 in 2008. From above:
a) Time series of S&P500 from January 1950 to March 2013 aiwing approximately 16000
entries.b) S&P500 for the year 2008. c) Fluctuation caltecalgorithm for the first two months
of 2008 ands = 8 days. The series is partially integrated, i.e., fluctuatomsc;(8) are
collected into the histogram (right). d) Fluctuation cotlen algorithm for the whole year 2008
for s = 64 days. This histogram was estimated independently of thtehigtogram.

are divided into equidistant regiofi§ of bin-width i (s) and the probability is estimated
as a normalized equidistant histogram

. card{j |o;(s) € K}
pils) N—-s+1 '
For multidimensional data is the procedure similar, Rytbecome hypercubes of vol-
umeh”. The choice of bin-width influences substantially the eatid histogram and

therefore itis necessary to find an optimal value of the bidihwv The algorithm is called
Fluctuation collection algorithnbbecause of its striking resemblance with diffusion of a

(2.45)
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particle over the given time period. In the case of estinmtibscaling exponents, we
need to be able to estimate the scaling behavior simultahetar several time scales.
Fig. 2.1 illustrates the fluctuation collection algorithm an example of financial time

series S&P 500. The two histograms are estimated separig¢elyn different scales

leading to different bin-widths. We need to incorporatepheallel estimation on multi-

ple scales to the calculation of optimal bin-width. Thisusss broadly discussed in the
next sections.

2.4.2 Histograms and Probability Distances

In this section we revise two classic topics of probabilitgdry, namely histograms and
distances on a probability space. Let us start with histograAn equidistant histogram
is a discrete approximation of an underlying probabilitstdbutionp(x) defined as

o0

pla) =) %Xi(x) , (2.46)

1=—00

wherey; is the characteristic function df; andp; = fK,p(:c)d:c. In practical estima-
tions, we work with finite data and the histogram is undemdta® an approximation of
underlying PDF obtained from the data, so

plx) = Nih Z vixi(x) (2.47)

whereN is the length of the datasét; } |, np is number of binsy; is the characteris-
tic function ofi-th bin K; = [0+ (1 — 1), 2 +4h] andy; is the number of elements

that fall into &;. The bin-width determines the number of bins, because d<hol

Tmax — Lmin
np = [ (2.48)
where|-] denotes the ceiling function, i.e. the smallest exceediteger. Naturally,
the ¢-th power of a histogram is equal to

nB

§(0) = 5 > o). (2.49)

i=1

Our aim is to find such a histogram which is the optimal appration of the under-
lying probability distribution with respect the Rényi emply. The natural measure of
discrepancy is the Rényi information divergence [40]:

D,pllf) = ——In /R A 59 (2)p(a) (2.50)

qg—1
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which represents the information lost (measured in Rényopg sense) when a dis-
tribution p is approximated by histogragh Forq¢ — 1, we get the famous Kullback-
Leibler information divergence [41]. Because we do not wantestrict ourselves to
one histogram, which is only one representative outcomg-times repeated joint ex-
periment, we have to introduce tbgpected Rényi information divergence

Dl = (1 [ ari @) ) | @51)
q—1 R H

where(-)4 denotes the ensemble average over all admissible histsgtamnfortunately,
working with this measure is intractable because ofltlafunction in the expression.
Therefore, we would have to really calculate the average aN@ossible histograms.
The issue can be circumvented by approximation of Rényrdesece by other statistical
distances with similar properties and yet computation@bfigtable. For this end, we
firstly approximate the logarithm using Jensen inequality

1
l—=—<lhz<z-1 (2.52)
z
and obtain that
R c R
D) < 25 [ depla) = ). (253)
- R

This is a generalization of Csiszar—Kullback inequalit2][hetween Rényi divergence
andL;-distance betweeqth powers. In Ref. [21] is shown that the constanis equal

to »
cqzxnm<{1,</;dxﬁlqcmpij) }. (2.54)

Finally, from previous inequality together with Hélder qeality we obtain that

C2 2 02
D, (p|p 2§7q(/dxﬁqx —pl(x ) Siq/dxﬁqx —p?(z)]?.
[ Dq(pl[P)] TECAUA |p%(x) — p(2)] =17 /e |p%(x) — p(a)]
(2.55)
The main advantage of using, (or L;) norm consists in the fact that the ensemble
average can be interchanged with the integral, so

(8 = p72,),, = /R Al ((x) — ()} (2.56)

and therefore ensemble averaging acts to the histogramawdily. Consequently, we
do not have to average over all frequenci{és};”, such thaty; € {1,..., N} and
> rP v; = N. We can average only over one frequengy which is a significant
simplification in calculations.
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Let us mention that it is also possible to work with the presly mentioned.; -
distance. The reason of working rather withrdistance is twofold: first, it is computa-
tionally slightly more tractable and second, most of thénarg work with L,-distance
and therefore we can compare our results with classic eekattwn from theory of
histograms. Generally, it is plausible to assume that is 1hdimensional optimiza-
tion problem (the only parameter is the bin-width) are oplinesults under previously
mentioned distance measures to similar results.

2.4.3 Dependence of Bin-width oy and Optimal Bin-width

At this place arises a natural question: is the optimal bidtlnwdepending on the Rényi
parametey or is it enough to estimate the optimal bin-width for one paeter, e.g.,
for ¢ = 1, and use it for all entropies? In the following discussionshew that it is
necessary to calculate the optimal bin-width separatelgéahg. We denoteA (z) =
p(z) — p(x). The L, squared distance between probability distribution antbgram is
equal to

o =il = [ doe) == [ dx( hquzxz )

Tomin Aq o\ 2 0o
= / dx p*( —i—Z/ dx( —%) +/ dz p*(z)

Assuming thatA(x) is sufficiently small, we can approximate the distributisn a

p(2)? = [%r + (‘11) {%}q_lmx) + O(A(2)?) (2.57)

Subsequently, the distance can be approximated as

Tmin q 1) oo
Hpq—ﬁq”%g ~ / dzp®(x) + ¢ Z([ ] Af) +/ dz p*i(z),

whereA? = [, dzA(x)?. We use the following notation
Ip? —p°l7, = AY + &) + A¥. (2.58)

The middle sumsg depends only on the choice of histogram and thereforg.owe
divide the discussion into three cases:

e ¢ < 0: the sum accentuates extremely small probabilfje¥ his can be compen-
sated by larger bin-width. However, especially for digitibns with extremely
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small probabilities it is very hard to decide whether thelyattality is zero or not,
and corresponding problem with definitiofn for ¢ < 0. Consequently, the es-
timation of Rényi entropy is extremely sensitive (ipk 0 is Rényi entropy not
a properly defined information measure; see Sect. 4.3.1jrexstl authors do not
calculate histograms for negatiys.

e 0 < ¢ < 1: the exponent in the sum is larger that, therefore the small proba-
bilities are accentuated, but not in a drastic way.

e 1 < ¢: the error is diminished, because the erropﬁ?i_l) is suppressed. Against
this is the factor>'~% which is accentuated for smai| thus it is convenient to
choose larger bin width and not to over-fit the histogram.

The previous discussion indicates that it is necessarydossdifferent bin-widths for
different values of; and one common bin-width for all Rényi parameters would not
sufficiently approximate the underlying probability distrtion.

In order to find the optimal bin-width, there have been useeérsd approaches. In
this connection it is necessary to mention the pop8targes ruld43], which is based
on estimation of histograms for binomial distributionsestimates the optimal number
of bins asng = 1 + log, N. However, this rule is good rather for data visualization,
but in case of probability distribution approximation, rhasthors prefer the approach
based onntegrated mean square error minimizatioWVe utilize the previously dis-
cussed., distance between-th powers and formulate the problem as minimization of
the term

I}]&ig/}Rdx«pq(x)—ﬁq( —Il?;loanB/ dx<(pq N‘;Lq)2> . (2.59)

%

First, the integrand, which is nothing else than Ibeal mean squared errgrcan be
rewritten as (we omit the subindey

(- ) )= (s~ (i) )+ (s =)

(2.60)
where the first term represents variances@fr) and the second term corresponds to
squared bias ofz) with respect tgp(z). In both cases, we need to calculate at first
the expectation value of!. In the theory of histograms can be easily shown that the
frequency fulfills the binomial distribution; ~ Bi(N, p;), wherep; is the probability
of i-th bin. Hence, we have to calculate the fractional momertiobmial distribu-
tion, which is not analytically possible. In the case whenhage enough statistics,
we can approximate the distribution by Gaussian distrdsugthis is a consequence of
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Central limit theoren), so Bi(N, p) ~ N (Np, Np(1 — p)). Consequently, we are able
to calculate the fractional moment as

9\~ 2129 1 oxc _ (= Np)*

which can be expressed in the closed-form in termesooffluent hypergeometric func-
tions The procedure is also presented in [21]. We have used tiobuadsnoment|z|?),
because it ensures that the results remains real. Usingddenf term approximation,
the fractional moment can be expressed as

(W) = Np! (1 + Q(qz_ D) 1]\;;1‘ + O(N‘2)> . (2.62)

With that is the local variance equal to

v vE \\°\ (1 —py) N Ly
<(thq_<thq>) >: o) < L o

(2.63)
Similarly,
) () = B i) + OV 2.64)
Naha pix) = ha pi(x . .
When calculating the integrated error, we approximate thbability p;, so foré € K;
= () anpion (5 - €) B wour. e

With this leading order approximatiors possible to show that the mean squared inte-
grated error is equal to

a2\ _ A .0. q_2 2g—1 h_2 dp?(z) ?
/Rd:c (pU(z) — pl(x))y = Nh/Rdxp (x)dx + T Rd:c (7d:c ) . (2.66)

The only dependence on the histogram parameters is nowngmgain the bin-width
h. The dependence on parameétas depicted in Fig. 2.2. When we minimize the error
with respect tdh, we obtain

. (6 Jpdepi@) N\
hq‘(NfRdxmpq(x)/de) | (2.67)

~

When we assume that the underlying model is driven by the aldistribution\/ (1, o2),
the integral converges far > % and the formula can be rewritten as

1/2
e = o N3¢/ 24y/x \/gqi_l = hip,. (2.68)
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Figure 2.2: Left: Shape of asymptotic mean squared erroy fer 1 as a function ofh (the

choice of N ando determines\/ SE(h) = % + %). Right: Plot ofp,. For largeg’s it is similar
to ¢'/3, but it starts to diverge for values closegie= 1.

For ¢ = 1 we recover the classic result of Scott [44], which is for othalues ofg
only mu_ltiplied by facto_r,oq = \G;% (the fu_nc_tion_pq IS shown in F|g 2.2). In practical
estimation, the theoretical standard deviation is reglatseempirical counterpart, so

we obtain a generalization of famili&cott rule[44]
hie = 356N, (2.69)

Alternatively, in cases when the standard deviation is ngo@d statistics (because of
distribution kurtosis, presence of heavy-tails or asynmyetve can replace the standard
deviation by a multiple of theaterquartile rangg/Q R), i.e. the difference between first
and third quartile of the distribution. The transformatamefficient is given by théQ R

of normal distribution, which is

IQR(N (1, 02)) = 2v2er fc1(1/2)0 ~ 1.3490 . (2.70)
With replaced interquartile range, the bin-width rule ipeessible as
hEP =26 IQRNp,. (2.71)

The approach is inspired by the original method of FreednmanCaaconis [45].

Wheng < 2, the integral in Eq. 2.67 does not converge for distribugioith un-
bounded support. The situation can be in principle patclyeithd assumption afun-
cated distributioni.e. distribution with finite support. Nonetheless, th®ick of the
particular distribution heavily influences the optimal fwdth and one would need to
know exactly the theoretical form of the underlying distrtion.

For comparison, when the Normal distribution is replacethieylévy-stable distri-
bution with stability parameter < 2, one immediately derives a new limit for conver-
gence of the integral in Eq. 2.67, which is

1 1

qr. > 5 +

3 T (2.72)
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Figure 2.3: Un-normalized (frequency-based) histografitkeofluctuation sums obtained from
time seriesS& P500, with s = 8, 64 and512 with bin-widthsh = 100, 10, 1, 0,1 and0, 01;
measured in units = 3 x 10* for better visualization. We can observe underfitted andfibiesl
histograms.

In the case of estimation éfspectrum, one has to estimate the Rényi entropy on several
bin-widths to be able to estimate the scaling exponent floerihear regression. Let us
have a set of characteristic scales = {s;}!”,. The particular choice of characteris-
tic scales depends on the problem, but one can find a gen&ab/hich is working in
most cases thaic = {KQZ'};Q‘;Z, wherei, .. is determined by the length of the dataset.
This choice is desirable because of two reasons: in logdlipkot, the entropies are dis-
tributed uniformly, and the complexity of algorithm remai@ (N log N). The optimal
bin-width is determined by th#tal asymptotic mean integrated squared efreo we
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Figure 2.4: Linear fits of estimated RE \s.s. The error from is from histograms distributed to
fitting procedure ob(q) spectrum.

have to optimize

tmaz 2 1— 2(17Q) 2
. q*(2m) 1o, h 1/2_—(1/2+q) . —(1+2q)
— . 2.73
%232}( NohTaT Tt (2.73)

WhereN,, = N —s;+1 ando, is the standard deviation on the scaleFrom previous
relations one immediately obtains the optimal bin-width as

S o /N,
Zimaz O_* (1+2Q)

i=1 Si

hi(S) = (24v/m) Ppy ¢ (2.74)

Unfortunately, we do not obtain the bin-width in the facted form, i.e., as the prod-
uct of p, and ag-independent part. The empirical bin-width is obtainedilsirty to
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the previous cases. To illustrate necessity of proper asitbm of histogram bin-width,
Figs. 2.3 show the histograms of one particular financiaktseries (S&P 500) es-
timated for several bin-widths. One clearly distinguistiest the histograms for too
large bin-width areunderfitted(i.e., loose too much information), while histograms
for too small bin-width areverfitted(i.e., we do not obtain enough statistics for most
bins). Moreover, Fig. 2.4 shows subsequent fit$(@f estimated from the presented
histograms. We see that the errors are transferred to speestimations, too.

2.5 Applications of Multifractals in Physics

In this section, we discuss possible applications of nmaltifal analysis into physics and
other related fields. Interestingly, the presented comscipd their applications also in
financial models. This conjunction was a cornerstone fofahmeation of econophysics,
and multifractal models still remain one of the most impotgaarts in the branch. We
focus on applications in hydrodynamics and meteorologyweped by the concept of
multiplicative cascades and the connection of multifisotdath thermodynamical sys-
tems.

2.5.1 Multifractal Cascades and Deformations

The theory of multiplicative cascades was formulated by AABImogorov in 1940 [3].

The theory was originally used in the connection with dgsn of fully developed

turbulence, however, it found many other applications gs @escription of chaotic
systems [46], or rainfalls in climatic models [47]. The thets based on assumption
that large vortices are compound of eddies on smaller sealeme characteristic way.
We define a sequence of typical scalgs> r; > ...r,. One can define a typical ratio
between two typical scales, i.é.— - < 1, sor,, = ry H;L l;. These scales define

a set of distinct regions on each scale which is denoted a$Kf}§g“{“, wherei,, .
is determined by the nature of the system. We denote a ckasdict quantity (often
energy of the system) ds. This quantity is defined by its density functiefx), so

EQ) = /EQ e(x)dx . (2.75)

In the framework of multiplicative cascades, the quanstgiefined on the typical scales
as a product omultipliers so

E, (K)) = E, [[ M., (2.76)

Jj=1

The limitn — oo should converge to the density function. Thus, the cascadefined
set of scale$; and multipliersM;. There are two classes of multiplicative cascades. In
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the first case, we assume that all multipli¢vs; ; are for all regionsk’ deterministic
functions. The constarft,, therefore represents a normalization of the quantity in the
region K°. The straightforward generalization enables to defineipligts as random
variables. The normalization is then determined by the nvehres(E, ).

Let us mention a few popular models of multiplicative cagsadn the original work
of Kolmogorov [3] was considered an isotropic distributmimultipliers, so the only
parameter of the model is the normalizatidr).,, ). The other popular examples provide
cascades with multipliers obeying log-normal distribatiG-model, where a fraction
(usually denoted as) of multipliers M ; is nonzero and the rest is equal to zero.

Let us turn the attention to another class of multiplicatt@escades which incor-
porates several characteristic scaling exponents andftinerwith a good potential to
describe multifractal systems. The definition of cascade®t on scale multipliers is
naturally predestined for modeling multifractal systermbe simplest version ahul-
tifractal cascades binomial cascadewhich serves as a springboard for more sophis-
ticated models. It is a deterministic cascade with binomalkion rule (i.e.l; = %),
when the multipliers aré 1, ; = p andM, » = (1 — p). Analogously, one could define
amultinomial cascadéor [; = % The important property is theonservatiorof the
cascade, so

> Mji=1. (2.77)
i=1

A straight generalization of binomial cascade isthierocanonical cascadevhere we
assume that multipliers and1 — p are randomly assigned t®1;; and M;,. Also
this model represents a cascade with conservation. Thewdistage of the system
is the fact that the multipliers are not statistically indegdent random variables. The
statistical independence of variables can be reanimated wie assume onbtatistical
conservationi.e., we assume only

<Z M) =1. (2.78)

If the multipliers are identically distributed, we obtguM ;) = [;. This modelis called
canonical cascadébecause the analogy with (micro)canonical ensemblesmibdy-
namics, where the conservation rules are also expresdeat @itthe strict form or in
the statistical form.

Multifractal properties can be naturally investigatednelp of codimension func-
tion defined in Sect. 2.3.3. When we assume that % i.e.,r, = 3%. We suppose that
moments of multipliers fulfill the following scaling rule

(M) o \NE@ (2.79)
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Figure 2.5: Simulation of time-dependent volatility mastbhs a multifractal cascade and com-
parison with 20-day volatility of S&P 500 index.

When we generalize the scaling rule to any positive sgathe scaling exponert'(q)
corresponds to cumulant generating function (defined in. 2e8.3). The relation to
multifractal spectrum is discussed in [36].

In one-dimensional case, the cascade definasiléifractal measurewhich can be
successfully used in modeling of multifractal systems.usehave a multifractal canon-
ical cascaden,,(z) = mo [[}_, M (zx). The cascade forms a sequence of measures, so
we have

tnla, b] = /b my,(z)dz . (2.80)

The limit = lim,,_,, ., IS defined in the natural sense of the measure theory. We
define thegime deformatioras
0(t) = pf0,¢]. (2.81)

The time deformation can bring the multifractal nature mfrocessX (¢) with a simple
scaling. The time deformation has a nice interpretation¢ckvbays that it is a transfor-
mation between two times: one, physical, objective timextémmal observer and the
second, inner time of the system. In the inner time is thege®simplyX (¢), but of an
external observer, one has to transform the internal tirteethve clock timer = 6(¢),

so the process become§(r) = X (6(¢)). In many systems, the time difference is
proportional to standard deviation of the system, so a@raly, the time deformation
can be interpreted as time-dependent standard deviatidméncial theory known as
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Figure 2.6: Example of recursive generation of multifragi@terns. The top-left figure rep-
resents the Wiener pattern with constant scaling = (At)'/2. The top-right figure shows
possible changes of Wiener pattern to obtain multifractdteons. These patterns are chosen
randomly in each step. The bottom-left pattern represdtsasulting multifractal pattern. The
difference between the Wiener pattern and a representativtfractal pattern (displayed in
bottom-right figure) generates the time deformation.

volatility) of the underlying probability distribution. As an exampkag. 2.5 shows
comparison of multifractal cascade and volatility of a ficahseries.

Alternatively, the time deformation can be created by gath@n of so-callednulti-
fractal patterns This approach was invented by B. B. Mandelbrot [48] and &eldaon
generation of patterns with typical scaling exponents. Rameple of such multifractal
pattern is illustrated in Fig. 2.6.

2.5.2 Multifractal Thermodynamics

The connection of multifractal formalism with concept oétmodynamics represents
another important interpretation of multifractal anasyand shows us possible appli-
cations in thermodynamical systems. Identification of ifralttal scaling exponents

with thermodynamical quantities was a starting point fomgnapplications in many

fields, chaotic systems are just one example [49]. It is algoaa argument for using

associated Rényi entropy in thermodynamical systems [B®%.connection to thermo-

dynamics can be established via the partition function

Z(a,s) = D _pi(s) = ) _exp(=HE)) (2.82)

i
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where E; are energies of the system. When probabilities are scabng(a) « s*,
we can immediately identify multifractal exponents witlettnodynamical quantities.
Therefore we obtain

Ei(s) = —In(pi(s)) = —a;Ins. (2.83)
Additionally, we can interpret the Rényi paramejexs
qg=2p_. (2.84)

wheref is the inverse temperature. The connection to Rényi entiogiven as

Z(q,s) = 11?\11((], s) = . i | InZ(q,s). (2.85)

The function¥(q, s), the negative logarithm of partition function, is nothirlgesthan a
multiple of thermodynamicdtee energy

F, = %ln Z(q,s) = —%\If(q, s). (2.86)

It is also connected to the escort distribution

q(g) — pi(s)
pi( ) ijg(s)

An interesting is the relation to the multifractal spectrihen we use abbreviation

~ exp(¥(q, s) — BEi(s)) - (2.87)

V=—lns, (2.88)

the function¥(q, s) can be rewritten (similarly to Sect. 2.2)

U(q,s)=— ln/da exp[(f(a) — qa)V]. (2.89)
According to stationary phase approximation we obtain that

U(q) ~ [galq) — fla(q)]V . (2.90)

From the correspondence fq) to free energy and the fact that the Legendre structure
of the thermodynamics is preserved even for the general[6aseve end with

U(q) = qUy — Sq = qa(q)V — f(a(q)V . (2.91)
Naturally, the term(q)V = «a(q) In s represents the average energy givep{ayeraging
a(q) = {a)g =) _pla; (2.92)
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and correspondingly we obtain that
Uy = (E)g=>_plE;=a(q)lns. (2.93)

The second term in Eq. (2.90) can be interpreted as the tligmamical entropy of the
system, so we obtain that

Jim (S,/V) = f(alg)) (2.94)
Jim (W(g)/V) = 7(q). (2.95)

The limit V' — oo corresponds to multifractal limi¢ — 0. As a result, we obtain
analogical relations to thermodynamic Maxwell equations

6?7((;1) - U, (2.96)
63‘1 _

These thermodynamical relations ordain the relation betvirsformational entropy and
thermodynamical entropy, because we have

:Sq—qu
g—1 =

7

" (2.98)
Forg — 1 the relation boils down to the classic relation betweenrttoetynamical and
information entropy. Apart from multifractal thermodynms, there exist other con-
cepts of thermodynamics going beyond classic scope of Sima@mtropy, for example
non-extensive thermodynamics based on Tsallis entropghwisi briefly discussed in
Section 4.3.2.

This section has presented some possible applications Iifnactals in physical
systems. Indeed, there exist many other interesting madtél models in biology, cos-
mology, theory of complex systems, etc. A nice overview gilmations of multifrac-
tals provide Refs. [25].
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Chapter 3

Models of Anomalous Diffusion

Diffusion can be observed in many processes in the natureerieless, sometimes
is the description quite complicated because of emergesnigghena, long-range cor-
relations, etc. In this chapter we go through several modieEnomalous diffusion
and discuss their properties. For this end, we also intredoecalled fractional calcu-
lus, a mathematical tool which is a generalization of orgiraalculus for non-natural
orders. Thereafter, we compare several models of genedadiéfusion. Particularly
interesting is the double-fractional model, which incagies both spatial and temporal
anomalous scaling exponents and can be expressed in seygedentations, including
kernel representation and integral representation.

3.1 Brownian Motion and Diffusion Equation

Brownian motion is the most popular and easy-to-understandel of random move-
ment. It was firstly experimentally discovered by a biolodts Brown during obser-
vation of pollen grains in the water. Since that time, it hasnd many theoretical
descriptions as well as practical applications in many sieldt only including physics,
but basically in every scientific branch, where some unuoeytés present in the system.
Theoretical description of the Brownian motion was done bistein and M. Smolu-
chowski at the beginning of twentieth century. They haventbthat the mean squared
displacement is proportional to tir{e(¢)?) o ¢. Theoretical description was done by
P. Langevin, N. Wiener and many other scientists. The masinoon mathematical
description of diffusion processes is given by the diffasgguation

op(xt) Pl

ot Ox? (3.-1)
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To determine the solution completely, it is necessary toosepsome boundary condi-
tions. The most common is to set two initial conditions

Op(z,1)
ot

When fy(z) = é(x) and f,(x) = 0 we obtain the well-known Gaussian distribution

p(z,t)]i=0 = fo(z), li=0 = fi(x). (3.2)

1 x2
H)dx = — = ) de. 3.3
p(z,t)dx \/%—DeXp( 2Dt) T (3.3)

From the mathematical point of view, Brownian motion can bealibed as a stochas-
tic process. This process is callédener proces§l] and is usually denoted a§(¢).
The process is defined as a process with stationary incremetit Gaussian distribu-
tion proportional to time. As discussed in the chapter alouitifractals, the Wiener
process has the fractal dimension equét o two or more dimensions, and therefore
the representative trajectories are not differentiables T easy to see from the scaling
relation

(\x(t—l—hf)b—x(t)b X % — 400 forh —0. (3.4)
To the important properties of Wiener process belongsMagkov propertywhich
points to the absence of long-term memory in the diffusioané€, the full information
about the process is encoded in the last observed value.sBssdied in Sect. 2.1, the
diffusion process has the scaling discovered by Einst&nAx| oc At!/2. The scaling
properties are the most important in the possible genatadizs of diffusion processes.
The resulting scaling is determined by @entral limit theoremFrom this perspective,
the Diffusion process can be seen as a limit of a discreteegsoof random variables
with independent increments and finite variance. The ddfuprocess is also impor-
tant from the perspective of entropies, because it is theBviadistribution under the
constraint of zero mean and standard deviation propoittortane, i.e. (z%(t)) = Dt.

T Brownian motion the most popular diffusion process, ndadess, models based
on Brownian motion are not able to describe certain typesysfess. It is usually
the situation when some kind of complex behavior is obseryedan example, let us
mention processes with presence of memory effects. Thisually the motivation for
using some generalizations of Brownian motion which seages springboard for more
sophisticated methods. It is possible to follow two direcs: the most common is to
allow correlations/memory effects. This can be done infglehways; nonetheless, we
introduce the approach based on scaling properties. Tlwmgquossibility is to admit
distributions with infinite variance. Models with these tdisutions can be for long
times, i.e., many independent increments, described @aldss ofLévy processes
The is a consequence Gkneralized central limit theorenWe introduce both previous
concepts and briefly show some differences. Finally, we ¢oenboth concepts in the
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model of anomalouslouble-fractionaldiffusion. Before we turn our attention to the
particular models, we have introduce a mathematical apparahich will be used in
generalizations of diffusion equations. It is based on dedim of derivative operators
for non-natural values. Because there are several exidahgitions, we choose a few
of them and compare their properties.

3.2 Fractional Calculus

In order to describe the models that generalize the diffugimocess to anomalous
regime, it is necessary to generalize the classical cadalwperators (integrals and
derivatives) of non-natural orders. These operators weidies for quite a long time,
for example the “half-derivative” was studied by LeibniThe first systematic attempts
were done by Liouville and Riemann in the first half of ninetiecentury. Presently,
the exhaustive overview of fractional calculus is given,dog Ref. [52].

We begin with the definition of fractional integral. Let usmad the well-known
Cauchy formula for repeated integration:

[ sotanan = o [, o9

Indeed, it is possible to use the similar expression for tiegirals with upper bound.
The Cauchy formula can be naturally generalized for fracti@orders

w0 f(x) =

1 /x
= [ (x—y)"" fly)dy. (3.6)
L'(v) Jao
It is apparent that the fractional integral is a linear opmraThe fractional integrals
form a semigroup, because

xojgl © 3&()3;2 = x03;1+y2 . (37)
The baseline for definition fractional derivative is theatedn between ordinary deriva-
tive and fractional integral

d
- (2307) = 40 Z2 . (3.8)

We want to generalize the relation also for negative valdes. oNevertheless, the
generalization is not unique and there are several posséys which are not equal.
We introduce a few types of fractional derivatives in thddwing sections, discuss
their main properties.
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3.2.1 Riemann-Liouville Derivative

The relation between ordinary derivative and fractionagnal is the motivation for
introduction ofRiemann-Liouvilléractional derivative as a derivative of fractional in-
tegral with exponent, € (0,1). Similarly forv,, € (n,n + 1), we use the derivative of
ordern+1 = [v, ], where[n] is the ceiling function, i.e. the smallest integer excegdin
v,. For arbitraryv, the definition of derivative is given as follows:

vl
WD) = o () (@), 39)

Unfortunately, the Riemann-Liouville fractional derixegt does not follow all properties
of ordinary derivatives. For example, the derivative iscarhmutative

20Dy 020Dy # 2Dy 0 5Dy (3.10)

which means that the derivative operator does not form th@geup. On the other
hand, for particular values af, is possible to recover some of the properties of ordinary
derivatives. For, = 0, we recover the derivative of polynomial function, because

I'(p+1)

T(pu—v+ 1):6“7”' -

OD;:L’“ =
This is not only true fog: > 0 but also for any real value. Paradoxically, the derivative
of a constant is not zero:

bt 2

Xz
rl—v)
The expression becomes zero only for natural values bécause the Gamma function
has poles for € IN. we omit the subindex in the rest of section and assume ogly th
case wher, = 0.

Another paradox is connected with fractional diffusion &ipns. In the Laplace
image, it is apparent that using Riemann-Liouville demxatdemands to impose so-
calledfractional initial conditionsi.e. values of fractional derivative in the initial point,
because:

oD/l = (3.12)

lv]
L[D;f(x);s] = [Dif](s) = s"F(s) = Y s* [Py f(w)], - (3.13)
k=0
One has to note that these initial conditions do not have &8 physical meaning,
as position and velocity in the case of ordinary derivati@&3. The previous issues
motivate the introduction of some other definitions that ld@mvercome these problems.
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3.2.2 Caputo Derivative

Due to the objectionable properties of Riemann-Liouvilezidative which limits the
applicability especially for physical systems, it is nesgy to form another definition
of fractional derivative which would recover some propestof ordinary derivatives.
The main idea is to interchange ordinary derivative operatm fractional integral in
the definition of Riemann-Liouville derivative. The resndj derivative is callecCaputo

derivativeand is defined as

DV () = ~[v]-v d[V]f(x>) _ 1 ’ f(ﬂ (y)
w0 Do f () = 4,7, ( A1z = T([v] —v) /:ro (z — y)r =T dy. (3.14)

Again, unless specified differently, we assume= 0. The Caputo derivative is more
restrictive on its domain, because the functfomas to have alt lea$t/| derivatives. On
the other hand, because the derivative is inside the idtagederivative of constant
function is now zerdD%1 = 0. Laplace transform of Caputo derivative is

- 1v)
LDy f(w);s] = [Dyf](s) = s Fs) = Y s fP(0) (3.15)

k=0

so the natural initial conditions are recovered. Caputteddhtial operators and frac-
tional differential equations of Caputo type have beenistlié.g. in Ref. [54]. The
eigenfunctions of Caputo derivative operators

"D f(z) = Af(x) (3.16)
are expressible in terms Mittag-Leffler functiongdefined in Appendix C)
iz) = E,(\x"). (3.17)

Finally, Riemann-Lioville derivative and Caputo derivatcan be connected through
the relation (the proof can be found in Ref. [55])

L]

k
LD () = o Dif () = % F®) (). (3.18)

k=0

In the next section we show yet another definition of the fomell derivative operator,
which is the most common in physical applications.

3.2.3 Riesz-Feller Derivative

Previous definitions of derivatives depend on the partrcuddue of the lower bound
of the integral, which influence the necessary initial ctinds. In many cases, as e.g.

46



in probability theory, we want to set the normalization citiods rather than particular
function values. This can be reached, when we send the pototminus infinity, so

DUf(x) = lim . Dif(x). (3.19)

The derivative operator is calldRiesz-Feller derivativeBecause of the Eq. (3.18), the
Riesz-Feller derivative operator can be alternativelyrdefiby the Caputo derivative.
It is clear, that because of the convergence of the intetiralfirst[| derivatives has
to vanish in minus infinity. Thus, the domain of such funci@mmuch smaller than in
case of Riemann-Liouville or Caputo derivative.

Riesz-Feller derivative possesses several importaneptiep. First, eigenfunctions
of Riesz-Feller derivative are exponentials function,ikny to ordinary derivatives

DY exp(Ax) = N exp(Az) . (3.20)

Second, the Riesz-Feller derivative naturally generalisgivative operator in the Fourier
space, because its Fourier transform is equal to

F f(aynl =) = [ dee [ dy(e =) 00) = (<in) T
(3.22)
Thisis shown in Ref. [53]. Particularly important are Ri¢sdler derivatives in connec-
tion with Lévy processes, because they belong to the widsisaf pseudo-differential
operators defined through the Fourier transform. Definiithese processes, also with
help of fractional calculus, is the subject of the next setti

3.3 Anomalous Diffusion

In the first section of this chapter was presented the desamipf regular diffusion pro-
cess. Nonetheless, as objected before, in the case of copnoleesses as processes
with long-term correlations, memory effects or sudden jampis necessary to use
more appropriate diffusion models that are capable to destite aforementioned phe-
nomena. In the rest of the chapter are introduced some erarapthese processes. In
is not the aim of this chapter to describe every single exgstieneralization of diffu-
sion processes (which is anyway not possible due to the em@mumber of existing
processes), but to show some possible directions and cisnesgd in the theory of gen-
eralized diffusion. We start with tHfeactional Brownian motionmodel with long-range
correlations and Hurst exponent not equa%ld’hen, we move to the class bévy pro-
cessesbased on stable distributions with power-laws. Finallg generalize the Lévy
processes to anomalodsuble-fractional diffusionis a straight generalization of Lévy
process and combines the elements of both previous modealsvey. These models
are not only important in physics, but also play a cruciat rial biology, sociology and
economics.
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3.3.1 Fractional Brownian Motion

One possible direction in diffusion process generalizaigoto introduce correlations
into the system. We have shown that for Brownian motion ageinbrements statisti-
cally independent. When we put correlations into the systeatso affects the scaling
properties. Positivite/negative correlations cause #rsiptent/antipersistent behavior
which is reflected in the different scaling exponents. Assaltethe fractal dimension of
the process changes as discussed in Sect. 2.1. From thenmaditted point of view, the
process is defined as a fractional integral of the stoch¥¢igéner measure, originally
introduced by Mandelbrot [8]

N

1 t 1
Wy (t) =377 2(dW(t)) = = / (t —s)"2dW (s). (3.22)
N(H+ 1) Jo
The Hurst exponent is defined in the inter¥ale [0, 1]. More details about definition
of stochastic measures and the stochastic calculus cambé fio Refs [56].
The definition leads to non-trivial correlations in incrertee When we calculate the

autocorrelation function of the process, we obtain

1

(Wu(t)Wr(s)) = SHT(H 1 12

(2 20— |5 — "), (3.23)

According to the parametdil, which corresponds to the Hurst exponent, we can
divide the fractional Brownian motion into three classes:
e for H € [0, %) has the process negative correlations and anti-persisaht
diffusive behavior, which causes larger fractal dimension

o for H = % we recover the Brownian motion with uncorrelated increrment

o for H € (%, 1] is the process positively correlated, super-diffusivéhvpitesence
of more trends than in case of uncorrelated Brownian motion.

These processes based on fractional Brownian motion asxaasin finance, biology,
dynamical systems and in many other fields. The fractionaiMBiran motion is only
one simple example of processes with long-term memory.eleeist a broad literature
about stochastic processes and applications to physic$5é].

Alternatively, one can assume processes with uncorrelateeiments, but with lim-
iting distributions with infinite variance. This opens amet whole class of processes
with heavy tails driven by so-called Lévy distributions. éBe processes are described
in the next section.
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3.3.2 Lévy Flights

Lévy flights are processes with uncorrelated incrementsdas stable distributions.
Lévy distributions constitute a class of distributionsadbéd as the limiting distribu-
tions of sums of i.i.d. random variables. This statementds@sequence of th&en-
eralized central limit theoremGnedenko and Kolmogorov [12] have shown that these
distributions corresponds to the class of distributionscWiare functionally invariant
under convolution. This is not surprising, because the gty distribution of sum
of two independent random variables is given by their camvoh. Unfortunately, the
probability density function is not expressible in mostesaslt is necessary to use the
Fourier representation, i.e., the characteristic fumctidccording to the analogy with
physics, the logarithm of the characteristic function iBechstable Hamiltonian The
properties of stable distributions are summarized in AppeA. Here we only mention
the most important aspects necessary to definition of Léghtii At first, the stable
Hamiltonian is expressible as

Haygiae (p) = In(e?”) = izp — o%|p|* (1 — iBsign(p)w(p, a)) , (3.24)

where the exact form of functiow is shown in Appendix A. The four parameters
of the distribution have the following meaning: € (0, 2] is the stability parameter,
which influences the shape of the distributions, the decasilsfparts and existence of
fractional momentsgz#). Parametef € [—1, 1] is the asymmetry parameter, for= 0
we obtain a symmetric distribution around its mean valuddoation parameter), for
B = +1 we have totally asymmetric distribution. This means thatdfoe (1,2) one
tail decay exponential and the other tail decays polyndy(#his shows Eq. A.12 in
Appendix). The parameters ¢ R ando € R, are location and scale parameters
and are equal to mean and variance, whenever these momesttarek are finite. In
Appendix A is also presented an alternative representafistable Hamiltonian, which
iS sometimes more advantageous to use.

There is atight relation between Lévy distributions andsRiEeller fractional deriva-
tives [58]. In Sect. 3.2.3 is shown that the representatioRiesz-Feller derivative in
Fourier image is equal to multiplication by terfr-ip)”, which is exactly the stable
Hamiltonian of totally asymmetric Lévy distribution. Thaiows to define the class of
pseudo-differential operators [53] defined in the Foumneage as

"D f1(p) = Hus(0) f(p) (3.25)

which is for 3 = +1 equal to the Riesz-Feller fractional derivative (for= 1 we have
the fractional derivative with integration fromto +0c.) Consequently, the solution of
generalized diffusion equation

% (z,t) = DY f(x,1) (3.26)
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is the Lévy distribution with stable Hamiltonid, (p).

Regarding the scaling properties of Lévy processes, it bas lalready discussed
that sample paths of Lévy processes are equahde{1,«} and for process in-t
space isnax{1,2 — i}, which is smaller thar%. This is not surprising, because pres-
ence of polynomial tails in the distribution cause large psnm the process and these
trends cause the decrease of fractal dimension. This isiitnasti to fractional Brownian
motion, because fractional Brownian motion can also aeguactal dimension larger
thang. In the case of anti-persistent behavior is necessary todate correlations to
the system.

Usually, the real systems are not described exactly by Lésggsses, but they can
be used as limiting process, especially for large timescaléus, it is convenient to
introduce other more realistic models valid also for shonescales. We introduce
a concept of double-fractional diffusion, where we use mdy ¢he spatial fractional
derivative, but also a temporal derivative operator. Thusgus wider class of diffusion
processes which possess more realistic behavior.

3.3.3 Double-Fractional Diffusion

Double-fractional diffusion is a model based on diffusiguation with fractional deriva-
tives in both spatial and temporal coordinates. The Grepation (also called funda-
mental solution) is therefore the solution of equation

(%07 + pl’Dg)) g(,t) =0, (3.27)

where~ is the degree of temporal derivative callsgeed diffusion parametet is
the degree of Riesz-Feller spatial fractional derivatiziet stable parameter. is the
diffusion parameter (forr = 2 is proportional to parametdp) and K denotes the type
of temporal fractional derivative. We consider two typesaohporal derivatives, namely
Riesz-Feller and Caputo derivative. Both diffusion equadibelong to the wide class
of pseudo-differential operators which can be expresseldn_aplace-Fourier image
(i.e. Laplace transform — s in temporal coordinate and Fourier transform- p in
spatial coordinate) as

a(s)g(p, s) — ao(s)go(p) = b(p)g(p, s) (3.28)

whereq(s) is the Laplace representation of the temporal fractionavdtvea., (s) = s7;
b(p) is the Fourier representation of spatial fractional deivea It is for Riesz-Feller
derivative equal td,(p) = Ha5(p). do(p) is the Fourier transform of the first initial
condition, which is usually equal tgy(p) = F[d(z)] = 1. Finally, ao(s) is the term
depending on the type of derivative. It is expressibleds) = s7*, wherex = 1 for
Caputo derivative and = ~ for Riesz-Feller derivative. We have to mention that for
1 < v < 2is necessary to impose another initial condition, whichsaalabther term to

50



Eqg. (3.28). In order to preserve the above presented fornowblé fractional equation
also in this case, we have to assume that the second initiditean has the following
form:

9y

a(.’lﬁ,t”t:o =0. (329)

Nevertheless, this type of initial condition is quite nalso it is reasonable to consider
only this type of diffusion . The important question is, wietthe solution of this class
of double-fractional diffusion equations is positive satth is interpretable as a Green
function. In Ref. [59] is possible to find that this is possililthe two parameters fulfill
the condition

0<y<a<?2. (3.30)

We turn our attention to a kernel representation of the forefgtal solution, which
is useful fory < 1, because in this case is the distribution a continuous popéion
of Lévy distributions. Sometimes it can also be called “satagistical’ representation
because of similarity to superstatistics. We have to ndia, this representation can
be only formal and the real superstatistics can be obsembdio case when we can
recognize two distinct characteristic time scales [60].

The kernel representation can be obtained from the Lapgtaceier image, because
according to Eq. (3.28), the Green function can be repredenith help of Schwinger
formula G = [;~ e for R(A) > 0) as

s ) = 2008)90®) [T e 6)] [a () elte®)
itr.5) = ZEIL [t fap(s)e ) (o))

The solution is given by superpositions of Lévy stable distion with stable param-
etera at different times, weighted bymearing kernel, (s, ). The double-fractional
diffusion is decomposed into set of two fractional equaditor two kernels

Shls) = —alo)nlsd.  irls0) = aols) (332)
Saln) = Bl 500 = 500) (333)

and the connection to the resulting Green function is giwethb Eq. (3.31). Now, we
discuss two kinds of considered fractional derivatives.eWive take into account the
Riesz-Feller derivative, i.es = ~, we obtain the fractional equation exactly same as in
case of Lévy stable process, but only with stable paramet@d asymmetry parameter
+1. Forv < 1 is the support of such distribution bounded to the positaié-lne. The
normalization of the Green function requires normalizatibthe smearing kernel [61],
so we have
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/ dl g (1,1) al [ ap ety [ g™ ] 0

= [ e < [T

0 r 21 p(ip)Y  pl(y)
(3.34)

Thus, the smearing kernel is for the Riesz-Feller derieatigual to

RF(4,]) = (I;(Vl)) P%Lﬂ (z%) . (3.35)

In the case of Caputo derivative is the solution slightlyfedént. According to
Ref. [59], the solution is expressible via Wright M-funatio

1 [

e =5t (1) (336

where Wright M-function can be defined as an infinite series:

S (==2)"

M,(z) = : 3.37
(2) HZ:O nI'(—vn + (1 —v)) (3:37)

The M-function has a tight relation to Lévy distribution dagise

1 T cv c

ko () = o (35) (3.38)

forv € (0,1), ¢ > 0 andx > 0. Altogether, the smearing kernel for Caputo derivative
can be represented also through Lévy stable distributidim sWightly different coeffi-

cients
t 1 t
c _
g1 (t,1) = (E) va,l (m) - (3.39)

In Appendix E are compared the properties of Riesz-Feller @aputo smearing
kernels. These two kernels are depicted in Fig. 3.1. It iessary to note that to the
main differences belongs different behavior for 0. Riesz-Feller kernel goes to zero
while the Caputo kernel does not vanish. This difference aifluences the possible
applications to the real systems. When the dependence anitiaé configuration of
the system remains strong also in later times, we use thet@dptivative, on the other
hand, if the most contributing parts are the pseudotimes ¢ we use Riesz-Feller
derivative.

For practical calculations as well as for theoretical dgsion is convenient to use
another representation of double-fractional Green fondbiased omMellin-Barnesin-
tegral representation. Eq. (3.28) has for Double-fracti@aiffusion the following form

sT=F

_ 3.40
s7 — Hoz,ﬁ (p) ( )

g(p,s) =
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Figure 3.1: Comparison Riesz-Feller kergét (7, 1) (purple line) and Caputo kernef (1)
(blue line) forr = 1.

From symmetry reasons, we can take into account only sokifar positive values of
x, because the negative part can be obtained from relatiot, t) = g, —s(—=,t), and
therefore we leave the asymmetry paramgtéormally undetermined. In Appendix C
is shown that the inverse Laplace transform of Eq. (3.40xmessible as the Mittag-
Leffler function, so

9(p.t) =t B, (Has(p)t) - (3.41)

It is advantageous to represent the Mittag-Leffler functimmugh an integral form
called Mellin-Barnes representation. It is based on thdiMetansform introduced in
Appendix B. According to Eq. (C.7), it is possible to rewiiiq. (3.41) as

el petioo D(ND(1 — ) imf sign(p) -
P )b =s) 1 s i - U S ds’
g(p, ) o /Cioo 1—‘(/{ _ 75/) |: ,u|p| exp < 9 ) T ] S
(3.42)

where0 < R(c) < 1andf = 2 — o for § = —1 anda > 1;resp.d = a—2for g = +1
anda > 1. Note that the parametéris known from an alternative representation of
stable Hamiltonian introduced in Appendix A. Inverse tfan® is straightforward,

because /
tm—l c+100 F(S/)F(l o S/) Il —S

t)=N—— — U — ds’ 3.43

9z, t) N27ria: /czoo ['(k —s)T'(sa) [ Mxo‘} ° (3-43)

whereN = TF”(;)I is a normalization constant. Finally, we apply a change ofées
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Figure 3.2: Comparison of Green functions for ordinarydgive ¢y = 1), Riesz and Caputo
derivative fory = 0.9 (slow diffusion) andy = 1.1 (fast diffusion) fora = 2 anda. = 1.6 . The

Caputo Green function highlights the peak of the distriloutiwhile Riesz-Feller Green function
has slower decay in tails of the distribution. Note that{or- 1, the green function exhibits
fast-diffusion behavior with two peaks receding in time.

as’ = s and we end with

" (z,t) =

'(x)

DIT(-2)T—s)

X

© 2ami|z| /o F(/{—

2

aS) r (@) T (1 _ %) [(_Mtﬁ/)l/a} ds.

(3.44)

We see that the Green function follows the scaling i€ (z, t) « ¢, whereQ2 = X is
calleddiffusion scaling exponeiaind plays the similar role as Hurst exponent. The main
advantage of the Mellin-Barnes representation is the fastergence of the complex
integral, which allows to calculate the values of Green fiamcmuch faster than in other
representations. In Fig. 3.2 are displayed Green funcfienseveral parameters. We
can also compare differences between Riesz-Feller andt€dptivatives.
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Chapter 4

Generalized Entropies and
Applications in Thermodynamics

Role of entropy in mathematics and physics is extremely maoo, since it is a corner-
stone for the whole statistical physics and many other plises. This chapter describes
origins of the concept of entropy and presents several plesgeneralizations that are
able to describe nonextensive systems, open systems ensystith long-range corre-
lations. We discuss the properties of the entropy for als@nted generalizations and
derive corresponding MaxEnt distributions.

4.1 Role of Entropy in Physics and Mathematics

The motivation for using entropy is coming from several stifec branches. Especially
its role in in physics, statistics and other fields is extrgm@portant. This section

summarizes the main arguments for introduction of entroylydiscusses its main prin-
ciples. We start with the classical theory of thermodynanaind information theory.

The original works of Clausius, Boltzmann and Gibbs defiresl dlassic role of en-

tropy in the theory of thermodynamics, including severahfolations of second law
of thermodynamics. Probably the most popular definitionvea on the gravestone of
Ludwig Boltzman, introduces the entropy of a microcanolecesemble as

S=kglnW, (4.1)

wherek s is the Boltzman constant andl is the number of states. The other important
definition came from the information theory where the terrinagy is defined as a mea-
sure of ignorance. In other words, it is the amount of infarorawhich is not not known
about the system. As introduced by Shannon in his paper [&@fallowed by Fein-
stein [63], the entropy can be interpreted as the minimalwarhof information needed
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in order to fully determine the system. Statistical physstablishes the relation be-
tween Boltzmann thermodynamical entropy and Shannonrnrdtonal entropy - they
are (up to the multiplicative factor) the same. The entrgglso crucial in a general
procedure proposed by Jaynes [64] which is used for caloulaf the most descriptive
distribution of a system. The procedure is caldximum entropy principléMax-
Ent) and determines the most probable probability distidiouas a distribution which
maximizes the entropy under given constraints. In othedgahe MaxEnt probability
distribution contains only information included in the sétonstraints. The important
point in the theoretical description of entropy was givenkynchin [65] who intro-
duced an axiomatic definition of entropy. We dedicate the¢ seation to the axiomatic
definition of the entropy, because it serves as a springlfoak@rious generalizations.

The concept of entropy one of the most important tools nog &l physicists but
also for many other scientists. In information theory représ the concept of diver-
gences (and derived information measures and entropi@sjmtant way how to mea-
sure distances between probability distributions a thewarhaf information encoded in
the probability distribution. Moreover, disciplines aatgttics, numerical mathematics
or theory of partial differential equations have adoptetiagy as one of the successful
methods for solution of various problems. Last but not lesgplied sciences which are
using some mathematical or physical methods for modelidgaalysis use entropy in
modeling as well. Among others, let us mention biology, stagjy, theory of networks,
econometrics or applications in finance. For all previousBntioned fields is impor-
tant to find some appropriate techniques and models thaddamiable to describe the
complex behavior appearing in the systems. Thus, we int®daveral generalizations
of classic Shannon(-Boltzmann-Gibbs) entropy in the feligy sections to be able to
deal with systems which are not isolated or are not in equuirb.

4.1.1 Axiomatic Definition of Shannon Entropy

Itis possible to define entropy in several ways. We followapproach of A. Khinchin [65],
who expressed Shannon entrofy?P) uniquely by four axioms. Let us denote the
discrete arbitrary probability distribution & = (p,...,p,). The four axioms are
formulated in the following way:

1. Continuity axiom for givenn and probability distributiofP is 7 (P) a continuous
function with respect to all its arguments.

2. Maximality axiom for givenn takesH (P) the largest value for uniform distribu-
tion,i.e.P, = (£,...,3).

n’ ‘n

3. Expansibility axiomH (py, ..., pn,0) = H(p1, - ., Pn)-
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4. Additivity axiom H(A U B) = H(A) + H(B|A),
whereH (B|A) =Y. pi aH(B|A = a;) is the conditional entropy
andP4 = (p1.a, ..., pn.4) is the distribution corresponding to experimehnt

In the last axiom, we adopt the abbreviation thatl) denotes the entropy belonging
to probability distribution?, of the random variablel. Similarly, S(A U B) is the
entropy belonging to joint distributioR 4 5. If A is independent o3, the conditional
entropy reduces t§(B).

Alternatively, Shannon [66] and other authors use sligdifierent set of axioms,
which are equivalent to Khinchin’s. The four axioms deterenuniquely the functional
form of entropy (up to normalization constant) which can keressed as

H(P) = _Zpi Inp;. (4.2)

It should be mentioned that the Shannon entropy has als@#ratonal definition [63].
The entropy (defined in terms of binary logarithm, i.®.. p; log, p;) represents the
amount of information (measured in bits) which is necessarfully determine the
system. In other words, it is the minimal number of binary YRS question that
has to be answered to reduce all uncertainty. Once can ajsithatit represents the
minimal length of binary code that uniquely describes th&teay. As a consequence,
the Shannon entropy is a measurable quantity. In the nekbeesre discussed some
of the properties of information measures particularlyeiasting for applications in
thermodynamics.

4.2 Important Properties of Entropies

Shannon(-Boltzmann-Gibbs) entropy is the most importaftrmation measure with
enormous number of applications. It is the central concepghé theory of classical
thermodynamics and statistical physics. Neverthelesaptex systems, systems with
long-range interactions or systems far from equilibriumreat be fully described within
the framework of classical thermodynamics. As a conseqghese systems require
more sophisticated description based on generalizedmeasthat go beyond standard
thermodynamics. In this section, we discuss the main pti@seof entropy classes,
which are important in description of non-equilibrium ssts. Among the other prop-
erties, we discuss additivity, extensivity and Legendrecstire of thermodynamics re-
sulting from the MaxEnt procedure. Finally, we present s@mogerties sufficient for
validity of maximality axiom. Most of the properties aredissed in general case. Only
if necessary, we restrict the discussion to some more spetases of entropies. As an
example, in some cases is advantageous to work with thealassce entropiegused
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e.g., in Ref. [67]) which can be defined in a simple form
Sy(P) =Y _ap). (4.3)

This class covers many important classes of entropiegjdinay Shannon and Tsallis
entropy. It has some nice properties. For example, the edgaaf the entropy func-
tional is equal to concavity of function because the Hessian matrix (matrix of second
derivatives) has the diagonal form

FI(S,) = ding (00, A0 (4.4)

On the other hand, not all entropies belong to the class of gatropies. Still, some
of them are expressible generalized trace entropigese. in the form

Scg(P) =G <Z g(n)) : (4.5)

For instance, Rényi entropy belongs to the class of gezedhtrace entropies.

4.2.1 Additivity versus Extensivity

Additivity and extensivity are widely discussed propestié all entropies, but there exist
some misconceptions about these two terms. One shouldyctistinguish between
them and discuss their relation [4]. First, we start with tdem additivity, which is
connected more with the informational origin of entropy. Khinchin axiomatic, the
additivity of the entropy means that

S(AUB) = S(A) + S(B|A) = S(B) + S(A|B) (4.6)

whereS(B|A) is the conditional entropy. For independent events, theopptis sim-
ply the sum of entropies of particular subsystems. Additiis the major property of
Shannon entropy and it is also valid for the Rényi entropynésally, the consequence
of additivity is that the conditional entropy is defined irthsual way

S(BJA) = S(AU B) — S(A). (4.7)

For other entropies is the formula not valid. We define for yneases a generalized
form of additivity. Tempesta [68] and other authors introédor this end a terrmom-
posability, which means that the entropy of a composed system is eXpleessterms
of entropies of its subsystems, so it is possible to write

S(AU B) = &(S(A), S(B)). (4.8)
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As an example, in Refs. [68, 69] are discussed propertiesaf general classes of en-
tropies. One particular case of the generalized additigityrepresents Tsallis entropy.
The generalized additivity is for Tsallis entropy defineqsee Sect. 4.3.2)

Sg(AU B) = 8;(A) ©q Sy(B) = S4(A) + 84(B) + (1 — q)S5,(A)5,(B) - (4.9)

The addition law can be described with help of so-callesiim,¢-deformation of addi-
tion, which is defined as

O (r,y) =@, y=c+y+ (1 —q)zy. (4.10)

Function® is nothing else than a group operation. As a consequencenthepies can
be classified with respect to its generalized additivity [&%].

Extensivity is, on the other hand, a property which is cotegevith the thermo-
dynamical properties of the system. Let us have a compousigrsyd = Ui]il A;
of not necessarily independent variables. Let us denotata space ofV variables
asW(N). If the maximality axiom holds, then the entropy becomesimakfor the
uniform distribution{1/W (N),...,1/W(N)}. We say that the entropy is extensive if

- S(W(N))

A}l_l)réo — N =Y (4.11)
wherew € (0, 00). That means that the entropy scales for large systems Yisteras
with N > 1) as

S(W(N)) x N . (4.12)

This condition ensures that the thermodynamical entropyh@ limit for largeN) is

an extensive function of its variables, i.6(aN,aFE,aV) = aS(N, E,V). Indeed,
contrary to additivity, extensivity is property dependiog the actual system, i.e. de-
pending on the state functidi’ (). When the system is compound of independent
variables with no restrictions, then the state space greywsreentially, because it holds
thatWW (N) = W(N,)W (N,) for N = N; + N,, which determines the state space vol-
ume adV (N) « u. Hence, Shannon entropy is extensive for such systems,jéeca

H(W(N)) = — Z T log W(IN) = Nlogp. (4.13)

If the state space grows not exponentially, but rather potyially, i.e., adV (N ) o« N7,
then we should use Tsallis entropy (see, e.g., Ref. [70Pabse the Tsallis entropy is
for these systems extensive:

Si—1/,(W(N)) = UipW(N) SW(N)YP7t — 1 x pN . (4.14)
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Similarly, if the state space grows subexponentially, W&(N) « V", then so-called
(S-entropyzl.vz1 pi(In p;)° represents an extensive entropy for this system.

Although some authors interchange terms additivity andresivity, it is important
to distinguish them. On the other hand, they are often tygtdhnected. Of course,
there exist nonextensive systems with additive entropyii8bn entropy for systems
with long-range correlations) and non-additive but extensystems (Tsallis entropy
for systems with long-range correlations). Indeed, thetmmosimon case is the case
of an additive and extensive system described by ShannoltZfBann-Gibbs) entropy
which leads to classical thermodynamics. Anyway, for ca@r@ystems with long-
range correlations, which are nonextensive under Shanntopy, is advantageous
to use non-additive entropies, because many thermodyaapricperties remain pre-
served.

4.2.2 MaxEnt Principle and Legendre Structure

The importance of entropy in statistical physics lies infde that the realized distribu-
tion maximizes the entropy under given constraints. Thisggple is calledMaximum
entropy principle(MaxEnt) and was firstly formulated by Jaynes [64]. The essai
the principle consists in the fact that the resulting disttion obtained from the MaxEnt
procedure contains only information included in the caasts and does not contain any
other additional information. Consequently, the parac@ntropy determines the form
of MaxEnt distribution and the constraints only change thimetric description. This
classic procedure is one of the basic techniques in statigihysics. Let us consider
a particular form of entropy, for example Shannon entropg Méaximize the entropy
with respect to the given constraints. This can be done tirdbe techniques of La-
grange multipliers. Let us restrict ourselves into the ncoshmon class of constraints,
i.e. f;(P)=0,fori e {1,...,m}. We define the Lagrange functional as

LP,AN)=GP)=\-f(P)=— ij Inp; — Z Xifi(P) (4.15)

whereG(P) is the given entropy functional and are Lagrange multipliers. The max-
imization of Lagrange function leads to set of equations:

9L(P.A) =0 forje{l,...,n}, (4.16)
Ip;
% =0 forie{l,...,m}. (4.17)
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The type of constraints determines the resulting MaxErtidigion. In all cases is
necessary to normalize the probability distribution, sodemand

> pi=1. (4.18)
j=1

When we demand only the normalization condition, we end with uniform distri-
butionp;, = % In thermodynamics, we usually impose the constraint oratlezage

energy of the system, so
> piE;=(E). (4.19)
j=1

In the case of Shannon entropy leads the condition to thekmellvn Boltzmann-Gibbs
distribution
e_BEi
p' = — e_ﬁEi [
' Z >, e P

where 7 is called partition function and is the Lagrange multiplier belonging to the
energy constraint and is connected to the temperatute kB%T As a conseguence,
we obtain typical thermodynamical relations of macroscapiantities which can be

expressed in terms of partition function and its derivative

(4.20)

InZ
U = (E)= _6;5 (internal energy) (4.21)
1
FWU,T) = 3 InZ (free energy) (4.22)
U-F .
S(U,T) = kg(InZ+pU) = —7 - (thermodynamic entropy) (4.23)

The last relation is known as the Legendre transform betwlseEnmodynamical poten-
tialsU andF', becausd’ = U —T'S. We also obtain that the temperature can be defined
as the derivative of entropy with respect to internal energy

os(u, T) 1

U =T (4.24)

The previous set of relations and the so-called Legenduetsiie of thermodynamics is
valid not only for Shannon entropy, but it is preserved foridexclass of entropies [51].
We have already observed this structure in the case of madtél thermodynamics in
Sect. 2.5.2 and we will discuss it also for nonextensivatioelynamics based on Tsallis
entropy in Sect. 4.3.2. Once we are able to calculate thdipartunction, we are able
to calculate all other thermodynamical quantities (seeRd]. [71])
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4.2.3 Concavity and Schur-concavity

Concavity is an important concept that is widely discussecbinnection with entropy
and is crucial in equilibrium thermodynamics as well as if@imation theory. At this
place, we need to distinguish between two types of concavitye first type is the
concavity of thermodynamical entrogy( £). In equilibrium thermodynamics, it is de-
manded that the thermodynamical entropy is strictly coadanction of its extensive
variables (energy, volume, number of particles, etc.)hédase of homogenous entropy
we have

S(2F)=2S(FE) > S(E — AE)+ S(E + AFE). (4.25)

Thus, the system remains in equilibrium state and existehsabsystems in inhomo-
geneous states is suppressed. More discussion is e.gf. ifYBe

In information theory ensure the concavity of entra@p/P) (together with symme-
try in all arguments) validity of the maximality axiom, i,e.

1 1
argmaxp G(P) = (n’ e n) : (4.26)
Nevertheless, concavity condition is only sufficient busihot necessary. An alterna-
tive approach, weaker than concauvity, is called Schur-aaihec([73] and it is based on
the concept omajorization[74]. We define majorization in the following way: a distri-
bution? = (py, ..., p,) is majorized by a distributio® = (¢1,...,¢,),i.e.,P < Q, if
for ordered probability vectorsy > p) > -+ > pe), r€SP.pay = pP2) = -+ = P(n)
holds

J J
Zp(k) < Zq(k) forj e {1,...,n}. (4.27)
k=1 k=1

For j = n is the inequality automatically fulfilled because of thematfization condi-
tion. A symmetric functionG(py,...,p,) is calledSchur-concavéf for all P < Q

is G(P) > G(Q) (Analogously, the function is Schur-convex if for g1 < Q is

G(P) < G(Q)). There exists also a handy criterion for Schur-concawitysymmet-
ric function is Schur-concave if for all probabilitieg p, holds

oG  0G
—p) [ — —=—] <o. _

The proof can be found in Ref. [73], together with more citeThe Schur-concavity
of entropy also ensures validity of the maximality axiom dngge it is easy show that
the uniform distributior(+, .. ., 1) is majorized by every other probability distribution.

We shall also note that for trace-class of entrogié®) = > | g(p;) is the Schur-
concavity equivalent to concavity of functiaiiz). On the other hand, other entropies,
as e.g., Rényi entropy are not concave, but one can showhiaatate Schur-concave
(see Sect. 4.3.1).
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4.3 Special Classes of Entropies

This section compares three special classes of entropiesfirst two classes, Rényi en-
tropy and Tsallis entropy (also sometimes called Tsalbis4ida-Charvat entropy, after
czech mathematicians J. Havrda and F. Charvat) are popatses extensively used by
large scientific communities. In the first chapter were disedl various applications of
Rényi entropy to multifractals. We present another impaneioperty of Rényi entropy
commonly used in information theory in description of atditsystems. On the other
hand, Tsallis entropy represents a popular descriptiomoéxtensive systems and sys-
tems with long-range correlations. Finally, the last clzedgedhybrid entropycombines
properties of two former entropies.

For each class of entropy, we show its axiomatic definititg,actual functional
form, its properties (concavity, extensivity, etc.) anttatate the MaxEnt distribution.
When necessary, we mention some other interesting probléfos the last class of
entropies, we broadly discuss the properties of MaxEntildigion and briefly sketch
the possible physical meaning of energy gaps present inlisons. Additionally, we
also show some asymptotical expansions.

4.3.1 Rényi Entropy: Entropy of Multifractal Systems

Rényi entropy was firstly introduced in 1961 by Alfréd Réngb], in connection with
distances for probability distributions. The main impaxa consists in existence of op-
erational definition, as shown in [76]. Apart from that, tidrepy has wide applications
in theory of multifractals, chaotic systems and similartegss. The Rényi entropy can
be axiomatized in a very similar way to Shannon entropy. fiststs of four axioms:

1. Continuity axiom for givenn and probability distributiorP is Z,(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom for givenn takesZ,(P) the maximal value for uniform distri-
bution.

3. Expansibility axiomZ,(ps, ..., pn,0) = Z,(p1, . . ., Pn)-

4. Rényi additivity axiomZ,(A U B) = Z,(A) + Z,(B|A),
whereZ, (B|A) = g[S, pi.4(q) 9(Z,(B|A = a,))]
is conditional entropy and4(q) = (p1,4(q),- .-, pn.a((q)) is escort distribution
corresponding to experiment. Functiong is a positive, invertible function on
0, 00) .
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These axioms lead to the functional form of Rényi entropychidan be expressed
as

1 n
L(P) =1, ) pl (4.29)
=1

When solving the four axioms, it is easy to show that the fiomcg(x) pertaining
to the conditional entropy can be only in the fogq(z) = exp[(1 — ¢)z] for ¢ >
0. Interestingly, the definition of conditional entropy caa #bone without the actual
knowledge of probability distribution, i.e., only from th@owledge of unconditional
entropies

I(B|A) =Z(AUB) —Z(A). (4.30)

Thus the last relation is valid not only for the Shannon gmtrdut also for the whole
class of Rényi entropies. Indeed, Rényi entropy is germaiadin of Shannon entropy
andlim,,; Z,(P) = H(P). Consequently, the only difference between Shannon en-
tropy and Rényi entropy is that the conditional entropy irael in a slightly different
way. Both entropies are additive and share many common giepe

Some authors, including Rényi, used an alternative axi@ragproach [17], which
differs particularly in the presence of escort distribotjaq), which are not present
in their definitions. The escort distribution has been odly used in description of
dynamical systems [49]. The escort distributjay) = p]/ >, p] is also sometimes
called “zooming distribution”, because the parameteserves as a magnifier which
accentuates different parts of distribution for differgealues o parametet. Therefore,
the escort distribution has a clear interpretation.

At this place, it is necessary to mention the recent disonssn definition of con-
ditional Rényi entropy (see e.g., Ref. [77]). Apart from thedinition arising from the
aforementioned axioms, there are several other defininboenditional entropy [78].
Nevertheless, we have to note that the definition of conaifi@ntropy is inherently
connected with the axiomatic definition and different déifoms of conditional entropies
lead generally to different properties of the entropy. Thpartance of previously men-
tioned definition of conditional entropy is in the relati@unconditional entropies. This
is important from both theoretical and practical reasonise onditional entropy can
be in this case measured without an actual knowledge of piiityadistribution, it can
be measured only on the basis of unconditional entropy nmeamnts as a difference
between entropy of the whole system and the subsystem.

Regarding the observability of Rényi entropy, it has beemwshthat it is a mea-
surable quantity [79]. This is closely related to the exiseeof an operational infor-
mational definition. Campbell [80] showed that Rényi enyrogpresents the minimal
average price of a message code when the prior occurreredssaribed by the prob-
ability distribution’? and the price is an exponential function of message codgHen

Following points summarize the most important propertigRényi entropy:
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e 7,(P) is a symmetric function of all its arguments

e 7,({1,0,...,0}) =0

e maxpZ,(P) =Z,{1/n,...,1/n}) =lnn

e H(P) < Z,(P)forqg<1andZ,(P)<H(P)forg>1

e 7,(P) is a strictly decreasing function af for every distribution. This can be
easily seen from
0Z,(P) 1

5 = 7 (P + 4 (P) <0 (4.31)

e 7,(P) is a concave function fay < 1

e 7,(P) is a Schur-concave function fgr> 0. This is easy to show with help of
criterion presented in Sect. 4.2.3, so

e p) (azq(P) B azq(P)) _ (pi —pj) (pi—” —p§“> “o. @32

opi op; >k Ph qg—1

In Fig. 4.1 is depicted Rényi entropy for several values;dbr binary system.
We can observe several aforementioned properties. Mal@ycbncavity issue and
g-monotonicity. Now, we turn the attention to the MaxEnt disition obtained by
maximization of Rényi entropy under constraints.

We discuss the MaxEnt distribution under two types of camsts: first, classic
linear average energzj p;E; = (E), and second, thg-average energy in terms of
escort distributior) _; p;(¢) E; = (E),. The Lagrange function can be written in form

L1,(P)=1,(P) -« sz‘ -3 Z pi(r)E; (4.33)

wherer is either equal td or ¢ depending on chosen averaging. In the case of linear
averaging, one obtains the equation:

q pi!

1—qZ(q)

whereZ(q) = Y. p! is the partition function. The parametercan be deduced from
normalization condition and we get= ;L. — 3(E), so end with the probability distri-
bution

—a—fE =0, (4.34)

1 3 1/(g=1)
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Renyi entropy

. . . | . . . | . . . | . . . | . . ~ X p
' 0.2 0.4 0.6 0.8 1.0

— =03 — =05 =— 0g=1 — g=2 — 0g=4

Figure 4.1: Rényi entropy for a binary system with prob&pitiistribution? = (p,1 — p). We
can recognize several important properties. Namely, tt®@nis concave only fog < 1 and
it is a decreasing function af

In the case ofj-averaging we obtain very similar equation

¢ 7 @ _
Tt O g B (B =0, (4.36)

resulting intoa = . The distribution can be expressed as

Pi = Zig L+ @ =D BE - (B (4.37)
The distribution is called-Gaussian distribution. It is a generalization of Gaussian
distribution (or Boltzmann distribution in case of energyy has power-law decay. The
distribution was described in connection with nonextemsiystems [81]. The analog
of inverse temperature (inversely proportional to staddaviation, when it exists) is
for r = 1 equal to©2; = g and forr = ¢ is equal tof2, = 8. The connection between
linear averaging ang-averaging is therefore established by rescaling of therses
temperature parameter. The functional form of the distiioLremains the same.

We have seen that the Rényi entropy is a powerful tool in tladyars of many sys-
tems, from multifractal systems to systems with power-laagays. Although it does
not belong to popular classes of entropies as e.g., clagaad entropies (defined in
the beginning of this chapter) or class pentropies (widely discussed e.g. in [82]),
it has many common properties with these two classes. Apart fhat, it possesses
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many other important properties as e.g., additivity or $a@ancavity. The next section
is devoted to another generalization of Shannon entrapy;lisallis entropy, which rep-
resents an approach to nonextensive systems with longei@rgelations and confined
state space.

4.3.2 Tsallis Entropy: nonextensive Thermodynamics and Lag-
range Correlations

Tsallis entropy (also called Tsallis-Havrda-Charvat epyr[50]) is another generaliza-
tion of Shannon entropy. It was firstly introduced in conra@cwith theory of diver-
gences by Havrda and Charvat [18]. The entropy remaineddimestime unknown
to physicists until the pioneering work of Tsallis [19]. Tkatropy was used for the
description of nonextensive thermodynamics. Since thatethave been found many
other applications of Tsallis entropy, as systems with loangge interactions, granular
systems or financial markets. From classification point efwit belongs to class of
trace entropies and also feentropies.

The difference from Shannon entropy lies in the generatinaif additivity axiom.
Tsallis entropys, (P) is defined by these four axioms:

1. Continuity axiom for givenn and probability distributiorP is S,(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom for givenn takesS, (P) the largest value for uniform distribu-
tion.

3. Expansibility axiomS,(p1, . .., pn, 0) = Sy(p1, - - -, Dn)-

4. Tsallis additivity axiomS,(AUB) = S,(A)+S,(BJA)+ (1 —¢)S,(A)S,(B|A),
wheres, (B|A) = Y, pi(a) ,(BIA = ).

Tsallis entropy can be expressed as

§y(P) = +— p (Z p? — 1) (4.38)

for ¢ > 0. There is a close relation between Tsallis entropy and Rémyopy, because

(P) = T (14 (1= )S,(P)) (4.39

Naturally, forS,(P) close to zero® is close to pure state) i§, ~ S,.
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Contrary to Rényi entropy, the conditional entropy canresimply expressed as a
difference of entropies, but we obtain different relation
S,(AUB) - 5,(4)

1+ (1= q)S(4)
Tsallis entropy is closely connected to so-calledeformed calculus. Defining the
operation ofg-addition as

5,(BJA) =

(4.40)

r@y=r+y+(1-qry (4.41)

we obtain that the entropy ig-additive, soS,(A U B) = S,(A) &, S,(B|A). ltis
possible also to definganalogs of elementary functions @exponential

efq)(x) = [L+ (1 = g)a]/79 (4.42)
and its inverse function, i.g-logarithm

0 _ 1
Ingy(x) = ¢

For ¢ — 1 we obtain the ordinary functions. Tsallis entropy can beresged in an
elegant way in terms af-deformed calculus:

Zpl Ingqy (pi) Zpl Inggy < ) (4.44)

We summarize the main properties of Tsallis entropy. Theopmtis depicted in
Fig. 4.2. To the main properties belong:

(4.43)

e S,(P) is a symmetric function of all its arguments

e S,({1,0,...,0})=0

o maxp Sy(P) =S,({1/n,...,1/n}) =Inyn

e H(P) <Z,P)<S8,(P)forq<1andS,(P)<Z,(P)<H(P)forqg>1

e S,(P) is a strictly decreasing function gffor every distribution, because

0S,(P) 1 .
g = < +Zp lnpz> (4.45)

1—g¢q

e S,(P) is a concave function for al} > 0. Because Tsallis entropy belongs to
class o_f trgce-entropies, we only investigate the funcgign = pf—j;’ Its second
derivative is

d2
dg;f ) (4.46)

68



Tsallis entrop
S(p)

0.6
0.4+

0.2

. I . . . I . . . I . . . I . . - p
0.2 0.4 0.6 0.8 1.0

— =03 — =05 =— 0g=1 — g=2 — 0g=4

Figure 4.2: Tsallis entropy for a system with probabilitgtdbution(p, 1 — p). We can observe
the concavity of the entropy and the fact that the maximaleialequal tdng,, (2). Moreover
Tsallis entropy is a monotonic function gf

Similarly to the previous section, we turn the attentionite MaxEnt distribution.
We derive the distribution again under the constraint oédinenergy averaging and
underg-average. The Lagrange function is

Ls,(P)=8,P)—ad pi—B> pilr)E;. (4.47)
In the case of linear averaging, we get the relation for podibadistribution
L -] (4.48)
qg—1
By elimination ofa we get the MaxEnt distribution in the form
1 6 1/(g—1)

In case ofj-averaging, we get the similar relation

q—1
ot = T (B (), (4.50)
resulting into the probability distribution in the form
1 5 1/(g—1)
pi = W 1+ (¢—1) % (E; — (E)y) . (4.51)
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In both cases is the distribution very similar to MaxEnt dlitions of Rényi en-
tropy, i.e., it is expressible in terms gfgaussian (or deformed Boltzman) distribution.
The only difference is that inverse temperature is equélte- resp.Q, = -
Thus, the inverse temperature is the same as in case of Fbemﬁis d|V|ded by par-
tition function. When the entropy is influenced by some pattr properties of the
probability distribution itself, the distribution is cell self-referentialand has some in-
teresting properties in connection with shifts in energgcspum [83].

One important application of Tsallis entropy is nonexteashermodynamics. The
term “nonextensive” refers to the fact that systems whiehusmually described are not
extensive, (i.e., there exist correlations in the systamhghat the state space grows
polynomially [84]). The overview and various applicationlsnonextensive thermo-
dynamics based on Tsallis entropy can be found in Refs. [#ie dornerstone of the
thermodynamical approach is the definition of partitionduon, which is in case of
Tsallis statistics equal to sum gfdeformed Boltzmann factors

n

Z(q) =) e(UE; — (E),)) (4.52)

j=1
and the probability distribution is equal gegaussian distribution

es(UE: — (E),)
Z(q)
As discussed in Sect.4.2.2, the Legendre structure of th@ynmamics remains un-

changed and therefore remain valid all relations that arngetkfrom partition function,
including

(4.53)

0S,(U,,T) 1
infas Ak L RV A 4.54
ou, T ( )

In the next section, we combine the axiomatics of Rényi arallifsentropy and
obtain the new class of entropies with interesting propstti

4.3.3 Hybrid Entropy: Overlap between Nonadditivity and Multi-
fractality

In previous sections we have met two generalizations of &brarentropy. In both
cases were the generalizations obtained by adjusting ttiééiy axiom. The Rényi
additivity axiom changes the definition of conditional ey which is defined in terms
of escort distributions. On the other hand, Tsallis adijtimxiom changes the whole
addition rule of entropies. When taken into account bothadaiitivity and multifractal
conditionality, a new class of entropies arises. The egtispcalledhybrid entropy
(D,(P)) and was firstly introduced in [85] by following four axioms:
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1. Continuity axiom for givenn and probability distributiorP is D,(P) a continu-
ous function with respect to all its arguments.

2. Maximality axiom for givenn takes theD,(P) the largest value for uniform
distribution.

3. Expansibility axiomD,(p1, . .., pn, 0) = Dy(p1, . . ., Pn)-

4. J.-A. additivity axiomD,(AUB) = D,(A)+D,(BJ|A)+(1—q)D,(A)D,(B|A),
whereD,(BJ|A) = f1[>", pi(q) f(Dy(B|A = a;))] and f is a positive and in-
vertible function o0, o).

The generalized additivity axiom combines both nonadititiend generalized con-
ditioning with the same parametgrwhich corresponds also to the parameter of escort
distribution. In Appendix E is shown the derivation of a ftinoal form of the entropy.
There are also discussed the allowable forms of funcfi@nd the uniqueness of the
solution. Hybrid entropy can be expressed in the form

1 Cea2dZa® [
PulP) =124 <e T <ZP§-) - 1) -
j=1

1 n
— 1__q (e*(lfq) 2j=1pi(@) Inp; 1) = Ing, e~ {InPqg (4.55)

We can also recognize that the functional form of entropys@sia of parts typical for
Tsallis entropy {-logarithm) and expressions typical for Rényi entrogyayerage).
First, it is necessary to discuss, which values of paramgetge obeying all axioms.
Particularly important is the maximality axiom which is dse the proof only in spe-
cial cases (see Appendix E). We have to verify if the unifonistribution actually
maximizesD,. Becausdn(,(z) andexp(x) are monotonic functions, we can treat
only (InP),. For sake of simplicity, let us make the discussion for th&ecaf binary
distribution? = (p, 1 — p). The stationary points are determined by the equation

IHnP), 1
o Zq)

—qp?(1 —p)¥t1n <1p%p) +qpT (1 —p)?In <1p%p)} =0. (4.56)

S[P =A== p) = pt(1 =)t

After substitutiony = 1%3 and a few straightforward transformations we end with

_ -yt gyt — gy
U,(y) = qlny — I =0. (4.57)
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In Ref. [24] is shown that the equatioh,(y) = 0 has forg > 1 the only one
solution, i.e.,y = 1 leading top = 3. On the other hand, fay < 1 there exist two
other solutions leading to two other stationary points.nirtbe nature of the entropy
is apparent that these two points are local maxima, vth:e% is the local minimum.
Consequently, fog < % the entropy does not fulfill the maximality axiom.

We summarize the main properties of hybrid entropy in thi®¥ahg points:

D, is a symmetric function of all arguments
D,({1,0,...,0}) =0

D,(P) >0

lim,,; D, =lim,; Z, = lim, ;1 S, = H

maxp Dy(P) = Dy({1/n,...,1/n}) =Ingynforqg > 3

H(P) <T,(P) < 5,(P) < D,(P) < Ingy nforg < 1 and
D,(P)<S,(P)<Z,(P)<H(P)<Ilnnforqg>1

D, is a strictly decreasing function of i.e., aa—lzq <0

D, is a concave function far € [1, 1]. Becausény,; is concave and nondecreas-
ing function for allg > 0, we have to treat only

2 i dInP),\> *(nP
2 () = e [( LB >q] (a8

It can be shown that in the interval € [3,1] is the second derivative always
negative, but for; > 1 there are regions, where it is positive.

D, is a Schur-concave function for ajl> % Shi et al. have shown [86] that a
subset of functions called Gini means, which can be expdasshe form

(4.59)

2ilnzx+yilny
G(q; =
(¢:2,y) eXP( pra )

is Schur-concave far > 0 andy > 0 in the intervalg > % As a consequence,
the hybrid entropy is Schur-concave in the whole region,refitdulfills the max-
imality axiom.

The entropy is depicted in Fig. 4.3 for several values.dfet us turn our attention
to the derivation of MaxEnt distribution. Similarly to preus sections, we treat two
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Hybrid entropy

I . . . I . . . I . . . I . . ) L p
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Figure 4.3: Hybrid entropy for a binary system with probi#pil®P = (p,1 — p). The entropy
does not fulfill the maximality axiom fog§ = 0.3. We observe two local maxima equalt34
given by probabilityp = 0.98 and a local minimum equal ta; 31(2) = 0.89 for p = %

types of energy averaging, i.e. linear average @faderage. The Lagrange function
reads:

Lp,(P) =Dy(P) - a Zpi — B Zpi(r)Ei . (4.60)

For the case of linear averaging we obtain that the MaxEntibligion is the solution
of the equation

(p)"~"
D (pr)
The Lagrange parametarcan be determined by multiplying the previous equation by

p; and summing up over. We get thate = —el@ Pl Plugging back into the
original equation, we obtain

a = VPl [g ((InP), — Inp;) — 1] B(E; —(E)). (4.61)

1—q a ~ qIn(—0a)
Z(q)p; " = o1 BB — () qInp; 1 Y (4.62)

The equation can be solved in terms of LamBé&rfunction (The main properties of
Lambert function are summarized in Appendix F). The resgldistribution is equal to
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1/(1-q)

o ¢ CZg - g
P [<q—1>2<q><a+5m> W( o (”aAEZ»

~1)elF)
= (_a)l/(ll_q)el/q exp {ﬁ W (—Z(Q) (4 aql) <1 + gm&-)) } . (4.63)

The second representation is a direct consequence of aefinftLambert W-function.
A few comments should be noted now. First, from the propedieLambert function
is clear that the probability is always positive. This is apgmt from the second rep-
resentation. Second, for the limit— 1, the original Boltzmann-Gibbs distribution is
recovered. Third, contrary to the previous cases, EqQ. J4l68s not have solution for
all energies, which is reflected in the fact that Lambgrfunction is not defined on the
whole domain of real numbers, but only on the intefval !, co).

In the case of = ¢, we obtain very similar equation defining the MaxEnt distrib
tion:

ap; Z(q) = V0Pl g ((InP), —Inp;) — 1] — gB(E; — (B),). (4.64)

Similarly to linear averagingy can be determined as= —e@~1{"P)« and the previous
equation becomes

Z(q) = (p)*" [q Inp; + <1 - % - % (E; — (E)@)} . (4.65)

This equation can be again solved in terms of Lambiérfunction and eventually we
arrive at a very similar distribution as in the first case:

p = {# W (M eq;{lwf@i@m}ﬂ 1/01=0)
Z(g)(¢—1) q

= exp -z (4.66)

whereg; = 1 — @2 — @ (B, — (E),).

Particularly interesting is the case, when the system igtiaddlly fulfilling mul-
tifractal scaling In this case we have some typical multifractal spectrum.ekvtihe
scales goes to zero, all scaling exponentsare dominated by the most likely value
(o) 4, while contributions of other scaling exponents have zeaotél dimension, i.e.,

have probability equal to zero. This is a consequenceuadling theorem[87]. As
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shown in the Section 2.5.2, the inverse temperature is eéqyahnd energy is equal to
E;(s) = —a;Ins. Now, applying the multifractal formalism to the equati@gng2), we
obtain the interesting relation

@00 1 glag — {a)y(e)] (1 ’ é) e (4.67)

wherea, resp. B are the Lagrange multipliers (the tilde is used to distisjuhem
from the scaling exponents) arid), = Zj p;(q)e; is related toj-mean of logarithm
of probability distribution, so

(InP), = ij(q) Inp; = ij(q)aj Ine = (a),Ine. (4.68)

Similarly to conventional thermodynamics, also in mu#tdtal case are the fluctuations

proporti.onal to square root of characteristic scalejasse- (a),| ~ \/%M The only
non-trivial scaling is obtained when
] 1
1+ = < . 4.69
q < = = (4.69)
In this case, the probability distribution can be recast as
pi ~ 14 (1 —q)(a; — (a)y) e/ (4.70)

In connection with multifractals is more conventional tti@ste the total probabil-
ity of a phenomenon with scaling exponentwhich is proportional to

Pi(a, s) oc s~ tai (4.71)

which is in the quadratic expansion equal to

(i — <Oé>q)2 1/(1-q)

Py o 1_(1_Q) 2(Aa)2 )

(4.72)
whereAq is the standard deviation around the mean value. As a coaeseguwf pre-
vious relations, we mention that the relation between Lagganultipliers is5 = g|a|.
More details can be found in Ref. [24]. In the case of linearaging we obtain af-
ter a straightforward derivation very similar results, buterms of («);. The inverse
temperature is given as= (g —1)|al.
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Apart from multifractal systems, it is also important togguhe high-temperature
and low-temperature regimes. In Appendix F are thorougisigussed the asymptotical
expansions of Lambe#l’—function. For so-called “high-temperature” expansioa,, i
whenp <« 1, it is possible to use the Taylor expansion of Lambé&rfunction and
exponential function and obtain that

1
pi~ 1= (1= QB A, B (4.73)
ith 4% — BW () * B — _Z@e=1) -1
with 61 = _QLW’ resp.ﬁq = _W wherex = —% exp (%) .

—1a
The partition function is

1/(¢=1)
} (4.74)

_ * 1/(1-q) _ 4
Z=31 - (- )E A )
The distribution obtained by the high-temperature expganis theg-gaussian distribu-
tion similar to distribution obtained by Rényi or Tsallisteapy. Similarly to Tsallis en-
tropy, the temperature is depending on the probabilityitistion, i.e.,self-referential

The situation with “low-temperature” expansion is much mmeomplicated. De-
pending on parametef, constraint parameter and the sign ofA, F/, there can arise
several different situations. The argument of Lambert fiomccan be either close to
zero, infinity, can have two possible solutions because istexce of two real branches
of complexWW—function, or does not have to exist at all. Also the resgliilistribu-
tion approximations can have form of exponential functigrGaussian distributions or
even more complicated forms of distributions. The wholewussion is realized again
in Ref. [24].

It is a challenging task to find some systems, where the hymitbpy can be suc-
cessfully applied. Lambeit’—function can be found in connection with such systems
as Lotka—Volterra models, Tonks gas or quantum systemssel$ystems are possible
candidates for application of hybrid entropy. Also muéiftal systems with long-range
interactions can be an example of system driven by hybritbpyt All these aspects
provides interesting directions for further research.
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Chapter 5

Applications in Financial Markets

In this chapter are presented applications of models dsgclig previous chapters to
financial markets. The connection between physical modeldiaancial markets has
been observed first in the beginning of twentieth centurythiework of L. Bache-
lier [88], Brownian motion was firstly applied to predictio financial markets. Still,
for many decades, the practitioners from finance did not éaceigh attention to other
disciplines and more sophisticated mathematical modelse Situation changed in
early 90’s, because there arose a new scientific field comdpimiodels familiar from
physics, which found new applications is financial mark&tse branch is calledcono-
physics The main contributions to that field are summarized in tlssit books by
E. Stanley and R. Mantegna [27], J. P. Bouchard and M. Pdt2¢rsr W. Paul and
J. Baschangel [1].

We focus on some specific applications connected to previmaetical chapters.
Firstly, the applications of multifractal models into fircaal markets have become a hot
topic. We apply the methods introduced in Chapter 2 to measuwiitifractal scaling
exponents of financial series and try to compare advantagkeprablems of each par-
ticular method. Secondly, we discuss the possibility ofl@ppons of diffusion mod-
els based on double-fractional diffusion to option priciMge compare it with classic
Black-Scholes model and the Lévy fractional model baseataily asymmetric stable
distributions and briefly discuss the possibility of apations to other types assets.

5.1 Estimation of Multifractal Spectra of Financial Time

Series
Our aim is to compare methods presented in Sections 2.3nd.discuss their applica-
bility to real complex time series. We divide the discussito several steps. First, we

illustrate the necessity of precise estimation of undagyiistograms in case of Multi-
fractal diffusion entropy analysis (MFDEA) in order to olstaelevanty-spectrum. We
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Figure 5.1: Estimated-spectra (central line) and 99% confidence intervals (shaggions) of
daily time series of S&P 500 for different values of bin-widt. For bin-width far from the
optimal width is the spectrum diminished andathe confidentervals get wider. Particularly,
for under-fitted histograms the error is most dramatic foalknis, for over-fitted histograms the

error visible for large;’s.

method optimal bin-width forg = 1 | in multiples ofu = 3 x 10~*
Scott 0.00470 14.10
Freedman-Diaconis 0.00384 12.81

Table 5.1: Optimal values dfj for different methods}; can be easily obtained from Eq. (2.68).
The results are also converted to the same units like in F8).sd that the reader can easily
compare the results with previous values.

test the two methods, i.e., Scott and Freedman-Diaconibadebn the sample time
series of daily returns of S&P 500 in time period 1950-20 i (aximately 16000 en-
tries). This is a good example of complex series with mudtgataling exponents. The
procedure of histogram estimation is depicted in Fig. 21ie Mecessity of proper bin-
width estimation is presented in Figs 2.3, resp. 2.4. Theltiag j-spectra estimated
with different bin-widths are depicted in Fig. 5.1. The un@iged histograms (too large
bin-width) contain not enough information about the timaese while the over-fitted
histograms (too small bin-width) cannot also describe erigpthe dynamics of the se-
ries due to the finite amount of measured data. For not enoaghitdis probable that
the histogram is disintegrated into a normalized counttion@nd does not recover the
proper nature of the series. This is reflected in the estunspectra, indeed. We ob-
serve that the spectra differ and also the confidence inteava different for different
values ofg. This supports the necessity ¢ddependent bin-width. Especially for too
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Figure 5.2: Left: §-spectrum for bin-widths estimated by Scott rule and FremdiDiaconis
rule. Spectra for both methods coincidence. Right: Optibiadwidths l}; for both methods.
Left y-axis displays natural units, riglptaxis compares the width to multiples of= 3 x 10~*
for comparison with Fig. 5.1

small bin-width is the spectrum deformed from the optimalecand the confidence in-
tervals are large. We have calculated the optimal bin-whalttvoth presented methods.
The values; = 1, corresponding to classic Scott, resp. Freedman-Diacoetbod are
listed in Tab. 5.1. The optimal bin-width function depergiom ¢ and optimal spectra
for both methods are shown in Fig. 5.2. Although the Scottho@testimates the op-
timal bin-width slightly larger than Freedman-Diaconisthul, the spectra practically
coincide. This is caused by the fact that the prices are redital dollars and cents and
therefore the data have finite precision. Hence, the smal@h in bin-width does not
necessarily change estimated histograms.

The second part of the analysis is to apply the methods usexbfionation of mul-
tifractal exponents to several kinds of financial assetsitberent time scales. We want
to test the robustness of each methods, discuss their iomsaand to find optimal pol-
icy when analyzing the multifractal properties of time seri The main results of the
analysis are presented in Ref. [22]. We have done the cosgmamainly betweerf-
spectrum obtained from Multifractal detrended fluctuatoralysis (MFDFA, defined
in Sect. 2.3.3) and-spectrum obtained from Multifractal diffusion entropyadysis
(MFDEA, defined in Sect. 2.3.4). There were chosen four agsethe analysis, namely
the stock index Nikkei 225 (main index of Tokyo stock exch@n@SE Composite in-
dex (main index of Athens stock exchange), IBM stock and thé¢ iMdex (implied
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Figure 5.3: Multifractal spectra of daily time series. Wesetve that multifractal exponents of
VIX differ from spectra of other series. This is caused byai#nt nature of volatility. Conse-
guently, the Hurst exponent of VIX series is noticeably lotan for other series.

volatility of S&P index), all recorded on the daily basis ahé high-frequency basis.
High-frequency data are from year 2013 and have approxiyna@9000 records and
daily data are recoded during the last 10-20 years (depegrutirparticular index) and
contain 5000-10000 entries. We also estimate Hurst expgprfespectrum obtained
from MFDFA andd-spectrum obtained from MFDEA. Fig. 5.3 shows the spectra fo
daily series and Fig. 5.4 depicts the spectra for high-feegy series. It is possible to
observe discontinuities in all spectra which can be caugetthdo presence of correla-
tions or power-laws in financial series. The discontingitiee observed in the case of
daily data of VIX and in several cases of high-frequency dathis is quite natural,
because VIX has different characteristic scaling from ttineoseries, which is given by
the nature of the index. In the case of high-frequency dagagften work with illiquid
data with calm periods and sudden jumps. Generally, we sgdlta high-frequency
data possess a richer structure of scaling exponents, whtl@se of aggregated daily
data, some scaling exponents disappear, which is expeBiechuse all methods are
based on linear regression, it is always better to combineraemethods in order to
obtain a real picture of multifractal nature of our system.
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Figure 5.4: Multifractal spectra of high-frequency dataheTata are illiquid and exhibit power-
law behavior. This is reflected in discontinuities in botledpa, mainly in the multifractal
f-spectrum.

5.2 Option Pricing Based on Double-Fractional Diffu-
sion

The first mathematically rigorous option pricing model,dxhen Brownian motion, was
published in 1973 [89] by F. Black and M. Scholes. Scholegtiogr with Merton re-
ceived later the Nobel prize in economics. The model becanepopular and most of
the finance community still use the Black-Scholes model fiirom pricing. Neverthe-
less, as discussed in chapter about diffusion, the clagsiwrBan motion does not re-
flect the complex behavior of financial markets, includirrgégumps, long-range corre-
lations or regime switching and leads to improper risk eatiom. This motivated many
scientists to generalize the Black-Scholes model and eninwore sophisticated option
pricing models which are able to model the risk more reakldity. Among others, let
us mention models based on Lévy distributions [90], trued&tévy distributions [91],
multifractal volatility [11], jump processes [15], fractial Brownian motion [92, 93]
and double-stochastic equation [94]. We focus on the apprbased on stable distri-
butions, because for systems without long-range corogiatare distributions limiting
distributions of diffusion processes [3]. As discussedéantS3.3.2, Lévy flights are so-
lutions of (spatially) fractional diffusion equations. \Wfeneralize Lévy option pricing
to double-fractional model, which brings about some moramex behavior and also
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All options
parameter Black-Scholes Lévy stable Double-fractional
o - 1.493(0.028) 1.503(0.037)
vy - - 1.017(0.019)
o 0.1696(0.027) 0.140(0.021) 0.143(0.030
agg. error| 8240(638) 6994(545) 6931(553)
Call options
parameter Black-Scholes Lévy stable Double-fractional
« - 1.563(0.041) 1.585(0.038)
0% - - 1.034(0.024)
o 0.140(0.021) 0.118(0.026) 0.137(0.020
agg. error| 3882(807) 3610(812) 3550(828)
Put options
parameter Black-Scholes Lévy stable Double-fractional
o - 1.493(0.031) 1.508(0.036)
vy - - 1.047(0.017)
o 0.193(0.039) 0.163(0.034) 0.163(0.037
agg. error| 3741(711) 3114(591) 2968(594)

Table 5.2: Estimated mean values and standard deviatiom®dél parameter&y,«y, o) and
aggregated errors of three considered models, i.e., Batioles model, Lévy stable model
and Double-fractional model. The results are presentethfee cases: estimation done for all
options and for calls and puts separately. We see that the vad@e ofy is very close to one for
all options. On the other hand, in the case of separate d&imfar call options and put options
is v larger than one.

the aforementioned regime switching between kernel model@mg-memory mode.
We test the model on European options of index S&P 500 tradé¢bvember 2008.
The price of European call option can be determined as

C(ap/,/i)(sty K, 7_) — 6—7"7‘/ dy [SteT(r—q-i—u)-i—y _ K]JrgDF(y’ 7_) _ (5.1)
R
—rT " T(r— + F(’%) etico r (%) r (1 - %) F(l - S) s
—e /Rdy [siertr=stmy _ ] o /C_m T (o) (1o o [(,HTZ)UQ} ds.

The corresponding put price can be calculated fronptiitecall partityrelation

Planw) (S5, K, 7) = Clamywy (St K, 7) — Spe™ 7 + Ke ™™™ (5.2)

Green functions and corresponding option prices are shawid. 5.5. Fora =
2 andy = 1 we recover the Black-Scholes model. The parameters playoleeof
risk redistribution parameters. In the casenothe lower the parameter means higher
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probability of drops and higher price of those options, féwieh X' < S;e 7" is higher.
On the other hand, the price is lower for options, for which> S,e~?". Similarly,
the parametety influences the temporal redistribution. Feor< 1, the options with
short expiration become more expensive and the optionsluarit expiration become
cheaper, and vice versa for> 1. This usually reflects the situation, when the actual
market evolution is hard to predict, on the other hand, timg{erm dynamics is not
affected by actual evolution.

The calibration of the model is done on the example of S&P Hfitbos traded in
November 2008. Following related works [90], we use outh&-money options to find
the set of parameters, which minimize tggregated error

(aOu Yo, UO) = arg (Il’llIl Z ‘Oa,’y,n — Omarket| . (53)
1) T Rek

The optimization is done for each trading day for three mad@lack-Scholes model [89],
Lévy stable model [90] and double-fractional model [23].cBease all values of are
close to one, the differences between particular typesrofateves are negligible, so we
use Caputo derivatives in the whole analysis. The resutpaasented in Tab. 5.2. For
comparison, for each method is also presented the aggdegate. It is obvious that
in comparison with Black-Scholes model, the latter two ni®depresent a substantial
improvement. In the case of Double-fractional model thermapment of parameters
for all options is not significant. Nonetheless, in the casseparate calibration of call
options and put options, the improvement is more significkmFig. 5.6 are presented
daily estimates of parametefs~ and the ratid)2 = ~/a, which is the scaling exponent
of Green function. Apart from the parameters is also presktiie ratio between aggre-
gated errors of Lévy stable model and double-fractionalehdd some particular days
is the difference between error of Lévy model and doubletivaal model quite large.
The second finding is that while parameterand-~ fluctuate, the scaling parameter
is more stable.

The main advantage of the double-fractional model is thegree of temporal risk
redistribution, which allows to distinguish between attshort-term risk and long-
term evolution. From the theoretical point of view, the rese “superstatistical”, slow
diffusion regime with two distinguishable time scales, dasit-diffusion mode with
long-range memory allows to describe different situatiohisis regime-switching ap-
proach is applicable in other scientific fields a could be ipbgsombined with other
similar models.
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Figure 5.5: linear plots of Green functions (top), semi4bgts of Green functions (center) and
corresponding option prices (bottom) fer= 1.8 (left) anda = 1.6 (right) and comparison with
the Black-Scholes model (grey dashed lines). There exisegmarticular choices of parameters
for which are the option prices cheaper than BS model andwdcsa.
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Figure 5.6: Estimated values of stability parametgdiffusion speed parameter scaling expo-
nentQ2 and the ratio of aggregated errors between Lévy model andlBdractional model for
each particular day. The calibration is done for all optiand for calls and puts separately. We
see that for call and put options treated separately is tipeovement of the Double-fractional
model more significant. The paramef@measures the ratio betwegrand« and corresponds
to the temporal scaling exponent, ga, t) ~ . For BS model Q = %) corresponds to Hurst
exponent of Brownian motion. The graphics shows fha&ixhibits more stable behavior than

and~.

85



Chapter 6

Conclusions and Perspectives

The thesis presented several subject matter related touthently broadly discussed
topic of complex systems. All of these models are based oy weiversal ideas of
scaling, similarity, additivity and generalized statistiWe discussed both their theoret-
ical aspects and practical applications mainly to finanuiatkets and thermodynamics.
Nevertheless, the universality of the presented modebiestanes them for further ap-
plications in physics, biology or chemistry.

The main aim in the case of multifractal analysis was to campaveral methods for
multifractal spectrum estimation. Among others, to the naiscussed models belong
Detrended fluctuation analysis and Diffusion entropy asialyWe have compared their
effectiveness in the matter of heavy-tailed data. We haediscussed technical details
of both methods and compared both methods on the real findimeeaseries for daily
data and high-frequency data. In the case of Diffusion @ytemalysis we have pointed
out that the crucial point for the proper calculation of sggilexponents is the estimation
of histogram bin-width. Too large or too small bin-widthe(i.too many boxes or too
few boxes) does not describe the underlying distributi@pprly. We have also derived
the formula for the optimal bin-width depending on the Réyiropy parametey.

In the chapter on generalized diffusion we have comparedrakexisting models
of anomalous diffusion. Some of them include long-term men{fwactional Brownian
motion) or are based on heavy-tailed distributions (Léwyhtis). We have also pre-
sented a generalization of these models based on the diffeguation with derivatives
with non-natural (or fractional) orders. The main part of tthapter was dedicated to
derivation and properties of Green functions for Doubkefional diffusion equation.
We have discussed several representations including iviBlirnes integral represen-
tation and smearing-kernel representation~for. 1. It is also possible to introduce a
novel option pricing model based on the double-fractioniision which generalizes
the Lévy-stable option pricing and introduces risk-radisition also for the time scale.

The concept of entropy is very important in statistical pbysnd thermodynamics.
By introduction of generalized entropies it is possible &aldwith non-extensive sys-
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tems and systems with heavy-tailed distributions. The twestrpopular examples are
represented by Rényi entropy and Tsallis entropy. We havesithat there is a possi-
bility of obtaining a completely new class of entropies byntining of axioms of Rényi
entropy and Tsallis entropy. This class is called Hybrid@mt. The respective MaxEnt
distribution can be expressed in terms of Lambert W-fumctiBecause Lambert W-
function is defined only on a subinterval of real numbers, amme to a conclusion that
there exist energy regions which remain unoccupied. ThegeHybrid entropy has a
potential to describe systems with energy gaps.

There are still interesting questions on the issues remguirin the case of multifrac-
tal analysis,there exist many sophisticated models basedultifractal analysis [11].
These models can be a good inspiration for further apptinatin other fields. It is
therefore interesting to compare these models and to fing ®mmmon properties of
them. Similarly, double-fractional diffusion represeatgromising model for many ap-
plications in description of biological processes or inmotogical models. In the case
of generalized entropies, one of possible directions iseioegalize the entropy clas-
sification [67, 84] to canonical ensembles and/or more ggized form of entropies.
Further applications of nonextensive thermodynamics dpubbably shed some light
on sources of nonextensivity.

Apart from the topics discussed in the thesis, there aremea closely related top-
ics that are extremely interesting and worth investigatlreg us mention, for instance,
two other applications of Rényi entropy. The firsRényi transfer entropf95]. Trans-
fer entropy is a model-free measure of information traniséween two time series and
can be used in forecasting of evolution in various systents wmiultiple time series.
The second i®oint information entropy96], a measure used in image recognition and
classification, which is uses multifractal analysis to dexthe information hidden in
images. All previously mentioned topics represent a patyfruitful background for
new ideas and for applications in new scientific fields.
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Appendix A

Basic Properties of Stable Distributions

We summarize basic properties and representations oestigdifibutions. Sometimes
are the distributions called Lévy distributions (or Léugtse distributions), after math-
ematician Paul Lévy, who studied some special examplesabfestistributions [97].

Gnedenko and Kolmogorov [12] studied the infinite sums oficam variables. In the
case of i.i.d. random variables,,, probability distributions of infinite sums

S=> a. X, by (A1)
n=1

belong to a special class of distributions. In the case, whewariance ofX,, is finite,
the Central limit theoremdetermines that the resulting distribution is Gaussiar}.[98
When we assume that the variance is not necessarily finitepteen the class of limit-
ing distributions. This class has one important propefttgytare form-invariant under
the operation of convolution. The convolution of two prottigbdistributions

p(2) = pr(2) % palz) = /R P (pale — 2)dz (A.2)

is nothing else than the probability distribution of sum wbtrandom variableX’ =
X1 + X, with probability distribution®,, respp,. Therefore, the probability is stable,
if the convolution of a distribution with itself does not aigge the functional form of the
distribution, i.e.,

[e.e]

plar1z +br) xplazz + by) = / p(ai[z — 2]+ b1) plarz + by)dl = p(az +b). (A.3)

—0o0

The last relation can be nicely reformulated in Fourier ¢famrm image. In fact, the
convolution is in Fourier image represented as product

FLf = gl(k) = FLfI(k) - Flgl(k) . (A.4)
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Thus, Fourier images of stable distributions are invariarder multiplication. From
this is possible to determine the functional form of stakilributions L, s(x) as a
four-parametric class of distribution with parameterd < a < 2, -1 < § < 1,
o > 0,z € R in thestable Hamiltonian representation

Haygias(p) = In(e?”) = izp — o%|p|* (1 — iBsign(p)w(p, a)) , (A.5)
w(p ) = { t%aﬁl(ﬁ/?f ici:ai 1 (A-6)

As already discussed in Sect. 3.3.2, each parameter haarttsupar interpretation.
Parameterg andg are location, resp. scale parameters and equal to mean vedype
standard deviation, if they exist.

Parametet is calledstability parameterlt influences the shape of the distribution,
the degree of tail decay and also existence of fractional emisn At the end of the sec-
tion we show that the distribution decayslaér|**1, except for extremely asymmetric
cases. Parametgris asymmetry parametgbecause it influences the skewness of the
distribution. From relation

La,s(x) = La—p(—7) (A.7)

is obvious that fog = 0 is the distribution symmetric around the location paramete
extreme cases, i.e., wheh= —1, the right tail (forg = 1 the left tail) does not decay
polynomially. Namely, forx > 1, it decay subexponentially

1 z \ Moo} r \ @D
Lo _1(z) ~ o= (aca) exp |[—(a —1) (Oz—ca) forx — +00.
(A.8)

Fora < 1, the support of the distribution is bounded(tex, ) for g = —1.
There exists an alternative representation of stable Hanmin, which is useful in
some applications. It can be expressed as

Heo.z.0(p) = In(e?") = izp — c[p|*e' @05 (A.9)

wherec andf are uniquely determined by parameters ands [99]. Parametef plays
analogous role as and it is bounded by conditiof#| < min{«,2 — a}. The region
of accessible values ifw, #)-plane is sometimes calldgekller-Takayasu diamondrhe
boundary of the diamond correspondsste- +1.

For the purposes of financial applications, it is importantdlculate the log-Lévy
distribution, which is the distribution of random varialtep(.X ), where X is stable
random variable. It is equal to two-sided Laplace transfofm,, 3, which exists only
for 5 = 1. Hence, forR(\) > 0 (see Ref. [100]) the logarithm of Laplace transform

can be expressed as

In{e™) = —\T — \*G* sec % . (A.10)
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Finally, we derive the asymptotic expansion of Lévy disition. We present the
case whem = 0 because of simplicity, the other cases can be derived amadhg The
probability distribution is given by the inverse Fouriearisform of its characteristic
function

17 - 17 L |
Luole) = o [ apeireie = L [y o oo 4 o
—00 0

o0

i e .
= —/dp e 72N (e”””) =—R /dp e et
27 T
0

0

We expand the exponential in the integral to the power sdaritgegrate and express the
integral in terms of” function. We therefore obtain

1 = (_’7/)11 - an ipr | __ 1 - (_’7/)11 F(an + 1)
ﬂ% [Z n! /0 dpp™e B 7T§R Z n!  (—iz)ortl
n=0 n=0
The real part can be easily expressed with help of the igentit
Nan+1) s M
R ((+i) ) = sm( 5 ) , (A.11)
so we end with the final expansion
Lo(x) = 1 i (=)' Tan+ 1) sin (Wan) (A.12)
o n! |zx|ontt 2 /7 '

v
n=1

From the previous expansion is also clear that the tailsydasa/|x|* .
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Appendix B

Mellin Transform

Mellin transform is an integral transform useful in many bggdions in physics, num-
ber theory and theory of asymptotic expansions. Mellingfanm is also used for the
Mellin-Barnes integral representations [101], which ca&ndavantageous, e.g., from
computational reasons. More details can be found in Re2][10

The Mellin transform is defined as follows:

M(fl(2) ::/ ¥ f(r)dx . (B.1)
0
Conversely, inverse transform is given by the formula
. 1 c+1i00 B
Mf)@) =5 [ (@), (B.2)

c—100

wherec is given by theMellin inversion theorenfl02].
Mellin transform is closely related to Fourier transforndawo-sided Laplace trans-
form:

Lf](z) = M[fo(=Inz)](2) (B.3)
Flfl(z) = M[fo(=Inz)](—iz). (B.4)
In other words, Mellin transform can be considered as a pliddtive version of two-

sided Laplace transform. As a consequence, the main prepeift Mellin transform
are

M(f(ax)l(s) = a™F(s) (B.5)
Mz f(2)l(s) = F(s+a) (B.6)
M(f@@))(s) = la|""F(s/a) (B.7)
Mlog z" f(x)](s) FM(s). (B.8)



As an example, the Mellin transform of exponential isfgk) > 0 equal to Gamma
function

Me™®(s) = / e ¥ e = T'(s). (B.9)
0
As a consequence, fexp(—z") we obtain
L . 1 S
Me™")(s) = =T (5) . (B.10)

Interestingly, many functions can be expressed in terms ah@a function in
Mellin image. This is a motivation for introduction of soHesl Mellin-Barnes inte-
grals. The resulting function is calleld-function In the most general form it is defined
as

Hm () = 1 /CHOO F(ag +a1s) ... (o, + ams) Dy —ers) ... T(y, — Cps)zfsds
P 270 Jerino T(B1+0b18) ... T(Bn + bys) T'(01 — dys)...T(0, — dys) '
(B.11)
The poles of'(a;+a,s) are separated from poleslofd; —b,,s). The integration is taken
between the poles in the common strip of analycity. In trasslof integrals are included
hypergeometric functions, confluent hypergeometric fiomst [103] or Mittag-Leffler
functions, as shown in Appendix C. More details about H-fiomccan be found e.g., in
book [104].
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Appendix C

Mittag-Leffler Function

Mittag-Leffler function is a class of special functions digsered by Swedish mathe-
matician G. M. Mittag-Leffler. It is a generalization of sezkclasses of functions. It
includes exponentials, hyperbolic functions, trigonamsdunctions and several other
functions. The Mittag-Leffler function is most commonly deftl as the infinite series

o0
Z'I’L

E.3(2) = i S Cl1l
5(2) ;nmw) (C.1)
for o, 5 € C, R(a) > 0, R(B) > 0 and for complex:. Particularly important is the
case wherg = 1. In this case we use notatidii, ;(z) = E,(z). The Mittag-Leffler
function incorporates several important functions, faaraple

Ey(z) = Zz" ] i . (C.2)
n=0

Ei(z) = > Z—T — ¢ (C.3)
n=0

Ey(2) = Z (;:)' = cosh(v/2). (C.4)
n=0 ’

Moreover, the relation between Mittag-Leffler functionsaadouble parameter is given
by the relation

Boa(#) = 51Ba(2) + Ea(~2) (C.5)

which is a nice generalization of a relation betweesgh function and exponentials. In
Ref. [105] are presented even more relations and it is alsashhere the relation to
hypergeometric functions.
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One of the most important properties is the fact that thedgHteffler functions are
eigenfunctions of Caputo derivative operators:

*DVE,(\") = AE,(Az"). (C.6)

Another important property of Mittag-Leffler function isitaplace a Mellin trans-
form. The Laplace transform of Mittag-Leffler function isprtant theory of integro-
differential equations, which is also case of fractionai\aggive operators [106]. It is
possible to show that the transforms are [54]

Plete!
LlEO)G) = ©.7)
MEaslol(s) = gt c8)

The second relation can be used for the Mellin-Barnes iratggpresentation, as dis-
cussed in Appendix B.
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Appendix D

Properties of Smearing Kernels

In this appendix we compare smearing kernels of Green fomgtbtained as a solution
of double-fractional diffusion equations for Caputo datixe and Riesz-Feller derivative
when~ < 1. The Green function is equal to

0 1 t
o) = [t s (5 ) ante0), 0.1

wherey (t, 1) differs according to derivative

Vet 1) = { ;(—:’2 for Riesz derivative,
K ) i

for Caputo derivative.

2 (D.2)
Iy

We are interested in the asymptotic behavior of smearingdtdéor small and large
values. First, for small values, i.e., whén- 0 and constant, the argument of the

stable distribution goes to infinity. Thus, we can use thergdgtic expansion similar

to (A.12)
1 t C(y+1)sin(my) 1
i L <l17) ~ s (2) p | forl — 0. (D.3)
Hence, For Riesz-Feller derivative is the kernel
[ D(y)I'(y + 1)sin(my)
) ~ — for I : D.4
91 ( ’ ) 72y CoS (%) orl—0 ( )
On the other hand, for Caputo derivative we obtain a non-zaiee for/ = 0, namely
1\ T'(y) sin(m7)
“t,0) = | — | - "". D.5
g (t,0) v cos () (D-5)

In case of asymptotic expansion flor» oo, the argument of the stable distribution
goes to zero. According to Ref. [107], we have

L, q(x) ~ 147:15_1_ATW exp (—Bvx_’\V) forx — 07, (D.6)
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with A\, = ﬁ and~-dependent constants,, B,. Thus, the asymptotic behavior can
be described as

GRF(7,1) ~ CRF (1) A, 170 exp (—B,YD(T)zﬁ) forl — 400,  (D.7)
respectively
g€ (7, 1) ~ CO (1) A, 17 L exp (_B,YD(T)zﬁ) forl = +00.  (D.8)

Normalization factor<>' (1), resp. C“(7) can be determined from previous expres-
sions. Both kernels are depicted in Fig. 3.1.
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Appendix E

Derivation of Hybrid Entropy from
J.-A. Axioms

In this appendix we present the main steps of derivation bfidyentropy from J.-A.
axioms. The proof was firstly published in [85], togetherhnliroad discussion. The
proof follows the Khinchin machinery firstly used by himstdfderive the functional
form of Shannon entropy.

Let us denoteD(1/r,...,1/r) = L(r). From expansibility axiom and maximality
axiom we immediately obtain

1 1 1 1 1 1
£(r) D(r’ ’r) D(r’ ’T’O)_D(r+1’ ’r+1) £ln+1),

(E.1)
i.e., L(n) is a non-decreasing function of By repeated application of the additivity
axiom to i.i.d. variablesi(™ with uniform distribution(1/r,...,1/r), we obtain that

DAV UAP U UA™) =L(™) = (TID (1—q)*'DH(AW)
k=1

1

- =4 (14 (1 =q)L(r)™ - 1](E.2)

The equation can be extended farc R*. Afterwards, we take the derivative of both
sides w.r.t.n and setn = 1, so

(1—q)dL dr

— , E.3
(14+(1=¢)L)In(1+(1—¢q)L)] rinr (E-3)

The general solution of this equation can be found in the form
L(r) = Ly(r) = — (r@ —1), (E.4)

I—gq
97



where integration constantq) has to be determined. Because §or 1, the £L(r™) is
equal tomL(r), and therefore:(1) = 0. Furthermore, monotonicity of(r) requires
conditionc(q)/(1 — ¢q) > 0. Itis clear that the functional form of(r) corresponds to
the form of Tsallis entropy. Indeed, in microcanonical enske description gives the
hybrid entropy the same description as Tsallis entropy.difierence is in the different
definition of conditional entropy, i.e. the canonical enb&description.

In order to proceed, let us consider a special example of gperaments with out-
comesA = (aq, ..., a,) and distributionPs = (p1,...,p,) andB = (by,...,b,) and
distribution@p = (¢1, - - -, ¢n). Let us assume tha, are rational numbers, 39 = %‘“
whereg = >"7_, g,. We assume that = g, so the experimenB hasg possible out-
comes. The dependence®to A is chosen so that if; happens, then all outcomgsh
groupb, happen with equal probability/ g, and other outcomes have zero probability.
Therefore,

D(B|A=ar) =D(1/gk, .-, 1/9x) = Lg(gk) , (E.5)

and the additivity axiom implies that

D(B|A) = (Z or(q ) . (E.6)

On the other hand, the entropy for joint experiménty B can be easily determined,
because the joint probability distribution is

D1 pP1 D2 b2 Pn Pn
R=Apeq1} = {—,...,— =,....,—,...,—,....,—} = {1/g,...,1/g} (E.7)
{ | } {91 91 92 92 In gn} { / / }

Vv vV vV
g1 X g2 X gn X

SoD(AU B) = L,(g). Itis now straightforward to compare both representations
of joint entropy given by additivity axiom and plug in the forobtained in Eq. (E.4).
Consequently, we obtain the functional equation

D(A) (1 +(1-qf (Z 0e(q)f (Lq(pr)[1+ (1 = q)Ly(9)] + Cq(g))>>

= L4(9) - ! <Z or(@) f (Lq(pe)[1 + (1 — ¢)Ly(9)] + Eq(Q))) . (E.8)

Defining fi. 5 (x) = f(—ax + ) anda = [1 + (1 — q)L,(g)], we get
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Fiactey (o 06(0) fra.cte) (—L(0r)))
1—(1- Q)f(;,lz(g)) (Zk Qk(Q)f(a,Lq(g))(—E(pk))) .

When we reformulate the entropy in terni$l/p;), which represents an elementary
information ofa,

D(A) = (E.9)

o Lq(l/pk)
) = T, () (£19
When we define
9x) = fla,ci) <ﬁ) ) (E.11)
the entropy can be written as
D(A) =g (Z or(0)9(L, (1/pk))> - (E.12)
k

Moreover, if we set in the definition of conditional entrogy= B, then we get

D(A) =~ (Z k(9)f(Lq (1/pk))> : (E.13)

. Because the left-hand sides are the same, so have to thdagt sides. According to
[75], the two quasi-linear means are the same if and onlyeif tiolmogorov-Nagumo
functions are linearly related

_ —z+y _
o) = £ () =0, @) + 040, (E.14)
By definingy(z) = f(x) — f(0), we end with
o (Tt ) = aeta) + o) E.15)
In Ref. [24] is shown that the only non-trivial class of sabuis is
1
o(x) = - In[l1+ (1—q)z]. (E.16)
« is a free parameter. When inserted back into Eoli3,canceled and we end with
1 1
— = (D Xrek@npr _ 1) — —c(q)on(q) _
D,(A) . (e 1) — (E[(pk) 1)E.17)

From additivity axiom we finally obtain that(¢q) = 1 — ¢q. As discussed before, we
have used the maximality axiom only in certain cases, i.ethfe functionZ(r), and it
is necessary to verify additionally the validity of maxintyabxiom for eachy.
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Appendix F

Lambert W-function

Lambert W-function is defined as the complex inverseest It has been firstly defined
by Lambert in eighteenth century. Since that time it has doorany applications in
pure mathematics, hydrodynamics, quantum theory and ntaey fields. The Lambert
W-function has many interesting properties in both real emchplex domain and we
discuss some of them in the next lines. The Lambert W-fundfi@ z) is defined from
equation

z=W(z)e"®) forz € C. (F.1)

In the complex plane has the previous equation an infiniteburof solutiongVy(z)

for everyz # 0. Nevertheless, for real arguments we observe only two besof real
solutions. From the theory of branch cuts (more details eafobnd e.g. in Ref. [108])
we have the principal cdt/y(z), which exists on the intervé-1/e, o) and the branch
cut W_,(z), which exists on the interva1/¢,0). The two real branches are depicted
in Fig. F.1. It is easy to show that many equations combinaggfithmic functions and
polynomicals can be solved in terms of Lambert W-functiohe Bolution of equation

Inz+b2=d (F.2)

can be expressed as
1/c

_ i dc
z = bCW(bce ) (F.3)

Now we turn our attention to asymptotic expansions of the harmW-function.
First, we are interested in the Taylor serie$lf(z)aroundz, = 0. This can be obtained
in the form

B 0 (_1)n71nn72 .

n=1

The radius of convergence ige. When we are interested in the linear expansion, i.e.
very close to zero, we ge théit (x) ~ =. On the other hand, for — oo we get that
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Figure F.1: Two real branches of Lambert W-function

Wy (x) can be approximated by [108]
W(z) ~Inz —Inlnx + o(1) for x — oc. (F.5)

In case of branchV_;(z), we are interested in behavior asymptotic expansion close t

zero, because
lim W_y () = —oc0. (F.6)

z—0~

The expansion is functionally quite similar to asymptotup@&nsion of the principal

branch
W_y(z) = In(—z) — In(—In(—2z)) + o(1) forz — 0. (F.7)
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