# Analýza vlivu expozice na difrakční data a model struktury proteinu

Jan Stránský<sup>1,2</sup>, Leona Švecová<sup>1,2</sup>, Petr Kolenko<sup>1,2</sup>, Jan Dohnálek<sup>2</sup>

<sup>1</sup>Katedra inženýrství pevných látek, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze <sup>2</sup>Biotechnologický ústav, Akademie věd České republiky, v. v. i.

jan.stransky@fjfi.cvut.cz

#### Abstrakt

Expoziční čas je důležitým parametrem pro uspěšné řešení, upřesnění a analýzu struktur bílkovin. Výsoká expozice způsobuje radiační poškození, nízká pak snižuje rozlišení difrakčních dat, rozmývá detaily v mapách elektronové hustoty a v některých případech může úplně znemožnit řešení fázového problému experimentálními metodami. V příspěvku z minulého roku bylo ukázáno, že graf závislosti poměru intenzity a chyby měření intenzity na intenzitě může být pomocným nástrojem při určování správné expozice již před sběrem kompletních difrakčních dat. V této případové studii je ukázán vliv ruzných expozičních časů na difrakční data a kvalitu krystalové struktury bílkoviny.

Klíčová slova: Proteinová krystalografie; Expozice; Radiační poškození; Zpracování dat.

# Úvod

Expozice je důležitý parametr difrakčního experimentu a může rozhodovat o úspěšnosti či neúspěšnosti řešení struktury z naměřených dat. Nové detektory záření však ztěžují odhad optimální expozice na základě vizuální inspekce snímků. Pomocným nástrojem pro odhad expozice může být graf závislosti  $I/\sigma(I)$  na I [1] a byl proto vyvinutý skript pro rychlé vykreslení tohoto grafu [2]. Správnost expozice lze pak odhadovat na základě rozložení hodnot  $I/\sigma(I)$  silných reflexí vzhledem k limitní hodnotě ISa [3]. Graf lze vykreslit již pro několik málo snímků, které je zapotřebí nasbírat pro určení strategie měření, a odhad expozice tak lze učinit před měřením kompletní sady difrakčních snímků. Pro porozumění vlivu různých expozic na difrakční data a výsledný model struktury proteinu byla naměřena data s různou expozicí. Dále byla naměřena data pro analýzu vlivu oscilačního úhlu na graf závislosti  $I/\sigma(I)$  na I. Vliv tohoto parametru na difrakční data byl analyzován dříve [4].

## Metody

#### Krystalizace

Protein (lysozym) v prášku byl rozpuštěn v demineralizované vodě na koncentraci 100 mg/ml. Krystalizační experiment byl připraven krystalizačním robotem Gryphon (Art Robbins Istruments) do 96 jamkových desek v uspořádání sedící kapky. Pro krystalizaci byla použita sada podmínek Morpheus (Molecular Dimensions). Objem rezervoáru byl 70  $\mu$ l, kapky byly složeny ze směsi roztoku proteinu a krystalizačního roztoku v poměrech 2:1, 1:1 a 1:2 při



Obrázek 1: Grafy závislosti  $I/\sigma(I)$  na I pro vybrané dílčí měření. V prvním řádku data pro prvních 10 snímků (7°), v druhém řádku pro kompletní sadu difrakčních dat dílčího měření. Modrou linií je vyznačena hodnota ISa, limitní hodnota  $I/\sigma(I)$  pro velké hodnoty I [3].

finálním objemu kapek 0,3  $\mu$ l. Deska byla následně uložena do krystalizačního hotelu RI-1000 (Formulatrix), kde probíhalo automatické snímkování. Krystal použitý pro difrakční experiment vyrostl v podmínce 0,2 M mravenčanu sodného, 0,2 M octanu amonného, 0,2 M citronanu sodného, 0,2 M vinnanu sodno-draselného, 0,2 M šťavelanu sodného, 1 M směsi pufrů Tris a BICINE při pH 8,5, 40% (v/v) 1,2-ethandiol a 20% (w/v) PEG 8000.

### Difrakční experiment

Difrakční data byla měřena na difraktometru D8 Venture (Bruker) se čtyřkruhovým goniometrem, zdrojem záření MetalJet (Excillum) a detektorem Photon 2 (Bruker). Data byla měřena při teplotě 100 K. Pro sběr kompletních dat byla zapotřebí 4 měření s různým nastavením goniometru a rotační osou  $\omega$ , celkem 739° při oscilaci 0,7° na snímek v bezzávěrkovém režimu. Kompletní data byla naměřena pro expoziční časy 1 s, 10 s, 50 s a 100 s. Na jiném krystalu byla naměřena data s rotační osou  $\phi$  s oscilačními úhly na jeden snímek 0,1°, 0,25°, 0,5°, 0,75° a 1,0° při konstantní expozici 10 s na 1° rotace.

#### Zpracování difrakčních dat a řešení struktury

Difrakční data byla zpracována programem XDS [5] prostřednictvím nástroje xdskappa. Jednotlivé sady difrakčních dat byly seškálovány dohromady programem XSCALE [5]. Byla zvolena prostorová grupa  $P4_32_12$  s mřížkovými parametry a = b = 77,0 Å, c = 38,3 Å. Fázový problém byl vyřešen metodou SAD programy SHELXC/D/E [6] na sadě dat, která vznikla spojením všech naměřených snímků. Ruční stavění modelu molekuly v programu COOT [7] a upřesňování v reciprokém prostoru programem REFMAC5 [8] bylo provedeno oproti datům naměřených při expozici 50 s. Na finálním modelu pak bylo provedeno upřesnění v programu REFMAC5 oproti datům naměřených s expozicemi 1 s, 10 s a 100 s. Při finálním kroku upřesňování v reciprokém prostoru byly použity anisotropní B-faktory.



Obrázek 2: Grafy závislosti  $I/\sigma(I)$  na I pro různé oscilační úhly jednoho snímku ( $\Delta \phi$ ) při stejné expozici na 1° měření. Grafy jsou vykresleny pro kompletní dílčí měření. Modrou linií je vyznačena hodnota ISa, limitní hodnota  $I/\sigma(I)$  pro velké hodnoty I [3].

# Výsledky a diskuze

### Grafy závislosti $I/\sigma(I)$ na I

Pro všechny změřené dílčí sady difrakčních dat byly vykresleny grafy závislosti  $I/\sigma(I)$ na I. Pro kompletní data (spojená ze 4 dílčích měření) není možné graf vykreslit, protože chybový model a výpočet  $\sigma(I)$  je prováděn při zpracování dílčích měření. Pro vybranou geometrii (tzn. měření se stejným nastavením goniometru, ale různé expozice) jsou grafy zobrazeny na Obrázku 1, společně s grafy vytvořenými pro data z prvních 10 snímků (7° rotace podle  $\omega$ ). V grafech pro expozici 1 s se téměř žádné reflexe nepřibližují limitní hodnotě ISa, pro expozici 10 s už se některé reflexe této limitě blíží. Pro hodnoty 50 s a 100 s je poblíž limitní hodnoty již velké množství reflexí, se zvyšující se expozicí pak přibývá reflexí, které i přes zvyšující se intenzitu I nezvyšují  $I/\sigma(I)$  a tedy nepřináší nové informace. Při porovnání grafů pro prvních 10 snímků a pro celé dílčí měření se ukazuje, že celkový charakter grafu se zachovává.

Pro různé volby oscilačního úhlu při zachovávající se expozici na 1° se graf závislosti  $I/\sigma(I)$  na I nemění (Obrázek 2).

Statistiky difrakčních dat a parametry struktury.

Kritériem pro stanovení difrakčního limitu dat použitých pro škálování byl korelační faktor mezi polovičními sadami  $(CC_{1/2})$  v nejvyšší slupce dosahující hodnoty alespoň 0,6. Statistiky jsou uvedeny v Tabulce 1, závislost vybraných statistik na rozlišení je vynesena do Obrázku 3. Statistiky difrakčních dat se zlepšují se zvyšující se expozicí, mezi statistikami



Obrázek 3: Závislost statistik na rozlišení po průměrování difrakčních dat. A - korelace polovičních sad  $(CC_{1/2})$ , B -  $R_{merge}$ , C -  $I/\sigma(I)$  a D -  $I/\sigma(I)$  rozdílů Friedlových párů (anomální signál). Čárkovaně je vyznačen limit obvykle uznávaný jako parametr důvěryhodných dat.

pro měření při expozicích 50 s a 100 s však již nejsou žádné významné rozdíly; výjimkou jsou hodnoty  $I/\sigma(I)$ , které se v nízkých rozlišeních při zvyšování expozice nad 10 s snižují. Podobnou závislost lze pozorovat i pro  $I/\sigma(I)$  anomálních rozdílů.

Pro smysluplnější porovnání shody modelu struktury s difrakčními daty byly po finálním upřesnění vypočteny strukturní statistiky (*R*-faktory, odchylky od geometrie, střední *B*faktor) i pro rozlišení 1,5 Å, tedy na stejných sadách reflexí. Velký rozdíl mezi *R* a  $R_{\text{free}}$ pro expozici 1 s ukazuje, že na těchto datech již není vhodné používat upřesňování anisotropních *B*-faktorů. Rozdíly v *R*-faktorech a odchylkách od geometrie jsou mezi měřeními při 10 s, 50 s a 100 s minimální a mohou být způsobeny různým nastavením váhy difrakčních dat při upřesňování. Rozdíly mezi 50 s a 100 s (např. zvyšující se *B*-faktor) mohou být také způsobeny radiačním poškozením, jelikož měření s expozicí 100 s probíhalo jako poslední.

## Závěr

Graf závislosti  $I/\sigma(I)$  na I se ukazuje být vhodným pomocníkem při odhadu expoziční doby pro měření difrakčních dat, protože graf je možné vykreslit již pro několik počátečních snímků a jeho charakter je podobný jako graf pro kompletní data. Volba oscilačního úhlu při konstantní expozici na 1° nemá na podobu grafu vliv. Různé expoziční doby pak

|                                         |            | 1              |           |             | 10                 |           |
|-----------------------------------------|------------|----------------|-----------|-------------|--------------------|-----------|
| Expozicni cas                           | a 11       |                |           | <i>a</i> 11 | 10 s               | TT 010/   |
| Slupka rozlišení                        | Celkem     | Vnější         |           | Celkem      | $1,5\mathrm{A}$    | Vnější    |
| Dolní limit rozlišení $[A]$             | 10,9       | $1,\!53$       |           | 10,9        | $1,\!53$           | $1,\!22$  |
| Horní limit rozlišení $[A]$             | 1,5        | $^{1,5}$       |           | 1,2         | $^{1,5}$           | 1,2       |
| $R_{ m merge}$                          | 0,161      | $2,\!512$      |           | 0,085       | 0,339              | 1,992     |
| $R_{ m meas}$                           | $0,\!170$  | $2,\!659$      |           | 0,090       | $0,\!359$          | $2,\!149$ |
| $R_{ m pim}$                            | 0,052      | 0,869          |           | 0,030       | $0,\!117$          | $0,\!803$ |
| Počet pozorování                        | 382820     | 16479          |           | 645979      | 16454              | 24513     |
| Počet nezávislých reflexí               | 18982      | 922            |           | 36572       | 925                | 1767      |
| Střední $(I)/\sigma(I)$                 | 21,7       | $^{1,2}$       |           | 26,9        | $^{8,5}$           | $^{1,4}$  |
| CC(1/2)                                 | 0,999      | $0,\!608$      |           | 0,999       | $0,\!982$          | $0,\!657$ |
| Kompletnost $[\%]$                      | 99,7       | 100            |           | 99,8        | 100                | 100       |
| Multiplicita                            | 20,2       | $17,\!9$       |           | 17,7        | $17,\!8$           | $13,\!9$  |
| $R_{ m work}$                           | $0,\!1157$ |                |           | 0,1247      | $0,\!1137$         |           |
| $R_{\mathrm{free}}$                     | 0,1938     |                |           | 0,1716      | $0,\!1583$         |           |
| s. s. o. <sup>1</sup> vazeb [Å]         | 0,0234     |                |           | 0,0223      | 0,0223             |           |
| s. s. o. <sup>1</sup> úhlů [°]          | 1,9769     |                |           | 2,0080      | 2,0079             |           |
| Střední B-faktor $[Å^2]$                | $16,\!21$  |                |           | $13,\!69$   | 13,80              |           |
| Expoziční čas                           |            | $50\mathrm{s}$ |           |             | $100\mathrm{s}$    |           |
| Slupka rozlišení                        | Celkem     | $1,5{ m \AA}$  | Vnější    | Celkem      | $1,5{ m \AA}$      | Vnější    |
| Dolní limit rozlišení [Å]               | 10,9       | $1,\!53$       | 1,16      | 10,9        | $1,\!53$           | 1,16      |
| Horní limit rozlišení [Å]               | 1,14       | $^{1,5}$       | $1,\!14$  | 1,14        | $1,\!5$            | $1,\!14$  |
| $R_{ m merge}$                          | 0,069      | 0,167          | 1,906     | 0,080       | $0,\!157$          | 1,842     |
| $R_{ m meas}$                           | 0,074      | $0,\!177$      | 2,091     | 0,085       | 0,166              | 2,023     |
| $R_{ m pim}$                            | 0,025      | 0,059          | 0,853     | 0,029       | 0,055              | 0,831     |
| Počet pozorování                        | 689819     | 16070          | 23376     | 676460      | 15835              | 22767     |
| Počet nezávislých reflexí               | 42 491     | 925            | 2088      | 42538       | $\boldsymbol{924}$ | 2082      |
| Střední $(I)/\sigma(I)$                 | 27,5       | 17             | $1,\!4$   | 23,2        | 18,1               | $1,\!5$   |
| CC(1/2)                                 | 0,998      | 0,995          | $0,\!683$ | 0,998       | 0,996              | $0,\!684$ |
| Kompletnost (%)                         | 99,7       | 100            | 99,5      | 99,7        | 100                | 99,3      |
| Multiplicita                            | 16,2       | $17,\!4$       | $11,\!2$  | 15,9        | $17,\!1$           | 10,9      |
| R <sub>work</sub>                       | 0,1327     | 0,1242         |           | 0,1355      | 0,1274             |           |
| $R_{\mathrm{free}}$                     | 0,1698     | 0,1616         |           | 0,1723      | 0,1649             |           |
| s. s. o. <sup>1</sup> vazeb [Å]         | 0,0207     | 0,0207         |           | 0,0212      | 0,0212             |           |
| $s = o^{1}$ úhlů [°]                    | l .'       |                |           |             |                    |           |
| $\mathbf{b}, \mathbf{b}, 0, \mathbf{u}$ | 1,9151     | 1,9156         |           | 1,9308      | 1,9310             |           |

Tabulka 1: Statistiky zpracování difrakčních dat a parametry struktury

 $^1$ Střední směrodatná odchylka od ideálních hodnot

mají významný dopad na měřená difrakční data. Testovací případ ukazuje, že se zvyšující se dobou expozice se zvyšuje rozsah použitelného rozlišení a zlepšují se indikátory kvality zpracování dat. Při zvyšování expozice nad určitou hodnotu (zde z 50 s na 100 s na snímek) už k žádnému zlepšení nedochází. Při zvyšování expozice naopak docházelo ke snižování odhadu  $I/\sigma(I)$  pro nízké rozlišení, což může být způsobeno i radiačním poškozením, jelikož experiment probíhal na jednom krystalu. Zvyšování expozice nad 10 s také nemělo významný vliv na indikátory shody modelu struktury s měřením. Měření při expozici 1 s je podexponované a z krystalu je možné získat více informací při správném nastavení expozice. Naproti tomu měření při 100 s oproti nižším expozicím již žádné nové informace nepřináší. Rozsah expozic pro optimální měření je široký a konkrétní volba by tedy měla být přizpůsobena i dalším požadavkům s ohledem na radiační poškození a cíle měření.

## Reference

- T. Weinert, aj., Fast native-SAD phasing for routine macromolecular structure determination. *Nature Methods* 12(2): 131–U163, 2015.
- [2] J. Stránský, J. Dohnálek, Zanedbávaný parametr difrakčního experimentu: expoziční čas. V Sborník příspěvků 5. studentské vědecké konference fyziky pevných látek, roč. 1, 22–27, ČVUT v Praze, 2015.
- [3] K. Diederichs, Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallographica Section D - Biological Crystallography 66(6): 733–740, 2010.
- [4] M. Mueller, M. Wang, C. Schulze-Briese, Optimal fine φ-slicing for single-photoncounting pixel detectors. Acta Crystallographica Section D - Biological Crystallography 68(1): 42–56, 2012.
- [5] W. Kabsch, XDS. Acta Crystallographica Section D Biological Crystallography 66(2): 125–132, 2010.
- [6] G. M. Sheldrick, Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallographica Section D - Biological Crystallography 66(4): 479–485, 2010.
- [7] P. Emsley, aj., Features and development of coot. Acta Crystallographica Section D -Biological Crystallography 66: 486–501, 2010.
- [8] G. Murshudov, A. Vagin, E. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D - Biological Crystallography 53(3): 240–255, 1997.

#### Poděkování

Tato práce byla podpořena Ministerstvem školství, mládeže a tělovýchovy granty LQ1604 NPUII, LG14009 a CIISB - LM2015043, Evropským fondem regionálního rozvoje č. CZ.1.05/1.1.00/02.0109, institucionální podporou Biotechnologického ústavu

AV ČR, v. v. i. RVO: 86652036 a Grantovou agenturou ČVUT č.

SGS16/246/OHK4/3T/14. Dále bychom chtěli poděkovat Jiřímu Pavlíčkovi z Centra molekulární struktury, BIOCEV za podporu při přípravě vzorků a měření.