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ritmy, kvantové śıtě
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Abstrakt: Věrný přenos kvantového stavu je jedńım ze stavebńıch kamen̊u kvantového

poč́ıtače. Jelikož se jedná o unitárńı transformaci, je proveditelný na jakémkoliv kvan-

tovém poč́ıtači. Při použit́ı konvenčńıch procedur, které spoléhaj́ı na sekvenčńı aplikaci

elementárńıch unitárńıch transformaćı (např. SWAP operaćı), docháźı často ke kvan-

tové dekoherenci systému. Namı́sto toho existuj́ı metody, které navrhnou interakce mezi

částmi kvantové śıtě tak, aby k přenosu stavu došlo bez jakékoliv vněǰśı kontroly. Ex-

istuj́ı experimentálńı výsledky potvrzuj́ıćı výhody takového př́ıstupu. Reálné fyzikálńı

systémy se vždy odchyluj́ı od idealizovaných model̊u, které použ́ıváme k jejich popisu,

a tak i systémy určené k pasivńımu přenosu stavu mohou trpět nedostatky. Ukážeme

závažné d̊usledky několika poruch inspirovaných fyzikálńı podstatou takových systémů.

K opravě těchto poruch navrhujeme uvolnit požadavek minimálńı kontroly natolik, aby

se dala použ́ıt kvantová korekčńı metoda Dynamical decoupling. Při této metodě se

omeźıme na použit́ı jednočásticových operaćı. Nalezli jsme řadu Dynamical decoupling

schémat, které poruchy efektivně odstraňuj́ı. Jejich funkčnost jsme ověřili numerickými

simulacemi.

Abstract: Reliable method of quantum state transfer is one of the fundamental re-

quirements of building a quantum computer. It is a unitary transformation, hence it

is achievable on any quantum computer. However, when using conventional methods

of sequential applications of elementary unitary transformations (such as the SWAP

operations), quantum decoherence often becomes an issue. Instead there are methods

of designing the interactions between various parts of the quantum network such that

quantum state transfer occurs with no external control whatsoever. There are recent

experimental results supporting the efficiency of these methods. Real world systems

always deviate from their idealized models, quantum state transfer networks being no

exception. We explore the adverse effects of several perturbations of the ideal models

inspired by the physical character of these systems. To correct for the occurring er-

rors we propose to relax the requirement of no external control enough that Dynamical

Decoupling, a quantum error correction method, becomes applicable. This method is

restricted to using single-particle operations only. We found several Dynamical Decou-

pling schemes which efficiently eliminate the errors from the network. We verified their

performance with numerical simulations.
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Chapter 1

Opening Remarks

Research in the field of Quantum Physics has branched and grown significantly since

the construction of the first laser by Theodore H. Maiman in 1960. While originally

the focus was primarily on the fundamental aspects of the theory, new branches such as

Quantum Information Processing have attracted more and more attention. The pace of

research in these new areas has been accelerating with the use of new unfamiliar phe-

nomena for Quantum Computing as well as Quantum Communication. The ambition is

to put the theory to practice i.e. to have quantum based computation, many of the pro-

posed experiments have already been successfully demonstrated. The first crucial steps,

however spectacular, do not guarantee overall success. Issues of scaling up the system,

long coherence times etc. are the issues of the day. Finding new, more effective methods

of engineering, controlling and protecting quantum systems now becomes imperative.

Quantum State Transfer (QST ) is an example of streamlining some of the basic

operations used in quantum computers. It is one of the cornerstones of building a large

quantum computer since the main focus of a quantum computer should be on following

the various quantum algorithms and the resources it has are limited [1]. Therefore

minimal resources should be spent on the preparation and transport of the input state,

reading from and writing to memory and even communication between different quantum

computers. As a task QST can be achieved on any universal quantum computer since

it is seemingly one of the simpler yet nontrivial unitary operations. However, relying

on various decompositions of QST into elementary operations such as sequential SWAP

gates can hinder the performance of a quantum computer, extend the computation times

and introduce decoherence [1]. More efficient methods that achieve it have therefore been

described over the years [2, 3, 4].

QST is intimately linked to excitation transfer, communication between remote sites
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and remote entanglement creation [1]. Essentially it is the task of placing an arbitrary,

unknown quantum state to a predefined location in a quantum network at a well defined

moment in time from a given input position. In dependence on the situation this task

can be the subject of additional constraints like fixed geometry of the network or fixed

type of interactions between constituting elements of the network. The importance of

the topic has been underlined by the continuous interest it has attracted over the last

years [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The formal theoretical setting that we employ is deliberately general enough to de-

scribe most of the relevant physical systems. These include mainly the systems that

have already been used to realize the first QST experiments. We are going to focus on

working with the Heisenberg XY Hamiltonians [1].

They naturally describe the spin-spin interactions which are at the core of Nuclear

Magnetic Resonance (NMR). NMR has been the first method used to demonstrate QST

[16, 17, 18, 19]. Another family of physical systems that can be mapped to XY Hamilto-

nians and that has been demonstrated experimentally capable of QST are the photonic

lattices. These are arrays of optical waveguides evanescently coupled together [20]. Over

the last years many other systems have been suggested as suitable experimental devices

for QST, these include linear arrays of tunnel-coupled dots [3, 21], flying electrons in

metals [22], trapped ions [23] and optical lattices [24]. For details on how to map these

onto the XY Hamiltonians see [25]. For all the listed systems quality of the transfer is

an issue that has to be critically analyzed.

The text is organized as follows. In the first two chapters we give an overview of the

theoretical setting of QST. This is where we explore the history of QST which is in an

interesting way related to that of angular momentum operators and give several examples

of protocols that achieve QST. These include the most famous ones that work with

nearest neighbor chains and some beyond-nearest neighbor networks as well, which we

initially describe with graph theory. The third chapter is an overview of the Dynamical

Decoupling method. Dynamical decoupling is well known to the NMR community [26,

27, 28], it was originally suggested for QIP by Viola et al. [29]. In the fourth chapter

we describe the QST on quantum networks using orthogonal polynomials. We present

here most of the known properties of QST chains and the state-of-the-art QST next-to-

nearest-neighbor protocols. Based on these previously known results we begin to give

our own original results.

The first result is the analysis of the joined linear chains presented the in chapter

4.1.2. The second result pertains to quantum state transfer on a rectangular lattice in

chapter 4.2.1 and the largest portion of the results relates mainly to imperfect quantum
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networks. All physical systems suffer from imperfections, which cannot be ignored in the

experimental setups, and limit their performance compared to the ideal case. Quantum

networks are certainly no exception. We propose quite a general correction method

based on Dynamical Decoupling for several realistic perturbations of some of the known

QST protocols. We demonstrate that the method enables improvement of all aspects of

QST [7, 30]. These results are reported at length in chapter 5.
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Chapter 2

Introduction

2.1 Formalism

Throughout this dissertation we focus on finite quantum networks consisting of (N + 1)

identical qubits. Specifically we study systems described by the Hilbert space

H =
(
C2
)⊗(N+1)

, (2.1)

with the dynamics on it given by the XY Hamiltonians [1, 3, 16, 17, 18, 19, 20, 21, 22,

23, 24]

H =
1

2

N∑
i=0

N∑
j=0

Ii,j

(
σxi σ

x
j + σyi σ

y
j

)
+

1

2

N∑
i=0

Bi (σzi + 1) . (2.2)

Even though this is a rather specific choice, it describes many real physical systems

and is quite general. Out of all the physical systems it describes, we choose to use the

terminology referring to a magnetic spin-spin interaction. The constants Ii,j ∈ R+ denote

interaction strengths between different sites in the network labeled by i, j ∈ {0, . . . , N}.
Bi ∈ R+

0 is the strength of the magnetic field acting on qubit i, which is related to the

eigenenergy of qubit i. Finally, by σxi we will denote a Pauli operator σxi acting on qubit

i

σxi = I⊗ . . .⊗ I︸ ︷︷ ︸
i times

⊗σx ⊗ . . .⊗ I, (2.3)

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.4)

Special classes of the Hamiltonians (2.2) are those which impose additional limita-

tions on Ii,j . For example if

Ii,j = 0, for |i− j| > 1, (2.5)
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the Hamiltonian describes the nearest-neighbor (NN) chain. Or

Ii,j = 0, for |i− j| > 2, (2.6)

gives the next-to-nearest-neighbor (NNN) chain.

We will use the following definition of Quantum State Transfer (QST) [1]. Consider

the system being in the state

|ψs〉 = |ψ〉 |0〉 . . . |0〉 , (2.7)

where |0〉 , |1〉 are the ground and excited states of a qubit and |ψ〉 is some unknown

arbitrary qubit state. If there is a time T > 0 such that with probability equal to 1 the

system will be in the state

|ψt〉 = |0〉 . . . |0〉 |ψ〉 (2.8)

we will call that QST from position 0 to N . Without loss of generality we have labeled

the starting qubit with the index 0 and the target qubit with N . Naturally there are

configurations that do not lead to QST and even the systems that do, will not work for

all times. To quantify how close the system is to QST for some process which causes the

system to evolve into |ψ(t)〉, let us define the fidelity of state transfer by

F (t) = |〈ψ(t)|ψt〉| . (2.9)

A system allows QST if and only if there is T > 0 such that F (T ) = 1. Since the

class of Hamiltonians (2.2) preserves the total number of excitations [1], without loss of

generality we can focus on transferring a single excitation in order to achieve QST of

an arbitrary state [9]. To see this, we need to use the fact that the Hamiltonian (2.2)

commutes with the operator of the number of excitations[
H,

N∑
i=0

σzi

]
= 0. (2.10)

Hence the action of H can be divided into subspaces each corresponding to a fixed

number of qubits in an excited state. This means that |0〉 . . . |0〉 is an eigenstate of the

Hamiltonian and therefore after time T it evolves to

|0〉 . . . |0〉 −→ eiϕ |0〉 . . . |0〉 , (2.11)

for some ϕ ∈ R. Let us assume that we have found a system that allows a transfer of

a single excitation after time T , therefore we know that the state |1〉 |0〉 . . . |0〉 evolves

after time T to

|1〉 |0〉 . . . |0〉 −→ eiη |0〉 |0〉 . . . |1〉 , (2.12)
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for some η ∈ R. We now see that such a system can be easily modified to transfer a

general state α |0〉+ β |1〉 , α, β ∈ C, since it evolves after time T to

α |0〉+ β |1〉 −→ αeiϕ |0〉+ βeiη |1〉 = eiϕ
(
α |0〉+ βei(η−ϕ) |1〉

)
. (2.13)

Which can now be corrected to α |0〉 + β |1〉 up to a global phase by a simple unitary

rotation given by the known ϕ and η. We therefore focus on finding systems that lead

to QST on the single excitation subspace.

Since there is a direct relationship of the systems governed by the XY Hamiltonians

and the quantum systems described by the second quantization in the tight-binding

approximation [25], the transfer of a single excitation sometimes describes a transfer of

an actual particle (bosonic, fermionic systems). Additionally, the transferred particle

can have internal degrees of freedom, which can represent the state to be transferred.

In such cases only the transfer of a single excitation is considered rather than that of an

arbitrary state |ψ〉.
The input state, the final state and fidelity in the case of single excitation transfer

become

|ψs〉 = |1〉 |0〉 . . . |. . .〉 , (2.14)

|ψt〉 = |0〉 . . . |0〉 |1〉 ,

F (t) = |〈ψ(t)|0〉 . . . |0〉 |1〉| .

It is worth noting that sometimes F (T )2 is used instead to quantify QST since it then

becomes the probability of state transfer and, really, it is a matter of preference. We

prefer F (T ) since if there is time T̂ such that we are able the express
∣∣∣ψ(T̂ )

〉
as∣∣∣ψ(T̂ )

〉
= a |0〉 . . . |0〉+ b |0〉 . . . |0〉 |1〉 , (2.15)

where a, b ∈ C are some known coefficients, then in the case of single excitation transfer,

|b| is the fidelity of QST F (T̂ ) = |b|.
Let us note that the fidelity in the case of single excitation transfer and in the case

of the general state |ψ〉 always allows for a phase change in the desired final state |ψt〉
to eiϕ |ψ〉. The meaning of this phase is very different in the two cases though. For QST

of the general state this is a global phase which, in this case, is irrelevant. In a sharp

contrast, if we are considering QST of a single excitation, this phase becomes a relative

phase as in Eq. (2.13). If we consider the XY Hamiltonian to describe for example a

bosonic system, it is the relative phase between the vacuum state and the single particle

state and needs to be corrected for [25].
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It is very common to visualize QST processes by plotting the fidelity in time [7],

often we are going to consider systems that only achieve QST very probably. In such

cases the fidelity never reaches the value one, rather it approaches it arbitrarily close in

the fortunate case. It is when the input state only evolves to (2.15) such that |b| ≤ 1.

The reference [13] calls this a pretty good transfer. The fidelity in such a case becomes

F (t) ≤ 1. To distinguish between F (T ) < 1 and F (T ) = 1, we will sometimes call the

latter the perfect QST.

If there is a time for which the fidelity reaches 0.95 (|b| = 0.95), QST will happen

with the probability of 90.25%. This is considered to be the threshold we are going to

aim for when correcting for some errors in the networks as its lower bound. In general we

are going to work with procedures which can be improved to achieve values arbitrarily

close to 1, but in real situation we have to balance between two constraints, the quality

of transfer and the effort needed to get there. In order to make the methods comparable,

we need to set a standard in order to discuss how difficult it is to achieve similar results

with different methods.

Since we are mostly going to focus on the single excitation subspace and transfer of

an excited state, it will be beneficial to label the vectors that form the computational

basis as

|i〉 = |0〉 . . . |0〉︸ ︷︷ ︸
i times

|1〉 |0〉 . . . |0〉

︸ ︷︷ ︸
(N+1) vectors

, for i = 0, . . . N. (2.16)

2.1.1 Angular Momentum Analogy

Imperfect QST was first described in 2003 by Bose [2] on an unmodulated spin chain

and then a perfect QST was first described independently by Nikolopoulos et al. [3] for

electron wavepacket dynamics in the setting of quantum dots and by Christandl et al.

[4] in spin networks.

Surprisingly, the dynamics inducing the protocol described in both [3, 4] have already

been described in 1979 (when QIP was not fashionable) in a different context [31] of spin

systems in homogeneous magnetic fields and of (N+1) level atoms. Since the description

of a spin in magnetic fields is widely known, this analogy gives a different view of the

QST.

To see this analogy let us identify the states (2.16) from the computational basis |j〉
with eigenvectors of a J-spin system. One of the common descriptions [32] of a J-spin

system uses the eigenvectors of S2 and one of the components Sz of the spin (angular

momentum) operator S labeled by |m〉, m ∈ {−J,−J + 1, . . . , J}. Using these the
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correspondence can be defined as

J =
N

2
, (2.17)

N = 2J,

m = j − 1

2
N, (2.18)

j = m+
1

2
N.

In this form our starting state with j = 0 corresponds to m = −N
2 and the desired target

state with j = N to m = N
2 .

If we choose

Bj = 0, (2.19)

Ii,j =
λ

2

√
j(N − j + 1), for j = i+ 1, (2.20)

Ii,j = 0 otherwise,

for λ ∈ R+ in (2.2), we get a tridiagonal matrix that describes our XY Hamiltonian,

and in addition has exactly the same form as a J-spin Hamiltonian in a magnetic field

as well as a special case of N + 1 level atom with Rabi frequency Ω0 = λ
2 [31]. We will

call this choice the Krawtchouk chain inspired by [10].

The J-spin Hamiltonian of this form describes a spin system in a homogeneous

magnetic field in arbitrary direction in the xy plane [31]. It is a known fact [32] that

the direction of the spin magnetic moment of a particle in a stationary, homogeneous

magnetic field revolves about the axis in the direction of the magnetic field.

It is possible to set up a beautiful representation of the spin (angular momentum)

state if it has a well defined value of the projection to z axis (m). In such a state

there is still uncertainty in the x and y directions because Sx and Sy do not commute

(Heisenberg uncertainty relations). As a result we can represent such a state with a cone

in 3D space that has apex in the origin and the base represents the state parameters.

Let us place the base along the z axis so that its z coordinate represents m and let us

make the radius of it proportional to the uncertainty in x and y. As a result the cones

radius is given by

r =
√
J(J + 1)−m2. (2.21)

We will now show how the input and target states are represented in this picture.

Since the state |0〉 corresponds to m = −N
2 , this state would be plotted as a cone with

14



x

y

z

Figure 2.1: Cone representation of the starting, intermediate and target states in the

spin representation.

base at z = −N
2 and radius

√
N
2 . The target state would have the cone base of the

same radius, but it would be placed at z = N
2 . A special case would be m = 0 with the

excitation present exactly in the middle of the chain, admissible only for odd numbers

of qubits (N + 1) (even N), this state would be represented by a disc in the xy plane

with radius
√

N
2 (N2 + 1).

Since we know that the direction in which the projection of the spin is constant

revolves about the axis in the direction the magnetic field, which in this case lies in the

xy plane, we already know how the state with m = −N
2 is going to evolve. In the cone

representation it will expand its base and move it from z = −N
2 towards z = 0, then all

the way to z = m = N
2 while narrowing back to the original radius. And then back and

forth until infinity. This process is plotted in Fig. 2.1

So just by using the powerful results about the spin systems in magnetic fields and

some clever correspondence we have presented a first example of QST. This is probably

the most famous one which has been described in many other ways, some of which will

be presented in the following subsections. If one writes down the equations of the time
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evolution as done in [3, 31], one arrives to a set of partial differential equations. These

can be solved with an integral transformation such as the Laplace transform. This can

be done by hand and from that one can calculate the time it takes for the state to

transform from m = −N
2 to m = N

2 to be [3, 4]

T =
π

λ
. (2.22)

This approach although very illustrative is not very general, for other choices than those

given by Eqs. (2.19), (2.20) the correspondence with angular moment does not work,

the Hamiltonian is just too different. Alternative approaches will allow us to uncover

additional classes of Hamiltonians (2.2) that lead to QST.

2.1.2 Generating Permutations

Special case of the transformation (2.8) that we defined as QST are all the permutations,

which expressed in the computational basis (2.16) have the form of

P =


0
... P̃

0

1 0 . . . 0

 , (2.23)

where P̃ is an arbitrary permutation matrix.

Košťák et al. gave a method of reconstructing Hamiltonians that lead to such time

evolutions in [9]. It is another method of finding QST systems. Let us note right away

that the general definition of (2.8) allows for more general P̃ , but the first column and

the last row are fixed even if P̃ is only some unitary matrix. Without the restriction

to permutations the method from [9] becomes difficult to employ since it relies on the

known spectra of permutations. As such it might be applicable to other families of

unitary transformations with known spectra, but applied to permutations it already

provides infinitely many solutions never described before with other methods. It proved

being particularly useful and intuitive when the knowledge of the behavior of different

subsets of qubits in the chain is needed, such as quantum networks of logical bus topology

[33].

We will now rely on the theory of reconstructing self adjoint matrices from their

spectra to find QST Hamiltonians. At first we are going to further restrict ourselves
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only to one-cycle permutations, namely a very specific permutation

P =


0 1 . . . 0
...

. . .
. . .

...

0 0 1

1 0 . . . 0

 . (2.24)

In reality this is not a severe restriction as far as one-cycle permutations go, there are

(N−1)! possible one-cycle permutations of the form (2.23) and all of them can be derived

from (2.24) just by relabeling the intermediate sites between 0 and N .

Let σ be the spectrum of P , since the characteristic equation for the eigenvalues of

the unitary matrix is

λN+1 = 1, (2.25)

we know that the spectrum consists of N + 1 different complex numbers

λj = exp

(
2πi

j

N + 1

)
, for j ∈ ZN+1, (2.26)

where ZN+1 = {0, 1, . . . , N} and i is the imaginary unit.

Straightforward calculation gives the expansion of the corresponding eigenvectors∣∣yλj〉 into the computational basis (2.16):

∣∣yλj〉 =
1√
N + 1

N∑
α=0

λαj |α〉 =
1√
N + 1


1

λ1
j
...

λNj

 . (2.27)

The permutation matrix P is diagonal in the basis formed by its eigenvectors, thus

P =
∑
λj∈σ

λj
∣∣yλj〉 〈yλj ∣∣ . (2.28)

The idea is to look for self-adjoint matrices which generate P through the time

evolution

U(t) = exp(−iHt), (2.29)

for some fixed time t = T . Immediately one such solution is

H =
−1

T

N∑
j=0

2πj

N + 1

∣∣yλj〉 〈yλj ∣∣ , (2.30)
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since this Hamiltonian is diagonal in the basis formed from the eigenvectors of P and

thus the exponential (2.29) gives exactly the eigenvalues (2.26) on the diagonal for t = T .

Because of the period of the complex exponential in (2.26), we can shift each of

the eigenvalues of the Hamiltonian (2.30) by an arbitrary multiple of 2π and we would

arrive to the same spectral decomposition of the permutation P and thus to the same

permutation. This allows us to expand the solution (2.30) to

H~l =
−1

T

N∑
j=0

(
2πj

N + 1
+ 2πlj

) ∣∣yλj〉 〈yλj ∣∣ , (2.31)

which is parametrized by a vector of integers ~l = (l0, . . . , lN ) ∈ ZN+1. Since these

are all the solutions to the equation (2.25), these are all the Hamiltonians that are the

generators of P .

Let us now focus on the connection to the class of Hamiltonians (2.2). To see it, we

need to find the values of the coupling constants Ii,j and magnetic field strengths Bi in

(2.31). Denote by εj the

εj = −
(

2πj

N + 1
+ 2πlj

)
, (2.32)

and use the expansion (2.27) to rewrite (2.31) into the computational basis to get:

H~l =

N∑
α,β=0

N∑
j=0

εjλ
α
j λβj︸︷︷︸
λ−βj

|α〉 〈β| , (2.33)

which for the diagonal terms α = β gives

Bα =
N∑
j=0

εj , (2.34)

and for the off-diagonal terms

Iα,β =

N∑
j=0

εjλ
α−β
j . (2.35)

To see this, we need to write the Hamiltonian (2.2) in the computational basis:

H =



B0 I0,1 I0,2 . . . I0,N

I0,1 B1 I1,2 . . . I1,N

I0,2 I1,2 B2 . . . I2,N

...
...

...
. . .

...

I0,N I1,N I2,N . . . BN


. (2.36)
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These equations mean that any Hamiltonian leading to the permutation P must

have identical magnetic fields acting on all its qubits. As mentioned earlier, the most

common Hamiltonians for QST assume only nearest neighbor interaction on the qubit

chains. In later chapters we are going to show several examples of systems that break

this assumption. It is interesting to note here, however, that any Hamiltonian expressed

as (2.31) cannot be a nearest neighbor Hamiltonian.

In order to be a nearest neighbor type Hamiltonian, by definition, the following

condition must be true

Iα,β = 0 for α− β 6= ±1. (2.37)

Since we know that Iα,β are given by Eq. (2.35), this gives N − 1 equations for εj , in

matrix form given as 
λ2

0 λ2
1 . . . λ2

N

λ3
0 λ3

1 . . . λ3
N

...
...

λN0 λN1 . . . λNN




ε0

...

εN

 =


0
...

0

 . (2.38)

This is a matrix equation of the discrete Fourier transform with the first two rows and

normalization 1/
√
N + 1 dropped (see Eq. (2.26)). Therefore the solutions are known

and since we are looking for real solutions (eigenvalues of a self-adjoint matrix), they are

limited to 
ε0

...

εN

 = γ


1
...

1

 , (2.39)

for some γ ∈ R. However such a solution gives also Iα,β = 0 for all α and β from how a

constant vector is transformed through discrete Fourier transform. We have thus shown

that if the Hamiltonian is nearest neighbor, not even the nearest neighbors are allowed

to interact. There is no such Hamiltonian (2.33) that would lead to QST.

Many-cycle Permutations

Until now we have only focused on one-cycle permutations. If the permutation is a many

cycle permutation, i.e. it can be expressed as a product of n cycles

P = P (0) . . . P (n), (2.40)

it turns out that finding the respective generating Hamiltonians only involves applying

the one cycle procedure to every cycle of the permutation. Let us fix on some specific
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cycle P (i) first. By Sd ⊂ ZN+1 we denote the subset of d + 1 qubits that it affects.

Similarly to (2.26) it has the eigenvalues given by

λj = exp

(
2πi

j

d+ 1

)
, j ∈ Zd+1. (2.41)

Now the spectrum σ of P is a union of the individual spectra for each cycle and we

can immediately see that as long as the permutation has at least two cycles (n ≥ 2),

the spectrum is always going to be degenerate. Let us denote by δj the degeneracy of

the eigenvalue λj . δj is the number of different cycles that have the same eigenvalue,

therefore for every k ∈ {0, . . . , δj − 1} the corresponding eigenvectors
∣∣∣v(k)
λj

〉
can be

expanded similarly to (2.27) as∣∣∣v(k)
λj

〉
=
∑

α∈S(k)
d

λαj√
d+ 1

|α〉 , (2.42)

where S
(k)
d is the corresponding subset of qubits involved in the cycle that contributed

the k-th eigenvalue λj to σ.

In exactly the same manner as we arrived to the expression (2.31), we can now shift

the phase of every λj , but we can do it δj times for each eigenvalue. Essentially, we

have more freedom in choosing the Hamiltonians that generate the permutation (2.40).

Another freedom is in the choice of the basis of each eigen subspace, we can move from∣∣∣v(k)
λj

〉
to some other basis which we will denote by

∣∣∣y(k)
λj

〉
. Putting this together we can

express all the Hamiltonians that lead to a given many cycle permutation as

H~l =
−1

T

∑
λj∈σ

δj−1∑
k=0

(
arg(λj) + 2πl

(k)
j

) ∣∣∣y(k)
λj

〉〈
y

(k)
λj

∣∣∣ , (2.43)

where ~l ∈ ZN+1.

Many Cycle Example

So far we have focused on the first column and last row in the form of the time evolution

(2.23) since that is how we defined QST. However, it is known [1], and from the analogy

with the angular momentum operators in chapter 2.1.1 it can be seen, that the choice of

couplings (2.20) in the Hamiltonian (2.2) leads to a unitary evolution that acts on the

remainder of the qubits as the many-cycle permutation

P =


0 1

. .
.

1 0

 . (2.44)
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We would now like to show how it is possible to come to the couplings (2.20) in the

framework of many cycle permutations.

We will focus on the example presented in [9] of a four qubit system and the permu-

tation

P =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , (2.45)

and see on it how the procedure would work for higher numbers of qubits.

Now P is a two cycle permutation

P = P (0)P (1) =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (2.46)

and both the cycles have two eigenvalues λ0 = ei0 = 1 and λ1 = eiπ = −1. So the

permutation P has the same eigenvalues, which are doubly degenerate.

The eigenvectors (2.42) corresponding to the eigenvalues ±1 expressed in the com-

putational basis (2.16) are ∣∣∣v(0)
±

〉
=

1√
2

(|0〉 ± |3〉) , (2.47)∣∣∣v(1)
±

〉
=

1√
2

(|1〉 ± |2〉) .

One of the freedoms for many cycle permutations is choosing the eigen basis, let

us introduce a new basis from the original eigenvectors with four complex numbers

µ, ν, ζ, ξ ∈ C as ∣∣∣y(0)
+

〉
= ν

∣∣∣v(0)
+

〉
+ µ

∣∣∣v(1)
+

〉
, (2.48)∣∣∣y(1)

+

〉
= µ

∣∣∣v(0)
+

〉
− ν

∣∣∣v(1)
+

〉
,∣∣∣y(0)

−

〉
= ξ

∣∣∣v(0)
−

〉
+ ζ

∣∣∣v(1)
−

〉
,∣∣∣y(1)

−

〉
= ζ

∣∣∣v(0)
−

〉
− ξ

∣∣∣v(1)
−

〉
,

(2.49)

where |µ|2 + |ν|2 = 1 and |ζ|2 + |ξ|2 = 1.
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In this basis, if we take advantage of the freedom in shifting phases of each eigenvalue,

we can write down all the Hamiltonians that generate the permutation P from (2.43):

H~l =
−1

T

(
(0 + 2πl

(0)
+ )

∣∣∣y(0)
+

〉〈
y

(0)
+

∣∣∣+ (2.50)

(0 + 2πl
(1)
+ )

∣∣∣y(1)
+

〉〈
y

(1)
+

∣∣∣+
(π + 2πl

(0)
− )

∣∣∣y(0)
−

〉〈
y

(0)
−

∣∣∣+
(π + 2πl

(1)
− )

∣∣∣y(1)
−

〉〈
y

(1)
−

∣∣∣) ,
which can be relabeled to

H~l =ε
(0)
+

∣∣∣y(0)
+

〉〈
y

(0)
+

∣∣∣+ (2.51)

ε
(1)
+

∣∣∣y(1)
+

〉〈
y

(1)
+

∣∣∣+
ε

(0)
−

∣∣∣y(0)
−

〉〈
y

(0)
−

∣∣∣+
ε

(1)
−

∣∣∣y(1)
−

〉〈
y

(1)
−

∣∣∣ .
Furthermore because of the form of the eigenvectors, all the Hamiltonians (2.51) have

to be persymmetric (symmetric along the antidiagonal), we will later see that this is a

necessary condition for any QST Hamiltonian, not just the ones connected to permuta-

tions.

Without additional constraints we can generate infinitely many Hamiltonians by

simply choosing different integer vectors ~l and the complex numbers µ, ν, ζ, ξ. However,

we would like to find among these all the NN Hamiltonians:

H~l =


E0 g1 0 0

g1 E1 g2 0

0 g2 E1 g1

0 0 g1 E0

 . (2.52)

Expanding (2.51) in the computational basis now gives 16 equations for ~l and µ, ν, ζ, ξ.

It can be shown by hand that this system does not have a solution for Hamiltonians

with a degenerate spectrum. Therefore let us assume that the Hamiltonian has a non-

degenerate spectrum.

The first equations we are going to write out are for the elements 〈0|H~l |2〉 and

〈1|H~l |3〉. These are respectively:

ε
(0)
+ |ν|

2 + ε
(1)
+ |µ|

2 − ε(0)
− |ξ|

2 − ε(1)
− |ζ|

2 = 0, (2.53)

(ε
(0)
+ − ε

(1)
+ )νµ+ (ε

(1)
− − ε

(0)
− )ξζ = 0 (2.54)
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The general Hamiltonian is symmetric in ways that these two guarantee all the required

zeroes in the Hamiltonian (2.52). Since we required µ, ν and ζ, ξ to be normalized, the

equation for 〈0|H~l |2〉 can be written as

(ε
(0)
+ − ε

(1)
+ ) |ν|2 − (ε

(0)
− − ε

(1)
− ) |ξ|2 + ε

(1)
+ − ε

(1)
− = 0. (2.55)

And this is the first time that we found the QST property of a Hamiltonian to depend

on the differences of the eigenvalues of the Hamiltonian. In later sections we are going to

show that a very specific condition on the differences of eigenvalues is actually equivalent

to the Hamiltonian having the QST property. So note that if ε0, ε1, ε2, ε3 are a solution

to the system of equations, so is {ε0 + 2πj, ε1 + 2πj, ε2 + 2πj, ε3 + 2πj} for some j ∈ Z.

The two equations from 〈0|H~l |2〉 and 〈1|H~l |3〉 essentially fix the parameters µ, ν, ζ, ξ

up to their phase, the solutions are

|µ| =

√√√√ (ε
(1)
+ − ε

(1)
− )(ε

(0)
− − ε

(1)
+ )

(ε
(0)
+ − ε

(1)
+ )(ε

(0)
+ − ε

(1)
− − ε

(0)
− + ε+−(1))

, (2.56)

|ν| =

√√√√ (ε
(0)
− − ε

(0)
+ )(ε

(1)
− − ε

(0)
+ )

(ε
(0)
+ − ε

(1)
+ )(ε

(0)
+ − ε

(1)
− − ε

(0)
− + ε+−(1))

,

|ξ| =

√√√√ (ε
(1)
− − ε

(0)
+ )(ε

(1)
− − ε

(1)
+ )

(ε
(0)
− − ε

(1)
− )(ε

(0)
+ − ε

(1)
− − ε

(0)
− + ε+−(1))

,

|ζ| =

√√√√ (ε
(0)
− − ε

(0)
+ )(ε

(0)
− − ε

(1)
+ )

(ε
(1)
− − ε

(0)
− )(ε

(0)
+ − ε

(1)
− − ε

(0)
− + ε+−(1))

,

with the additional condition on ϕ and χ, which are defined as µ = eiϕ |µ| and ζ = eiχ |ζ|:

ϕ− χ = mπ, m ∈ Z, (2.57)

and m being odd for

ε
(0)
+ − ε

(1)
+

ε
(0)
− − ε

(1)
−

< 0, (2.58)

and even otherwise.

The normalization conditions and the positivity of the arguments of the square roots

in (2.56) together imply that the intervals [ε
(0)
+ , ε

(1)
+ ] and [ε

(0)
− , ε

(1)
− ] must overlap but are

not allowed to contain one another.
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The remaining equations for

〈0|H~l |0〉 = E0, (2.59)

〈1|H~l |1〉 = E1,

〈0|H~l |1〉 = g1,

〈1|H~l |2〉 = g2,

can always be solved for a particular choice of the diagonal and off diagonal elements.

Since the spectrum of the J-spin Hamiltonian fulfills all of the above conditions for

J = 3/2, for any choice of λ and T there exist ~l and µ, ν, ζ, ξ such that the Hamiltonian

(2.2) with couplings (2.20) and magnetic fields (2.19) is obtained within this framework.

For example for λ = 2, T = π/λ, E0 = E1 = B = 3, g1 = I1 = λ
2

√
3, g2 = I2 = λ

2

√
4

taken from (2.20) a solution is

l
(0)
+ = 0, (2.60)

l
(1)
+ = −1,

l
(0)
− = −1,

l
(1)
− = −2,

which is exactly the Krawtchouk chain with additional global magnetic field that only

adds a global phase to the time evolution.

Higher dimensions have to be addressed separately in this framework, but the out-

lined approach is applicable rather straightforwardly. Several more examples of QST

Hamiltonians that can be obtained with this framework are given in [9].

2.1.3 QST on Graphs

The different topologies of QST systems given by specifying which qubits are interacting

with its neighbors are easily expressed with graph theory. Numerous examples of how

to exploit the language of graphs in order to construct QST networks can be found in

[13]. We are going to give an overview of the formalism and the most simple examples.

Let G be a graph, V the set of its vertices and E the set of its edges. For simplicity we

are not going to allow edges to have neither orientation nor length, hence the adjacency

matrix (Laplacian) A of G only has one and zero elements. Several generalizations of

these simplifications have already been found [34, 15], but for our purposes this is going

to be sufficient. This setting is often called a continuous time quantum walk [35, 36]. In

the later section 4.1.4 we are going to show how to connect the formalism of 2.1 with
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the one of graphs by showing that the protocol (2.20) is essentialy a continuous time

quantum random walk on a hypercube.

Since the graph is not oriented, the adjacency matrix is real and symmetric. There-

fore, if we calculate its exponential

U(t) = exp(−iAt), (2.61)

again, we get a symmetric matrix. In the setting of graphs we say that state transfer

occurs between sites u and v after time T if

|U(T )u,v| = 1, (2.62)

where the lower indexes denote the element (u, v) of the respective matrix.

We can now see that the definitions of QST from section 2.1 and this one are the

same if we take the adjacency matrix to be the Hamiltonian on the space (2.1) expressed

in the computational basis (2.16) in the sense of QST of a single excitation. Even though

the definitions are the same, the Hamiltonians given by the simple adjacency matrices

are much less general than those from (2.2). Essentially we restrict ourselves to Ji,j and

Bi being ones and zeroes. Nevertheless we are going to show how to find graphs with

the QST property.

Let us start by the simplest example. Consider G to be the graph K2, which has two

elements and its adjacency matrix is

A =

(
0 1

1 0

)
. (2.63)

By a simple calculation

U(t) = cos(t)I− i sin(t)A =

(
cos(t) −i sin(t)

−i sin(t) cos(t)

)
. (2.64)

For t = π/2 it gives

U
(π

2

)
=

(
0 −i
−i 0

)
, (2.65)

therefore
∣∣∣U (π2 )0,1∣∣∣ = |−i| = 1. Obviously the same is true for t = T = π

2 + kπ, where

k ∈ Z.

Since U(t) is a symmetric matrix, it is obviously true, that if |U(T )u,v| = 1 for some

T , it is also true that |U(t)v,u| = 1. Therefore if there is QST from u to v, then there is

QST from v to u.
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Because the condition (2.62) is equivalent to

U(T ) |u〉 = eiϕ |v〉 , (2.66)

for some ϕ ∈ R and because if the graph transfers state from u to v, it transfers it vice

versa as well, the following is also true

U(T )2 |u〉 = e2iϕ |u〉 . (2.67)

So we see that if the system transfers state after time T , the time evolution is periodic

with period 2T since exp(−iAt)2 = exp(−2iAt).

Combining QST Graphs

In order to show how to generate infinitely many graphs with the QST property, we

need to define a Cartesian product of two graphs X and Y denoted by X × Y . Let us

define it by a graph with vertices given by the Cartesian product of the vertices of the

original graph V (X × Y ) = V (X)× V (Y ) and adjacency matrix given by

A(X × Y ) = A(X)⊗ I + I⊗A(Y ). (2.68)

It is straightforward to define a d-th Cartesian power of a graph X by

Xd = X × . . .×X︸ ︷︷ ︸
d times

(2.69)

These definitions are quite opaque at first, but consider for example a path of length m

denoted by Pm which for m = 2 is just a line segment of length one. Now the second

power P 2
2 is just a square and P d2 is a d-dimensional cube.

Since A(X ×Y ) is a sum of two commuting matrices, the following is not difficult to

prove

UA(X×Y )(t) = UA(X(t)⊗ UA(Y )(t). (2.70)

A corollary of this equation is the fact that if we have a graph X which after time

T transfers state from u to v, Xd transfers state between the d-tuples (u, . . . , u) and

(v, . . . , v) after the same time T . Therefore we have shown that a d-cube transfers state

since we know that P2 = K2 which transfers state from u = 0 to v = 1 and vice versa.

One might consider going to higher m in the paths Pm. Let us first focus on the case

of P3. Explicit calculation by finding the three eigenvectors of the adjacency matrix

A(P3) =

 0 1 0

1 0 1

0 1 0

 , (2.71)
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gives

U

(
π√
2

)
=

 0 0 −1

0 −1 0

−1 0 0

 . (2.72)

This means that P3 transfers state between u = 0 and v = 2 and vice versa. Notice

that we already know this since this is a special case of (2.20). Therefore we know

that any Cartesian power P d3 for arbitrary d ∈ N transfers state. We have thus found

two infinite families of graphs that transfer state. Compared to nearest or even next-to-

nearest neighbor chains these networks are however much more connected and for higher

d constructing real physical experiments with that many interacting sites might pose an

obstacle.

It turns out that going to higher m is not possible. The limiting factors are the unit

coupling strengths. The proof of this and many other examples of graphs that lead to

QST can be found in [13]. We will show how this formalism can for a special graph

choice be translated to non unitary couplings later in the chapter 4.1.4 using orthogonal

polynomials.

After laying out the elementary properties of network serving for QST we turn our

attention to the performance of such network under realistic conditions and ways how

to improve its performance in cases of imperfections.
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Chapter 3

Dynamical Decoupling

3.1 Imperfect World

Imagine a situation where you are trying to create a system of several interacting sys-

tems, such as qubits, whose dynamics is prescribed by some Hamiltonian Hid. Unwanted

interactions inevitably occur and all you are left with is some real Hamiltonian H in-

stead, which might or might not be in some way close to the ideal (design) Hamiltonian.

In such a situation we desire to recast the whole problem or, when possible, manipulate

the real Hamiltonian to come close to the original form. There are several methods how

to accomplish such a task and Dynamical decoupling is one of them. Without loss of

generality let us assume that both H and Hid are traceless. In such a situation Dynam-

ical Decoupling gives a scheme, a sequence of unitary operators, which when applied

periodically to your system, causes the system to evolve as it would under Hid [29].

We are going to assume the so called bang-bang control, a possibility of instantaneous

application of the pulses realizing unitary operations of the decoupling.

The bang-bang control lies somewhere between the two extremes of the known cor-

rection procedures. One relies on the passive restriction to states that are resistant

to the perturbations, which is commonly referred to as decoherence free subspaces [37]

while the other, quantum error correcting codes [38], relies on a feedback loop of con-

trol pulses applied based on measurements realized on the system. Similar in spirit to

the bang-bang control is the quantum Zeno mechanism [39] which instead of periodic

application of unitary pulses stabilizes the time evolution of a system by quick repeated

measurements which force the system to one of the eigenstates of the measured observ-

able. The fundamental difference between the other correction methods and Dynamical

Decoupling is that the time evolution is unitary in the dynamical decoupling case.

28



The time scales of the control pulses are assumed to be much shorter than the

time it will take for the desired time evolution to take place (bang-bang control is an

approximation of instantaneous interventions [29]) which is a non trivial requirement

that has to be addressed individually for each quantum system. For example in the

case of electron and nuclear spin states in the endohedral fullerene molecule NC60 the

bang bang pulses to the nuclear state can be done due to the spin-spin interaction and

much quicker response times to external magnetic fields of the electron compared to the

nucleus [28].

The bang-bang control consists of a sequence of m unitary pulses p0, . . . , pm. Fur-

thermore, let us restrict ourselves to a situation where the pulses are always applied after

the same amount of time ∆t and we will allow each pulse to act only as representing

one of the {I, σx, σy, σz} operators on each qubit. Therefore we can write the unitary

operator of time evolution after time T

U(T ) = pme
−iH∆T pm−1e

−iH∆T . . . p1e
−iH∆T p0. (3.1)

It turns out that for upcoming calculations it is beneficial to rewrite this evolution into

a different form. Let us introduce new operators

gk = pkpk−1 . . . p0. (3.2)

It is very straightforward to notice that this is equivalent to

pk = gkg
†
k−1. (3.3)

With these new labels U(T ) becomes

U(T ) = gm

(
g†m−1e

−iH∆T gm−1

)
. . .
(
g†0e
−iH∆T g0

)
. (3.4)

Since the original operators pk were unitary, the operators gk are unitary as well and we

can move them into the exponent

U(T ) = gme
−i

(
g†m−1Hgm−1

)
∆T

. . . e
−i

(
g†0Hg0

)
∆T
. (3.5)

This time evolution can be expanded with the Magnus expansion [40] to obtain the

average Hamiltonian H. This Hamiltonian then generates the same time evolution

U(T ) = gme
−iHT . (3.6)

For simplicity let us further assume that gm can be chosen to be the identity gm = I.
This means having pm = g†m−1. If this represents an obstacle, we can always work in a

rotated frame induced by the operator gm.
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We can use the Magnus expansion to explicitly calculate the expansion of the average

Hamiltonian H into increasing powers of ∆T

H = H
(0)

+H
(1)

+ . . . . (3.7)

The lowest order approximation is given by

H
(0)

=
1

m

m−1∑
k=0

g†kHgk. (3.8)

It can be shown [40] that the remaining terms are proportional to the respective powers

of ∆T

H
(k)

= O
(

(m∆T )k
)
. (3.9)

This means that the shorter the time intervals between successive pulses are, the better

the lowest order approximation becomes.

Since we want to use Dynamical Decoupling as a correction method, we can see that

in the lowest order we should require that

H
(0)

=
1

m

m−1∑
k=0

g†kHgk =
1

D
Hid, (3.10)

where we allowed for some scaling of time D ∈ R+. If this equation holds, the system is

effectively going to evolve as if its Hamiltonian were Hid and not H.

In the equation (3.10) the Hamiltonians are known and we are searching for {gk}m−1
k=0 ,

a set of unitary operators which allow the design of the desired correction. If we are able

to find such operators, we will call them a selective decoupling scheme [7].

3.2 Improving Decoupling Schemes

For the moment let us assume that we found a decoupling scheme. In the upcoming

sections we show that this is always possible, under very natural assumptions. We are

looking for simple ways to improve it, since it is only an approximation. This can be

accomplished using several tricks.

As mentioned earlier, the shorter ∆T , the better the approximation. If we have a

decoupling scheme {gk}m−1
k=0 , we can define for some l ∈ N another decoupling scheme of

(l ·m) operators {g̃k}lm−1
k=0 by

g̃k = gk modm. (3.11)

If the original scheme gave operators applied in ∆T intervals, the derived scheme is to

be applied in ∆/l intervals.
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To see that this is a decoupling scheme as well, just write out the main condition

(3.10) and assume it holds for {gk}m−1
k=0 , then

1

lm

lm−1∑
k=0

g̃†kHg̃k =
1

lm
l

m−1∑
k=0

g†kHgk =
1

D
Hid. (3.12)

This trick is usually called a periodic decoupling scheme.

Another trick we are going to employ is the permutation of some decoupling scheme

{gk}m−1
k=0 . It stems from the fact that the sum in (3.10) is independent of ordering of the

operators in the scheme. So, if one takes some permutation of indexes π(k) and creates

a sequence {gπk}m−1
k=0 , one immediately arrives at another decoupling scheme again.

In general there is no optimal permutation to be found, there are however some

permutations which should always lead to an improved scheme. One of the often used

permutations is the permutation of the periodic decoupling scheme with l = 2. For such

a scheme we can define the permutation as

π(k) =

k, if k < m.

2m− k − 1, otherwise.
(3.13)

We arrive at the so called symmetric decoupling scheme. This procedure eliminates all

the odd orders in the Magnus expansion [41] thus further improving any decoupling

scheme.

Usually the two tricks are employed together. We achieved the best performance

in simulations by proceeding in two steps, first we make the schemes symmetric, then

periodic.

3.3 Finding Decoupling Schemes

As already mentioned, there are several ways of finding solutions of (3.10). First we

are going to present an algorithm which also demonstrates that we can always find a

solution under a very natural requirement, which is easy to meet.

In order to simplify the notation, we are going to work with multiindexes. Since the

set of four matrices

{sj}3j=0 ≡ {I, σ
x, σy, σz} , (3.14)

forms a basis of operators acting on C2, and since

{Sj}4
(N+1)−1
j=0 ≡ {sj0 ⊗ sj1 . . .⊗ sjN }

4
j0,...,jN=0 , (3.15)
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forms a basis of all operators on
(
C2
)⊗(N+1)

, it immediately follows that we can take

the index j on the left hand side of (3.15) and turn it into a corresponding multiindex

on the right hand side simply by writing it in base four, the digits now give individual

indices.

We are now going to expand the Hamiltonians H and Hid from (3.10) in this basis

and label the coefficients as µj and νj

H =
4(N+1)−1∑

j=0

µjSj , (3.16)

Hid =

4(N+1)−1∑
j=0

νjSj . (3.17)

Since we assumed the Hamiltonians to be traceless, we already know that

µ0 = ν0 = 0, (3.18)

since S0 = I.
Plugging these expansions into the main decoupling condition (3.10) gives

D

m

4(N+1)−1∑
j=1

m−1∑
k=0

g†kµjSjgk =
4(N+1)−1∑

j=1

νjSj . (3.19)

Since we restricted ourselves to pk being one of the basis operators, from the properties

of Pauli matrices immediately follows that gk are one of the basis operators as well up

to a phase

gl = eiϕSm, (3.20)

for all l ∈ {0 . . .m − 1} and some m ∈ {0 . . . 4N+1 − 1}. If we label the number of

times that the operator Sk = S†k appears in the decoupling scheme {gk}m−1
k=0 by ck, this

equation becomes

D

m

4(N+1)−1∑
j=1

4(N+1)−1∑
k=0

ckµjSkSjSk =

4(N+1)−1∑
j=1

νjSj . (3.21)

One of the basic properties of the operators sj from (3.14) (Pauli operators) is

s†js
†
ksjsk = ±s0. (3.22)

Therefore the same holds for

S†jS
†
kSjSk = ±S0. (3.23)
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We can now label the signs by aj,k

S†jS
†
kSjSk = aj,kS0, (3.24)

and arrive at

D

m

4(N+1)−1∑
j=1

4(N+1)−1∑
k=0

ckµjaj,kSj =
4(N+1)−1∑

j=1

νjSj . (3.25)

Because Sj form a basis, the equation (3.25) gives at most 4N+1− 1 linear equations for

4N+1 variables ck, which is not prohibitive for the existence of solutions.

We are now able to specify exactly under which conditions we can solve the system

of equations (3.25). A major restriction appears if for any j the expansion coefficient of

the Hamiltonian H is µj = 0. In this case we immediately know that νj = 0 as well.

This is a significant restriction on the class of the problems that Dynamical Decoupling

is applicable to. By Dynamical Decoupling one cannot create terms not present in the

original Hamiltonian. This is an essential feature of the method and we have to keep it

in mind when discussing limitations and applicability of it.

We now show that if µj = 0 implies νj = 0, the system has infinitely many solutions.

To prove this claim, let us write the system of linear equations explicitly.

D

m

4N+1−1∑
k=0

aj,kck =
νj
µj
, j ∈J , (3.26)

J =
{
j ∈ {1, . . . , 4N+1 − 1} : µj 6= 0

}
. (3.27)

This is a system of equations for the 4N+1 variables ck, however D and m defined earlier

are unknown as well. The last two variables are not independent of ck though, so we

can simplify the equations by introducing new variables

ek ≡
Dck
m

, (3.28)

and the system of equations (3.26) becomes

4N+1−1∑
k=0

aj,kek =
νj
µj
, j ∈J . (3.29)

If we are able to solve (3.29) for ek, D is immediately found from

D =
∑

ek, (3.30)
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and m should be found as the smallest common denominator of the set of rational

numbers {ek
D

}4N+1−1

k=0
. (3.31)

For the system of N + 1 qubits, the earlier introduced plus and minus ones aj,k can

be cast into a matrix

A(N+1) = (aj,k). (3.32)

For N = 0 this matrix can be calculated from the Pauli matrices

A(1) =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , (3.33)

and we note that it is the famous Hadamard matrix [42]. By the procedure known as the

Sylvester construction [43], one can show that now we can find the matrices for higher

N by a simple, recursive tensor product

A(N+1) = A(1) ⊗A(N). (3.34)

Since the rows of Hadamard matrices are all mutually orthogonal and we use only at

most 4N+1 − 1 of them, we have now shown that there are infinitely many solutions to

our problem and we have a significant freedom in their choice. We are later going to take

advantage of this freedom to tailor the solutions to accommodate further requirements

in the individual cases.

3.3.1 Algorithmic Solutions

From the previous sections follows that we are always able to find infinitely many solu-

tions to the decoupling problem. Let us now write one explicitly and show how one can

modify it with the freedom of infinitely many solutions.

Let us denote by A
(N+1)
J the matrix obtained from A(N+1) by taking only the subset

of its rows J . Now the system of linear equations can be written in matrix form

A
(N+1)
J ~e = ~r, ~r =

(
νj
µj

)
j∈J

, (3.35)

where ~e is the vector of unknown variables ek.

The general procedure for solving systems of linear equations can now be applied.

We split our solution into a particular solution and a solution of the corresponding
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homogeneous system. A general solution is then the particular one plus one of the

solutions of the homogeneous system.

The rows of Hadamard matrices A(N+1) are orthogonal and their norm is 4N+1,

A
(N+1)
j ·A(N+1)

k = δj,k4
N+1. (3.36)

From this it is now easy to write a particular solution

~er =
1

4N+1

(
A

(N+1)
J

)T
· ~r, (3.37)

since

A
(N+1)
J ·

(
A

(N+1)
J

)T
= 4N+1I|J |, (3.38)

where |J | is the cardinality of J .

A solution ~e0 of the homogeneous system

A
(N+1)
J ~e0 = ~0, (3.39)

is easy to write again using the fact that the rows of Hadamard matrices are orthogonal

and therefore a vector formed by linear combination from any row of the Hadamard

matrix A
(N+1)
j not present in A

(N+1)
J is a solution to the homogeneous system. Generally

any linear combination of such vectors is a solution to the homogeneous system

~e0 =
∑
j /∈J

γj

(
A

(N+1)
j

)T
. (3.40)

Finally we can now write the general solution as

~e = ~e0 + ~er. (3.41)

The last step for obtaining an algorithm for finding solutions is to obtain the natural

numbers ck. For ck to be positive, ek have to be positive as well. If we found ~er by the

procedure above such that it has negative elements, since 0 /∈ J , we can always add

an arbitrary multiple of
(
A

(N+1)
0

)T
to our particular solution and make its elements

positive. Just take γ0 = min{ek} and instead of ~er take ~er + γ0

(
A

(N+1)
0

)T
and you will

have a solution with all the elements positive, since(
A

(N+1)
0

)
= (1, . . . , 1). (3.42)

Finally to find m by the procedure given earlier and therefore the natural numbers ck,

it is required that the numbers ek
D be rational. This cannot be guaranteed in general

as the particular solution can contain irrational numbers depending entirely on ~r. Since

Dynamical Decoupling is an approximate method, at this step we do not mind replacing
ek
D by close-enough rational numbers.
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3.3.2 Linear Programming

Linear programming is mentioned here because it turns out to be very useful and effective

for finding decoupling schemes. In the previous sections we have shown that for any pair

of H and Hid we are always able to find a solution. However the method does not

guarantee the existence of a reasonably sized scheme nor does it say anything about the

time scaling factor D. Both of these parameters have important practical implications

and must be addressed to make the scheme workable. This is the moment where linear

programming comes in.

Linear programming is a group of optimization algorithms that can be used to maxi-

mize or minimize a linear target function under constraints having the form of equalities

or inequalities. Examples of algorithms include the Dantzig’s Simplex algorithm, Ellip-

soid algorithm, Criss-cross algorithm or the Projective algorithm [44]. In general linear

programming requires the target function φ to be a real affine function, which is a more

general class than linear functions. Lastly, linear programming assumes the optimization

to be over a convex polytope.

Most frequently the problem is formulated as [45]

f(~x) = ~cT~x, (3.43)

Aub~x ≤ ~bub,

Aeq~x = ~beq,

~lb ≤ ~x ≤ ~ub,

where ~x are the independent variables, ~c is a real vector defining the affine target function

f , Aub and Aeq are matrices of inequality and equality constraints and ~lb and ~ub are

vectors of lower and upper bounds respectively.

We can use linear programming for finding solutions to our problem while minimizing

D. Just take the vector of variables and equality constraints from (3.35) and the target

function to minimize to be the D from (3.30)

~x ≡ ~e, (3.44)

Aeq ≡ A(N+1),

(beq)j ≡
νj
µj
, j ∈ 0 . . . 4N+1 − 1,

f ≡ D =
∑

ek,

~lb ≡ ~0.

Any of the common algorithms will now give us a solution with minimal D. We

still do not know anything about m. It turns out [46] that for most situations this is
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sufficient. In cases where this is not true, one can always start with systems with a

lower number of qubits and fallback on the freedom given by the homogeneous solution

presented above and improve the scheme by hand. Another advantage of the linear

programming procedure is that in practice some of the unitary pulses might be difficult

to implement, thus being undesired in the scheme, and we can place further restrictions

on the system of equations to eliminate them. Example of this are the σz pulses on

trapped ions, which often excite the atoms and lead to losses from the trap.
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Chapter 4

QST and Orthogonal Polynomials

Over the years the number of theoretical frameworks in which QST has appeared did

grow enormous [1], the most recent one being orthogonal polynomials. We are going to

use them in the upcoming sections as well, therefore an overview is in place. The idea to

describe qubit chains with orthogonal polynomials first appeared in [8] and was further

developed mainly in [6, 10]. Another reason for the review is that the framework of

orthogonal polynomials allows us to show all the known properties of QST. The unique

property of orthogonal polynomials when used to describe the qubit chains is that they

allow to talk about more complicated structures than just linear chains. They allowed

Christandl et al. and Miki et al. [6, 10] to give analytic solutions to the QST problem

beyond the nearest neighbor chains for the first time.

4.1 Linear Structures

In the following we are going to show that one can construct qubit networks that can

be used for QST in a very general context of multidimensional topological structures,

but to get there, we first need to focus on the simplest cases of nearest-neighbor linear

chains and build up from those.

4.1.1 Nearest Neighbor Chains

Even though in general we work with the Hamiltonians given by (2.2), let us for now

focus on Hamiltonians of linear chains where only the closest neighbors are allowed to

interact

H =
1

2

N∑
i=0

[
Ii+1

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
+Bi (σzi + 1)

]
. (4.1)

38



We will see later that this is at the core of computations for more complex structures.

Since the Hamiltonian (2.2) preserves the total number of excitations as mentioned ear-

lier, in order to achieve QST, we only need to focus on the subspace of single excitation,

which is spanned by the basis vectors (2.16)

|i〉 = (0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, . . . , 0), i = 0, . . . , N. (4.2)

In this basis the Hamiltonian (4.1) has the matrix representation

H =



B0 I1 0

I1 B1 I2

0 I2 B2 I3

. . .
. . .

IN+1 BN


. (4.3)

This is the moment where orthogonal polynomials come into the picture. We can write

explicitly how this Hamiltonian acts on the basis vectors (2.16)

H |i〉 = Ii+1 |i+ 1〉+Bi |i〉+ Ii |i− 1〉 , (4.4)

and this with the natural additional constraints

I0 = IN+2 = 0, (4.5)

gives recurrence relations which look incredibly similar to the recurrence relations of

orthogonal polynomials [47].

Because the matrix of H is Hermitian, there exist N + 1 vectors such that

H |s〉 = xs |s〉 , s = 0, 1, . . . , N. (4.6)

The eigenvalues xs are real and furthermore, we restricted ourselves to strictly positive

couplings and positive magnetic field strengths in Eq. (2.2). This means that the

matrix (4.3) belongs to a class of tridiagonal matrices called Jacobi matrices and that

the eigenvalues are non-degenerate [48, 49, 8]. Furthermore let us choose the labeling

by s so that x0, . . . , xN form an increasing sequence.

The transition between the two bases can be written as:

|s〉 =

N∑
i=0

Vi(s) |i〉 , (4.7)
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with the inverse transformation given by

|i〉 =
N∑
s=0

Vi(s) |s〉 , (4.8)

From (4.4) it can be seen that the expansion coefficients must satisfy

Ii+1Vi+1(s) +BiVi(s) + IiVi−1(s) = xsVi(s). (4.9)

These 3-term recurrence relations, which by Favard’s theorem [47], can be satisfied by

polynomials χi(x)

Vi(s) = V0(s)χi(xs), (4.10)

thus giving

Ii+1χi+1(x) +Biχi(x) + Iiχi−1(x) = xχi(x), (4.11)

with χ0 = 1 and χ−1 = 0.

Since both bases are orthonormal, the following holds∑
i

Vi(s)Vi(r) = δs,r, (4.12)∑
s

Vi(s)Vj(s) = δi,j .

We now know that the polynomials χi(x) are orthogonal on the spectral points xs

N∑
s=0

V0(s)2χi(xs)χj(xs) = δi,j . (4.13)

Using this we can now rewrite the vector expansions as

|s〉 =

N∑
i=0

V0(s)χi(xs) |i〉 , (4.14)

and

|i〉 =

N∑
s=0

V0(s)χi(xs) |s〉 . (4.15)

From the right hand side of the recurrence relations (4.11) together with the initial

conditions it follows that polynomials defined as

Pi(x) = I1I2 . . . Iiχi(x), (4.16)

are actually monic polynomials

Pi(x) = xi +O(xi−1). (4.17)
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To give explicit formulas for constructing QST Hamiltonians it is preferable to work

with these instead of χi(x).

Pi(x) satisfy very similar recurrence relations as their counterparts χi(x), namely

Pi+1(x) +BiPi(x) + I2
i Pi−1(x) = xPix. (4.18)

Again, these polynomials are orthogonal on the spectral points xs

N∑
s=0

Pi(xs)Pj(xs)V
2

0 (s) = hiδi,j , (4.19)

where

hi = I2
1I

2
2 . . . I

2
i . (4.20)

Since Pi defined by (4.16) have the same initial conditions as χi(x), namely

P0 = 1, P−1 = 0, (4.21)

deriving an explicit formula for PN+1 now becomes straightforward

PN+1(x) = (x− x0)(x− x1) . . . (x− xN ). (4.22)

It will come handy to express the weights in the orthogonality relations (4.19) using the

common tricks of trade of orthogonal polynomials [47] as

V0(s)2 =
hN

PN (xs)P ′N+1(xs)
, s = 0, . . . , N. (4.23)

In order for state transfer to happen between sites i, k after time T , we require

F (T ) = 1 from (2.9), this can be rewritten to

〈k| e−iTH |i〉 = eiϕ, (4.24)

This equation can be expanded to∑
s

Vi(s) 〈s| e−iTH
∑
u

Vk(u) |u〉 = eiϕ, (4.25)

which can be further simplified using the orthonormality of the basis eigen-vectors to∑
s

Vi(s)Vk(s)e
−iTxs = eiϕ. (4.26)

for some ϕ. This will play an important part later when describing 2D structures.
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We now focus on the procedure given in [8] of choosing coupling strengths and mag-

netic field strengths for achieving exactly this for the choice i = 0, k = N . In this case

we require equivalently to (4.24)

e−iTH |0〉 = eiϕ |N〉 , (4.27)

we allow for an arbitrary fixed phase which in the worst case has to be corrected for. Let

us expand this using (4.15) and the initial condition χ0(x) = 1 to see what this means

for the polynomials χi(x)

χN (xs) = e−iϕe−iTxs , s = 0, . . . , N. (4.28)

If we take a look at the recurrence relations and the initial conditions, we know that the

polynomials χi(x) are real, therefore this relation is only possible if

χN (xs) = ±1, (4.29)

which in turn is only possible if

χN (xs) = (−1)N+s. (4.30)

This follows from the increasing ordering of xs, the famous interlacing property of or-

thogonal polynomials and the fact that

P ′N+1(xs) = (xs − x0)(xs − x1) . . . (xs − xs−1)(xs − xs+1) . . . (xs − xN ) (4.31)

= (−1)N+s
∣∣P ′N+1(xs)

∣∣ .
Now (4.30) and (4.28) are equivalent to

e−iϕe−iTxs = eiπseiπNe2iπLs , (4.32)

where Ls are arbitrary integer numbers. If we now write the same relation for s+ 1

e−iϕe−iTxs+1 = eiπ(s+1)+eiπNe2iπLs+1 , (4.33)

and divide these two, we arrive at the necessary and sufficient condition for QST, the

spacing of the eigenvalues of the respective Hamiltonian

xs+1 − xs =
π

T
Ms, (4.34)

where Ms are arbitrary positive odd numbers. This is yet another time we see that QST

is essentially a condition on the spectrum of the Hamiltonian.
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QST Hamiltonians are Persymmetric

The equation (4.30) can be further used to show an essential property of any QST

Hamiltonian. Using the equations (4.31) and (4.23) it can be shown that it is equivalent

to

V0(s)2 =
I1 . . . IN∣∣P ′N+1(xs)

∣∣ > 0. (4.35)

Let us now consider an additional mirror matrix

R =


0 1

1 0

. . .

0 1

1 0

 . (4.36)

Since it is unitary, we can construct another Hamiltonian from (4.3) simply by

H? = RHR =



B?
0 I?1 0

I?1 B?
1 I?2

0 I?2 B?
2 I?3

. . .
. . .

I?N+1 B?
N


. (4.37)

The coefficients now correspond to a situation where we have relabeled the qubits in our

network

B?
i = BN−i, (4.38)

I?i = IN−i.

For this Hamiltonian we can follow exactly the same procedure with orthogonal

polynomials as before, since the Hamiltonians have the same spectra. The weights of

these polynomials are different in general, but a beautiful relation can be found [50]

between V0(s)2 and V ?
0 (s)2

V0(s)2V ?
0 (s)2 =

hN(
P ′N+1(xs)

)2 . (4.39)

Let us now consider the situation of H = H? defined in (4.37). In this case the

equation (4.39) tells us immediately that (4.35) automatically holds. This means that

we have shown that if one takes a Hamiltonian with non-degenerate spectrum which is

persymmetric (H = H?), the QST condition is fulfilled.
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The equation (4.39) can be also used to show that the inverse is also true. Let us

assume that we have a Hamiltonian which allows QST, hence we know that it leads to

Eq. (4.35), which together with (4.39) immediately gives

V0(s)2 = V ?
0 (s)2. (4.40)

This condition is equivalent to the matrix being persymmetric. The persymmetry of the

underlying matrix is a well know property of QST Hamiltonians [1, 5] and we will use it

later as well, because it is a very strong requirement. It is sometimes called the mirror

symmetry.

Reconstructing the Hamiltonians from Their Spectra

So far we have only shown what are the conditions on the Hamiltonians in order to

achieve QST, we have not yet shown how to obtain the Hamiltonians once we choose

the spectrum by fixing the freedom in (4.34).

Let us have the set of spectral points {xs}, and we know the value the polynomial

χN (x) takes on this set of points from (4.30). We are looking for a polynomial of degree

N with N + 1 given values. It is therefore uniquely defined and can be found by the

famous Lagrange interpolation [47]. It is given by

χN (x) =

N∑
s=0

(−1)N+sL(x), (4.41)

where L(x) are the Lagrange polynomials

L(x) =
N∏

i=0,i 6=s

x− xi
xs − xi

. (4.42)

If we divide these by their leading coefficients, we arrive at the monic polynomials PN (x).

Recalling equation (4.22) we see that we already know two monic polynomials. From

these we are looking to construct all the remaining Pi(x) for i = 1, 2, . . . , N − 1.

The recurrence relations allow us to construct all the remaining polynomials Pi(x)

for i = N − 1, i = N − 2, . . . , i = 1. To achieve this divide PN+1(x) by PN (x). After

some relabeling one arrives at

PN+1(x) = qN (x)PN (x) +RN−1(x), (4.43)

where qN (x) = x− βN for some βN and RN−1(x) denotes the remaining polynomial of

degree N − 1. Again, we can rewrite RN−1 using the corresponding monic polynomial

QN−1

RN−1(x) = γNQN−1(x). (4.44)
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Plugging the result of the division into the recurrence relations (4.18), we obtain

βN = BN , (4.45)

γN = I2
N ,

QN−1(x) = PN−1(x).

The last equation in (4.45) then defines PN−1. We can iterate the same procedure to

get PN−2 etc.

A special case of considerable importance for physicists is the case of Bi = 0 for all

i, the case of zero magnetic fields. This case is easier to implement experimentally. In

this case it can be shown [47]

Pi(−x) = (−1)iPi(x), (4.46)

from which we can obtain, following the same logic as before, much more strict conditions

on the spectrum and the weights of the corresponding orthogonal polynomials, namely

xs = −xN−s, (4.47)

V0(s)2 = V0(N − s)2. (4.48)

The second condition here is just a consequence of the first one. To see this let us

assume that we have chosen the spectrum so that (4.34) holds and at the same time

(4.47) holds. Calculating V0(s)2 from the left hand part of equation (4.35), we see that

(4.48) holds as well. Thus in order to have Hamiltonians with no magnetic fields, all we

need to add to the condition (4.34) is the Eq. (4.47).

Example of QST Hamiltonian

Using the tools presented above we are going to present the most widely used protocol

for QST [1]. Let us choose

xs = s− N

2
. (4.49)

Equation (4.34) holds for this choice with T = π and Ms = 1.

From (4.31) we get

P ′N+1(xs) =

(
s− N

2
+
N

2

)
(s− 1) . . . (1)(−1)(−2)(s−N) (4.50)∣∣P ′N+1(xs)

∣∣ = s!(N − s)!,

Using (4.35) together with the normalization condition∑
s

V0(s)2 = 1, (4.51)
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obtained from (4.12), we get
N∑
s=0

√
hN

s!(N − s)!
= 1. (4.52)

Using the Binomial theorem

N∑
s=0

N !

s!(N − s)!

(
1

2

)s(
1− 1

2

)N−s
= 1, (4.53)

we obtain √
hN = N !

(
1

2

)N
. (4.54)

All this combined gives us the binomial distribution for the weights

V0(s)2 =
N !

s!(N − s)!

(
1

2

)N
. (4.55)

These weights are know to yield the normalized symmetric Krawtchouk polynomials

[10] as the monic polynomials Pi(x). It is therefore possible to take their known coeffi-

cients and use them to get the magnetic field strengths and couplings in the Hamiltonian

(4.1)

Bn = 0, (4.56)

In =
1

2

√
n(N + 1− n).

The particular choice (4.56) corresponds as stated above to transfer time T = π

seconds. Since the Hamiltonian with this choice corresponds to zero magnetic field

strengths, all the couplings can be scaled by some positive real number λ which will

result in scaling of time, but nothing else will be affected. The choice

Bn = 0, (4.57)

In =
λ

2

√
n(N + 1− n),

therefore leads to state transfer after time of πλ seconds instead. We get exactly the same

result as in the Krawtchouk chain (2.20).

4.1.2 Joining Linear Chains

We have seen how to construct QST chains by combining QST graphs into their Cartesian

products in 2.1.3. The procedure inherently required creating many new interaction

terms and relied on uniform coupling strengths. A question naturally arises if it is
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possible to connect two or more linear chains with non-uniform couplings with the QST

property somehow to obtain a larger QST chain as well. The idea is reminiscent of

creating blocks of qubits which could be combined to construct more complex structures

of more intricate topology. We are only able to provide partial answers for the NN chains

based on numerical simulations and perturbation theory of matrices.

Let H1 and H2 be Hamiltonians of linear chains with (O + 1) and (P + 1) qubits

respectively, both nearest neighbor and capable of QST. We allow for an additional XY

interaction to be inserted between the last qubit of the first chain and the first qubit of

the second chain. That means we allow for Hamiltonians of the form

H =

(
H1 E

E† H2

)
, (4.58)

where

E =


0
... 0

0

γ 0 . . . 0

 , (4.59)

and γ ∈ R+ denotes the additional interaction strength between the H1 and H2 chains.

The Hamiltonians H1 and H2 are assumed to remain unmodified by the joining proce-

dure.

We know from 4.1.1 that a QST chain has to be persymmetric, same for H1 and H2

since these are both QST chains. This immediately restricts the possibilities of joining

chains to

H1 = H2 ≡ H0, (4.60)

O = P ≡ N.

In other words, the persymmetry limits us to joining identical chains.

If the two chains are not identical, the low control procedure introduced in Sec. 2.1

offers no solutions and one would have to relax the assumptions we made to achieve

QST. One such way which would work for identical chains as well, would of course be to

wait until QST happens on the first chain, decouple the last qubit from the first chain

and then couple it to the second one.

An example of successfully joining two chains together is the case of joining two

identical chains of two qubits with an additional interaction. In this case we can calculate

the additional interaction strength γ from (2.20) and consider it to be a special case of

a 4-qubit chain.
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The general case, however, is more complex. First let us discuss the common pertur-

bation theory estimates of the spectra of the matrix (4.58). At first glance the matrix

perturbation theory seems to be a perfect fit for this problem, since usually we would

know the spectrum σ(H0) and the spectrum σ(E) is easily calculated while disregarding

multiplicities to be {0, γ}.
If we label the eigenvalues of H0 in non-decreasing order (remember that H0 is a

Jacobi matrix and it has a non-degenerate spectrum [48, 49, 8]) to be

σ(H0) = λ0, . . . , λN+1, (4.61)

the eigevalues of H from Eq. (4.58) with γ = 0 are

σ (H(γ = 0)) = λ0, λ0, . . . , λN+1, λN+1 ≡ λ̃0, . . . λ̃2N+2. (4.62)

If we label by λ̂0, . . . λ̂2N+2 the eigenvalues of H(γ) for non-zero γ, the common

perturbation theory [51, 52] gives us two estimates on their distance from Eq. (4.62).

The first is ∣∣∣λ̂i − λ̃i∣∣∣ ≤ ||E||S , (4.63)

where ||E||S = max (σ(E)) = γ is the spectral norm. This estimate becomes useful when

γ → 0, which leads to a degenerate spectrum. Since γ = 0 describes two decoupled

chains, QST is impossible in this case.

The second common estimate is∣∣∣λ̂i − λ̃i∣∣∣ ≤ ||E||2S
η

, (4.64)

where

η = min
λ1∈σ(H1), λ2∈σ(H2)

|λ1 − λ2| . (4.65)

This estimate is divergent in our case, since η = 0 if H1 = H2 = H0. Making an

estimate on the spectrum of H in Eq. (4.58) is thus difficult and we employed numerical

simulations to see if it is possible to join two identical chains that allow QST.

Specifically we took the couplings of the chain H0 to be given by Eq. (2.20), which

gave us the time of the first transfer T on the single chain. Let us define

fm(γ) ≡ max
t∈[0,10T ]

(F (t, γ)), (4.66)

where F (t, γ) is the fidelity of QST calculated at time t for the joined chain from Eq.

(4.58) and some specific choice of γ. In this notation F (t, 0) = 0 for any t ∈ R+
0 .
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Figure 4.1: Fidelity in time (in 1/(λ) seconds), 8 qubit NNN chain composed of two

identical 4-qubit QST chains (couplings from Eq. (2.20)), joined by an optimized inter-

action strength γ = 0.73λ. Notice a peak higher than 0.95 missing in the first half and

the second peak rising to 0.96 in the second.

Essentially the function fm(γ) returns the maximum fidelity over ten QST intervals of

the untethered chains.

We used L-BFGS-B optimization [53] to find γ which maximizes fm(γ). For the

L-BFGS-B algorithm we bounded γ to a closed interval between 0 and two times the

maximum coupling from Eq. (2.20)

0 ≤ γ ≤ 2 max
i

(Ii,i+1). (4.67)

We applied this procedure for several configurations and numbers of qubits. Usually we

were able to find γ such that fm went above 0.95. However, increasing the resolution of

the method and letting it iterate further never increased the maximum fidelity.

A representative case illustrating our findings is in Fig. 4.1 for 4 qubits (N = 3).

Even though the second peak reaches 0.96, the overall behavior is much less regular

than what we will see in later chapters in the simulations of the ideal case (Fig. 4.4).

The answer to the question of whether it is possible to join two NN chains thus remains

inconclusive (except for the requirements of two identical chains from persymmetry) as

it seems to depend sensitively on the initial chain. Generally the joining does not lead

to QST in a simple way and general approach is most probably impossible. However, in

particular cases a QST solution could be found for example by the optimization described

here.
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Figure 4.2: Next to nearest neighbor chain of an odd number of qubits (even N).

Figure 4.3: Next to nearest neighbor chain of an even number of qubits (odd N).

4.1.3 Next to Nearest Neighbor Chains

Most of the past research in QST on linear chains of qubits has been done on nearest

neighbor chains [1]. Only recently analytic next to nearest neighbor protocols by Chris-

tandl et al. in [10] have been presented. While nearest neighbor couplings are certainly

realistic and neglecting other interactions in the system is often justified by the physics

underlying the system, next to nearest neighbor interactions cannot be ignored in a

number of situations. For instance in more complex geometries or deformed geometries

of originally nearest neighbor chains. We will occupy ourselves with perturbations to

these next to nearest neighbor protocols in later sections, therefore we first want to give

a brief overview of how they can be constructed.

Since the interactions between qubits are physical, it is conceivable that they depend

on the spatial structure of the network. Next to nearest neighbor interactions then come

in naturally as in Figures 4.2 and 4.3. The Hamiltonian, in this case, is given by

H =
1

2

N−1∑
i=0

2∑
j=1

I
(j)
i+j

(
σxi σ

x
i+j + σyi σ

y
i+j

)
(4.68)

+
1

2

N∑
i=0

Bi (σzi + 1) .

If we denote by J the Hamiltonian (4.1) with the Krawtchouk couplings given by
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(4.57), the main idea in [10] is to take

H = αJ2 + βJ. (4.69)

Since the second degree polynomial of a tridiagonal matrix is a five diagonal matrix, if

we could find α and β that allow for QST, we would have a NNN QST chain. In the

case of α = 0 we get the scaled couplings of the Krawtchouk chain again.

It has been shown that one can find infinitely many α > 0 and β ≥ 0 such that

the NNN chain (4.68) supports QST. In fact it has been shown for J being any of the

known Hamiltonians that lead to QST, but we restrict ourselves to the Krawtchouk case

because it is the best understood. All the main points stem from the action of (4.68) on

the computational basis (2.16)

H |i〉 = αIi+1Ii+2 |i+ 2〉+ βIi+1 |i+ 1〉 (4.70)

+α(I2
i + I2

i+1) |i〉+ βIi |i− 1〉

+αIi−1Ii |i− 2〉 .

This Hamiltonian differs in many respects and properties from the NN one (4.1). For

example even for zero magnetic fields in J as in (4.57), the resulting magnetic fields in

its quadratic polynomial (4.69) are given by

B̃i = α(I2
i + I2

i+1), (4.71)

which is nonzero if α 6= 0. Furthermore the magnetic fields are dependent on i.

The most pronounced difference though is for β = 0. This eliminates all the nearest

neighbor terms in (4.70). See Fig. 4.2, 4.3 to notice that this essentially splits the chains

into two independent ones. Therefore no QST happens in the even case because the

starting and target qubits belong to different unconnected chains.

Based on the results in [10], β = 0 is allowed only for odd number of qubits (even

N) and state transfer is going to occur first at T = π/(λα) and then periodically after

2π/(λα) for arbitrary α.

If β > 0, state transfer is going to occur only if α/β is some rational number

α

β
=
p

q
, (4.72)

where p and q are two positive co-prime integers. If p is odd, q and N must have the

same parity. For this choice of α and β QST is first going to happen at T = πq/(βλ)

and then periodically after 2πq/(βλ). As an example we plot the network’s fidelity for

5 qubits and α = 2, β = 1 in Fig. 4.4. Notice that 2/1 is a rational number and p is

even, the first arrival time appears at T = π/λ seconds.
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Figure 4.4: Fidelity of NNN chain with 5 qubits, α = 2, β = 1 in time (in (2/βλ)).

QST is achieved at π/βλ seconds and then periodically after 2π/βλ.

4.1.4 Relationship to QST on Graphs

Recently a peculiar connection of the Krawtchouk chains to QST on graphs has been

discovered [14]. It turns out that the QST on the Krawtchouk chain can be directly

viewed as a continuous time quantum random walk on a hypercube. Let us recall the

notation of graphs from chapter 2.1.3.

In order to define a hypercube, let us consider a graph with vertices given by all the

possible N -tuples of zeroes and ones, formally

V = {0, 1}N . (4.73)

We use the Hamming distance to set the distance between two vertices d(u, v). Be-

tween two vertices u and v we define d(u, v) as the number of positions at which the two

differ. Let us define for each i ∈ {0, . . . N} a graph Gi as a graph with vertices (4.73)

and edges between all the vertices that are in the Hamming distance i apart. G1 is an

N -dimensional hypercube.

If Ai is the adjacency matrix of Gi, define the intersection numbers pki,j as the number

of vertices z ∈ V such that

d(x, z) = i, (4.74)

d(y, z) = j,

for all x, y such that d(x, y) = k.

An interesting property of the adjacency matrices Ai is that they form the so called
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Bose-Mesner algebra [14, 54]:

AiAj =
N∑
k=0

pki,jAk. (4.75)

If we write this property for A1, we get

A1Ai = (i+ 1)Ai+1 + (N − i+ 1)Ai−1, (4.76)

which can be viewed as recurrence relations implying

Ai = pi(A1), (4.77)

where pi is a polynomial of degree i. By a procedure very similar to how we have

come the Krawtchouk polynomials from (4.55), one can show that pi(x) are again the

Krawtchouk polynomials [54].

To establish the correspondence with QST in linear Krawtchouk chains, we need to

write the time evolution of the graph G1 as it was defined in (2.61), which is a continuous

time quantum random walk on a hypercube

U(t) = e−itA1 . (4.78)

In order to write the action of this time evolution explicitly, we need to choose a

basis in which to write the action of the matrix A1. Let x0 be the vertex made entirely

of zeroes,

x0 = (0, . . . , 0), (4.79)

and define Vn as a column vector of vertices from V by

Vn = {x ∈ V |d(x0, x) = n} . (4.80)

Each Vn is a vector of different length

|Vn| = kn =

(
N

n

)
, (4.81)

with elements Vn,m, m ∈ {1, 2, . . . , kn} which are N -tuples with exactly n ones. Since

we defined G1 to be a graph with edges between vertices with Hamming distance 1, each

Vn,m is connected to N − n elements of the column Vn+1 obtained by changing one 0 of

Vn,m to a 1.

Let us denote by |x〉 for each vertex x ∈ V a vector from the standard basis of C|V |

chosen so that

〈x|y〉 =

1 if d(x, y) = 0

0 otherwise
(x, y ∈ V ), (4.82)
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and by |col n〉 a vector obtained from the elements of Vn and their corresponding complex

vectors as

|col n〉 =
1√
kn

kn∑
m=1

|Vn,m〉 . (4.83)

Calculation of the non-zero matrix elements of A1 in the basis |col n〉 now gives

〈col n+ 1|A1 |col n〉 =
1√

knkn+1

kn+1∑
m=1

kn∑
o=1

〈Vn+1,m|A1 |Vn,o〉 (4.84)

=
kn(N − n)√
knkn+1

=
√

(n+ 1)(N − n).

Since A1 is symmetric, the following also holds true

〈col n− 1|A1 |col n〉 = 〈col n|A1 |col n− 1〉 =
√
n(N − n+ 1), (4.85)

we can write the action of A1 in the basis formed from the vectors |col n〉 to be

A1 |col n〉 = Jn+1 |col n+ 1〉+ Jn |col n− 1〉 , (4.86)

where Jn =
√
n(N − n+ 1).

It is exactly the same action as (4.4) with the Krawtchouk couplings (4.57) for λ = 2.

Hence the systems are identical if we identify the vectors of the computational basis (3.15)

with the column vectors |col n〉. For another, more complex example of projecting QST

on a network of qubits onto a graph structure see [14], where an example with bivariate

Krawtchouk polynomials can be found.

4.2 Two Dimensional Structures

In this chapter we are going to focus on two dimensional structures in which the qubits

are placed on a rectangular lattice with a finite width (M + 1) and height (N + 1).

It is then natural to label them with two indexes and expand the definition of the

computational basis to

|i, j〉 = |0〉 . . . |0〉︸ ︷︷ ︸
width×i+j times

|1〉 |0〉 . . . |0〉

︸ ︷︷ ︸
width×height vectors

, for i = 0, . . . N, j = 0, . . .M. (4.87)

We will show two examples of QST Hamiltonians on such a lattice. In chapter 4.2.1 we

show a newly derived formalism for factorized 2D networks and then in 4.2.2 we present

QST on a triangular lattice which was first described in [6].
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4.2.1 QST on a Rectangular Lattice

Here we would like to show how to employ the 1D formalism to construct a 2D network

that transfers state between arbitrary sites on a 2D rectangular lattice of qubits.

In a complete analogy to the 1D situation, let us index the sites with a tuple of

integers (i, j) = (0, . . . , N ; 0, . . . ,M). Then the Hamiltonian can be written as

H =
1

2

N,M∑
i,j=0

[
Ii+1,j

(
σxijσ

x
i+1,j + σyijσ

y
i+1,j

)
(4.88)

+Ji,j+1

(
σxi,jσ

x
i,j+1 + σyi,jσ

y
i,j+1

)
+ Bij

(
σzij + 1

)]
,

where Iij are the horizontal couplings and Jij are the vertical couplings between neigh-

boring sites. This matrix is also Hermitian and therefore again its eigen-vectors |s, t〉
can be found, let us denote them

H |s, t〉 = xst |s, t〉 . (4.89)

The relations between the vectors |s, t〉 and |i, j〉 can again be written as

|s, t〉 =
∑
i,j

Wi,j(s, t) |i, j〉 , (4.90)

|i, j〉 =
∑
s,t

Wi,j(s, t) |s, t〉 . (4.91)

In complete analogy to (4.9), these expansion coefficients Wi,j must satisfy

xstWi,j(s, t) = Ii+1,jWi+1,j(s, t) + Ji,j+1Wi,j+1(s, t) (4.92)

+BijWi,j(s, t) + IijWi−1,j(s, t) + JijWi,j−1(s, t).

Let us assume that both these couplings were chosen so that Iij are independent of j

and similarly Jij are independent of i. Let us further assume that not only the couplings

Iij , Jij , but also the magnetic field strengths Bi and Cj have been chosen from equations

of same form as (4.9), namely

Ii+1,jVi+1(s) +BiVi(s) + IijVi−1(s) = xsVi(s), (4.93)

Ji,j+1Wj+1(t) + CjWj(t) + JijWj−1(t) = ytWj(t). (4.94)

Where Vi(s) and Wj(t) were calculated so that the two equations analogous to (4.26)
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hold ∑
s

Vi(s)Vk(s)e
−iTxs = eiϕ, (4.95)∑

t

Wj(t)Wl(t)e
−iTyt = eiη, (4.96)

for some ϕ, η. Which can be done with exactly the same procedure as before. If we

choose

Wi,j(s, t) ≡ Vi(s)Wj(t),

Bi,j ≡ Bi + Cj ,

xst ≡ xs + yt,

then the equation (4.92) holds as well.

More importantly, using the equations (4.95) and (4.96), and orthonormality of the

basis vectors |s, t〉, we can show:

〈i, j| e−iTH |k, l〉 =
∑
s,t

Wij(s, t) 〈s, t| e−iTH
∑
u,v

Wk,l(u, v) |u, v〉

=
∑
s,t

Wij(s, t)Wkl(s, t)e
−iT (xs+yt)

=
∑
s,t

Vi(s)Wj(t)Vk(s)Wl(t)e
−iT (xs+yt)

=
∑
s

Vi(s)Vk(s)e
−iTxs

︸ ︷︷ ︸
eiϕ

∑
t

Wj(t)Wl(t)e
−iTyt

︸ ︷︷ ︸
eiη

= ei(ϕ+η).

Therefore state transfer between the sites (i, j) and (j, k) and vise versa takes place.

This is a novel way of constructing a 2D network of qubits which achieves QST.

4.2.2 Triangular Shape

Another example of a two dimensional structure that allows for QST is a triangular

lattice, which is essentially a half of a square lattice N qubits wide split along the

diagonal, with cleverly designed couplings and magnetic fields from [6] depicted in Fig.

4.5. Very similarly to QST on a lattice, the Hamiltonian for this case reads
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Figure 4.5: Triangular network of qubits.

H =
1

2

∑
0≤i+j≤N

[
Ii+1,j

(
σxijσ

x
i+1,j + σyijσ

y
i+1,j

)
(4.97)

+Ji,j+1

(
σxi,jσ

x
i,j+1 + σyi,jσ

y
i,j+1

)
+ Bij

(
σzij + 1

)]
,

where Ii+1,j and Ji,j+1 have the boundary conditions I0,j = Ji,0 = 0 and Ii+1,j = Ji,j+1 =

0 for i+j ≥ N . Similarly to the previous case, let |s, t〉 be the eigenvectors corresponding

to eigenvalues xs,t:

H |s, t〉 = xs,t |s, t〉 , (4.98)

and let us expand them in the computational basis

|s, t〉 =
∑

0≤i+j≤N
Wi,j(s, t) |i, j〉 . (4.99)

This expansion is different from the one in Eq. (4.90) in that we cannot factorize it.

Plugging the expansion into the eigenvalue equation gives a five-term recurrence

relation

xs,tWi,j = Ii+1,jWi+1,j + Ji,j+1Wi,j+1 +Bi,jWi,j + Ii,jWi−1,j + Ji,jWi,j−1. (4.100)
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Inspired by the one dimensional case let us choose the couplings in two dimensions to

be of a similar form

Ii,j =
1

p1 + p3

√
Sp1p3(p2 + p4)i(N + 1− i− j), (4.101)

Ji,j = − 1

p2 + p4

√
Sp2p4(p1 + p3)j(N + 1− i− j),

Bi,j =
(N − i− j)S
p1p4 − p2p3

[
p2p4(p1 + p3)

p2 + p4
− p1p3(p2 + p4)

p1 + p3

]
+

j
p1p4 − p2p3

p2 + p4
− ip1p4 − p2p3

p1 + p3
,

where S = p1 + p2 + p3 + p4 and p1, p2, p3, p4 ∈ R.

Similarly to how we have arrived to the Krawtchouk chain, we choose

Wi,j = W0,0(s, t)
Ki,j(s, t)√

ri,j
, (4.102)

where

ri,j =
(p1p4 − p2p3)2(i+j)S−(i+j)

(p1p3(p2 + p4))i(p2p4(p1 + p3))j

(
N

i, j

)−1

, (4.103)

with (
N

i, j

)
=

N !

i!j!(N − i− j)!
, (4.104)

being the trinomial distribution function and Ki,j(s, t) is some yet unknown function of

the indices.

Writing out the recurrence relations with these choices gives exactly the recurrence

relations for the two-variate Krawtchouk polynomials Ki,j(s, t) introduced in [55]. Sim-

ilarly to previous considerations (Eq. (4.89)), the spectrum can be derived and in this

case amounts to

xs,t = (p1 + p2)s− (p3 + p4)t, 0 ≤ s+ t ≤ N. (4.105)

The expressions for the two-variate Krawtchouk polynomials are known

Ki,j(s, t) =
∑

0≤k+l+m+n≤N

(−i)k+l(−j)m+n(−s)k+m(−t)l+n
k!l!m!n!(−N)k+l+m+n

uiiv
j
1u
k
2v
l
2, (4.106)
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where

u1 =
(p1 + p2)(p1 + p3)

p1S
, (4.107)

u2 =
(p1 + p2)(p2 + p4)

p2S
,

v1 =
(p1 + p3)(p3 + p4)

p3S
,

v2 =
(p2 + p4)(p3 + p4)

p4S
,

and (α)β = α(α+ 1) . . . (α+ β − 1) are the Pochhammer symbols.

The eigenvectors |s, t〉 can be chosen to form an orthonormal basis, the same as the

vectors in the computational basis, therefore the transition matrix with elements given

by Wi,j(s, t) is orthogonal. Since the weights with which the two-variate Krawtchouk

polynomials are orthogonal on the spectral points, one can find

W0,0(s, t) =

√√√√( N

s, t

)
1

[(p1 + p3)(p2 + p4)]N
(p1p4 − p2p3)2(N−s−t)(p1p2)s(p3p4)t

(p1 + p2)N−t(p3 + p4)N−s

(4.108)

Because the transition matrix is orthogonal, the inverse relation holds as well

|i, j〉 =
∑

0≤s+t≤N
Wi,j(s, t) |s, t〉 . (4.109)

In general we have parametrized the couplings and magnetic field strengths by four

real numbers, but to give a QST protocol we can restrict the parametrization to p1 = p4

and p2 = p3. If we denote z = e−iT (p1+p2), similarly to how we did it in chapter 4.1.1,

we can write the fidelity of QST between sites (i, j) and (k, l) after time T to be

F(i,j),(k,l)(T ) =

∣∣∣∣∣∣
∑

0≤s+t≤N
Wi,j(s, t)Wk,l(s, t)z

s−t

∣∣∣∣∣∣ . (4.110)

Using the tricks from [55] and choosing (i, j) = (0, 0), the fidelity becomes

F(0,0),(k,l)(T ) =

∣∣∣∣∣
[
2p1p2(z − 1)2 + (p1 + p2)2z

]N−k−l
√
rk,l

(4.111)

·(p1 − p2)k(z − 1)k+l(p2z + p1)k(p1z + p2)l

(p2 − p1)−lzN (p1 + p2)2N

∣∣∣∣ .
Now consider

T =
π

p1 + p2
, (4.112)
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therefore z = −1 and the fidelity becomes

F(0,0),(k,l)

(
π

p1 + p2

)
=

√√√√(2p1p2)k+l

(
N

k, l

)
|p1 − p2|(k+l)

(p1 + p2)2N

∣∣8p1p2 − (p1 + p2)2
∣∣N−k−l .

(4.113)

If we restrict the freedom of the original parametrization one more time by requiring

(p1 + p2)2 = 8p1p2, (4.114)

the fidelity becomes

F(0,0),(k,l)

(
π

p1 + p2

)
=

√√√√(2p1p2)k+l

(
N

k, l

)
δk+l,N . (4.115)

We have thus shown that the probability of QST occurring on the hypotenuse of the

triangular network is given by a binomial distribution. Thus summing the square of the

fidelity over all the indices on the hypotenuse gives

N∑
k=0

F 2
(0,0),(k,N−k)

(
π

p1 + p2

)
= 1. (4.116)

Therefore we see QST happening between the starting vertex (0, 0) and the entire hy-

potenuse.

Furthermore it turns out that with the restrictions that we placed on p1, p2, p3, p4

the original parametrization of the couplings and magnetic field strengths simplifies to

Ii,j
p1 + p2

=
1

2

√
i(N + 1− i− j), (4.117)

Ji,j
p1 + p2

=
−1

2

√
j(N + 1− i− j),

Bi,j
p1 + p2

=
p1 − p2

p1 + p2
(j − i).

This procedure is not a general method of constructing 2D structures, but it could

nevertheless prove useful in some cases. It is easy to imagine this working as a logical

bus topology for example. Even if one wants to consider QST on a rectangular lattice,

this protocol offers a mean of QST between some sets of the qubits with a lower amount

of control than for example sequential SWAP operations would.
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Chapter 5

Perturbed Linear Chains

5.1 NN Chains

PST suffers from imperfections and the efficiency of transfer deteriorates. Parts of our

results are centered around studies of several different perturbations to the networks

presented in the previous chapters. The types of perturbations are inspired by realis-

tic, natural physical character of the networks. The first such perturbation has been

introduced in [11]. We will call it the bent chain. It is the simplest nearest neighbor

chain with interactions given by Eq. (2.20) with one additional interaction. Fig. 5.1

shows a representative example of how this perturbation affects the network’s perfor-

mance. Without the bend the time evolution is periodic and the QST fidelity repeatedly

reaches 1. With the additional interaction present even the first peak in fidelity drops

significantly. It is realistic to imagine this as a result of a bend at site α, which would

cause the neighboring qubits to become closer so that their interaction can no longer be

neglected.

The additional interaction is assumed to have the same character as the interactions

Figure 5.1: Bent nearest neighbor qubit chain with the resulting additional interaction.
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in the unperturbed network and is hence of the form

H = Hid + γ
(
σxα−1σ

x
α+1 + σyα−1σ

y
α+1

)
, (5.1)

where Hid is given by Eq. (4.1), γ ∈ R+ and α ∈ [1, N ]. For the numerical experiments

we always chose γ to be

γ = 0.4 max

{
λ

2

√
(α− 1)(N − α+ 2),

λ

2

√
α(N − α+ 1)

}
. (5.2)

This is a very representative case since the effects of the additional interaction do not

show a heavy dependence on its position (except for the very edges) and are very similar

once γ is roughly of the same order of magnitude as the largest coupling already in the

network [11]. This coupling scales with the length of the chain in the same manner as

the couplings (2.20), therefore it is always relatively as large as the largest coupling in

the network.

The presence of this additional interaction has severe effects on the maximum achiev-

able fidelity. In detail it has been explored in [11] also for a different choice of coupling

strengths. Consequently it was explored in [7], where Dynamical Decoupling is the

method of choice for correcting the effects of this additional interaction. For a represen-

tative case see Fig. 5.2. The additional interaction leads to the suppression of the first

arriving peak, it further suppresses the following peaks and the read out time becomes

less fault tolerant since some of the peaks are more narrow.

We will present several Dynamical Decoupling schemes that address this perturbation

with numerical simulations that show their performance for various cases of Krawtchouk

chains with couplings from Eq. (2.20) and γ from (5.2). The protocol (choice of cou-

plings) is not the limiting factor here, all the schemes in the coming sections would work

for any QST protocol.

5.1.1 Partial Dynamical Decoupling Scheme

Here we present a Dynamical Decoupling scheme that effectively removes the additional

coupling but scales unevenly the two parts of the Hamiltonian (4.1). This is not a major

issue since most usually the Krawtchouk chain is considered with zero magnetic fields.

Furthermore, non-zero homogeneous magnetic fields Bi = B only add a known phase

which is easily accounted for [12]. We first commit on two approaches: solving the

problem by hand and then by brute force numerical calculation.
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Figure 5.2: Fidelity in time (in 1/λ seconds), 10 qubit Krawtchouk chain. Red dashed

line: γ = 0, blue solid line: γ as in (5.2). The quality of quantum state transfer

is significantly suppressed as time progresses (blue line). Already the first transfer is

below the benchmark value of 0.95

Solving by Hand

To further simplify equations (3.10), let us denote the recurring terms in the Hamilto-

nians by

hi,j = σxi σ
x
j + σyi σ

y
j . (5.3)

This immediately simplifies (4.1) and (5.1) to

Hid =
1

2

N∑
i=0

[Ii+1hi,i+1 +Bi (σzi + 1)] , (5.4)

H = Hid + γhα−1,α+1. (5.5)

If one tries to solve the main decoupling condition (3.10) by hand without using the

algorithm from 3.3.1, the following property of hi,j often comes in handy

g†hi,jg = −hi,j . (5.6)

Where g = σzi or g = σzj . This relation is sometimes referred to as the time reversal.

The first step towards the partial decoupling scheme is to write out the expansion

(3.8) for a specific choice of the scheme {g0 = I, g ≡ g1 = σzα−1}

H
(0)

=
1

2
(Hid + g†Hidg + γhα−1,α+1 − γhα−1,α+1) (5.7)

=
1

2
(Hid + g†Hidg). (5.8)
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The additional interaction is now eliminated to the lowest order, however since g†Hidg 6=
Hid, this is not a decoupling scheme yet, it needs further improvement.

Consider the scheme

g0 = I, (5.9)

g1 = I,

g2 = σz0σ
z
2 . . . σ

z
α−3σ

z
α−1,

g3 = σzα+1σ
z
α+3 . . . σ

z
N−1σ

z
N+1,

where g2 applies σz to the qubit α− 1 and every second qubit before it, while g3 applies

it to the qubit α + 1 and every second qubit after it. g2 acts as time reversal on all

operators hi,i+1 for i < α and hα−1,α+1. Similarly, g3 is the time reversal operator of

hi,i+1 for i ≥ α and of hα−1,α+1. This means that while all hi,i+1 which are present

in (5.4) have their sign reversed once, hα−1,α+1 has it reversed by both g2 and g3. So

writing out (3.8) for this scheme gives

H
(0)

=
1

2

N∑
i=0

[
1

2
Ii+1hi,i+1 +Bi (σzi + 1)

]
, (5.10)

since gzi commutes with the magnetic part. This is equal to 1
2Hid for Bi = 0. In the case

of homogeneous magnetic fields Bi = B this only means that the state to be transferred

picks up additional relative phase of e2iBT [7], which is easily corrected for. We call this

procedure the partial scheme.

Numerical Simulations

Note the time scaling of D = 2 in Eq. (5.10). This means that if QST happened at

some time T in the unperturbed case, in the perturbed case with Dynamical Decoupling

it will happen at 2T . We have run many simulations with different numbers of repe-

titions per π/λ seconds. We did not use the symmetrization trick in this case as the

number of required pulses was very low already. For a representative result of different

configurations see Fig. 5.3. We consistently managed to find a relatively small number

of repetitions needed to make the first few peaks in fidelity go back to one (above 0.95)

and restore the periodicity of the unperturbed protocol. By relatively small we mean

tens of pulses per π seconds, experimental setups for dynamical decoupling operate in

the regimes of thousands or tens of thousands pulses per π seconds [26].
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Figure 5.3: Fidelity in time (in 1/λ seconds), 10 qubit Krawtchouk chain with partial

scheme applied. Red dashed line: γ = 0, blue solid line: γ as in (5.2), 5 repetitions of

the partial scheme (20 pulses) per π/λ seconds. The peaks in fidelity come back close

to one and perfect QST is restored (blue line), but the time is scaled by a factor of two

compared to the ideal case (red line), leading to longer overall coherence times required.

5.1.2 Complete Decoupling Scheme

Solving Algorithmically

Here we present a scheme found by the procedures described in 3.3.1 and 3.3.2, we call it

the complete scheme. Which means that this scheme minimizes the time scaling factor

D. As it is the solution to the complete Eq. (3.10), the entire Hid is recovered. We ran

the algorithmic procedures and got the following scheme with m = 4 operators

g0 = I, (5.11)

g1 = σx0σ
x
1 . . . σ

x
α−2σ

x
α−1,

g2 = σyα+1σ
y
α+2 . . . σ

y
N−1σ

y
N ,

g3 = σz1σ
z
3 . . . σ

z
α−3σ

z
α−1σ

x
ασ

z
α+2σ

z
α+4 . . . σ

z
N−2σ

z
N .

Similar to the Partial Decoupling Scheme, one could use the property (5.6) to verify

the Eq. (3.10) by hand. This scheme works with D = 2. For a detailed step-by-step

calculation see [7].

65



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Figure 5.4: Fidelity in time (in 1/λ seconds), 10 qubit Krawtchouk chain with complete

scheme applied. Red dashed line: γ = 0, magenta solid line: γ as in (5.2), complete

scheme applied 12 times per π/λ seconds. Blue solid line: γ as in (5.2), complete

scheme applied 60 times per π/λ seconds. Repeating the complete scheme more times

per time unit (blue line) gives additional improvement compared to the lower number

of repetitions (magenta line). At the same instant the overall improvement of QST is

quite obvious.

Numerical Simulations

We carried out numerical simulations for various numbers of qubits in Krawtchouk

chains, γ from (5.2) and α near the middle of the chain and were getting very consistent

results. However this time we observed a significant drop in the number of required

repetitions of the scheme per π/λ seconds once we used the symmetrization trick. Let

us focus first on the case with no symmetrization.

For representative results in the number of qubits and numbers of repetitions see

Fig. 5.4, where we plotted two different applications of the complete scheme with no

symmetrization, one slower with 12 repetitions or 48 pulses per π/λ seconds, and second

faster with 60 repetitions per π/λ or 240 pulses per π/λ seconds. It is apparent that

while the first peak improves (above the set threshold only slightly - from F ≈ 0.947

for 12 repetitions to F =≈ 0.998 for 60 repetitions) the increased number of pulses has

significant influence on the later peaks where 60 repetitions recover above the tolerance

level also these peaks.

For comparison we then used the symmetrization trick, the results are in Fig. 5.5.
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Figure 5.5: Fidelity in time (in 1/λ seconds), 10 qubit Krawtchouk chain with complete,

symmetric scheme applied. Red dashed line: γ = 0, blue solid line: γ as in (5.2),

complete symmetric scheme applied 12 times per π/λ seconds. Compare this Figure

to Fig. 5.4 to see the significant improvement in performance when symmetrization is

applied.

Compared to the above, once we employed the symmetrization trick, only 12 repetitions

or 48 pulses per π/λ seconds were necessary to achieve improvement similar to 240 pulses

before. Since higher number of pulses is always going to be more difficult to implement

without disturbing the coherence of the system, keeping the repetition number low is of

importance. The performance is comparable to the partial scheme, however this scheme

does not introduce any additional relative phase, so it is not clear which would perform

better in practice.

5.1.3 Practical Decoupling Scheme

Solving Algorithmically

We mentioned before that some of the unitary pulses might be undesired, such as the

σz pulses, which are notoriously hard for the experimentalists to incorporate into their

experiments. If that is the case, we present one additional decoupling scheme, we call it

the practical scheme since it avoids the use of σz pulses. It was derived by hand from a

scheme found by the presented algorithms but for Hid with no magnetic fields. In other

words we asked not only for the additional interaction to be eliminated, but the magnetic

fields as well. We then altered the found solution with the solution to the homogeneous
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system (3.40) by hand to eliminate the σz pulses. The system of equations did not allow

us to do that for the previous schemes.

The practical scheme is the following set of m = 4 unitary operators, D = 2

g0 = I,

g1 = σx0σ
x
1 . . . σ

x
ασ

y
α+1σ

x
α+2σ

y
α+3 . . . σ

x
N ,

g2 = I,

g3 = σy0σ
x
1σ

y
2 . . . σ

x
α−2σ

y
α−1σ

x
ασ

x
α+1 . . . σ

x
N . (5.12)

The effective elimination of the magnetic fields results in an additional relative phase

eiϕ = (−i)N added to the state transferred [7]. The elimination of the magnetic fields

can also be viewed as an advantage of this particular scheme over the others. It is

applicable not only to the case with additional coupling, but can also be used to correct

for eventual inhomogeneous magnetic fields.

Numerical Simulations

We ran very similar simulations to the partial and complete schemes, a representative

result without the symmetrization trick can be found in Fig. 5.6. We found that with no

symmetrization the needed number of pulses (40 per π/λ seconds) lies between the partial

and complete schemes. The result was the same for the symmetrized schemes, however

the effect of symmetrization was most pronounced for the complete scheme. Typically

the symmetrization lowered the number of required repetitions per π/λ seconds by one

order for both the partial and practical schemes.

5.1.4 Limitations of Decoupling Schemes

Chain Length

One of the questions worth considering is the dependence of the required number of

pulses on the number of qubits in the chain. This is an interesting topic since we know

that the effect of the additional coupling tends to be less pronounced for longer chains

than for short ones [11] suggesting a lower number of correction pulses needed. On the

other hand, all the schemes require pulses to be applied to all the qubits in order to

restore the desired dynamics. Stabilizing larger numbers of qubits could require a yet

unspecified larger number of pulses per π seconds.

We sequentially increased the number of repetitions for the different schemes and

different chain lengths until the fidelity of the first peak came above 0.95 and noted
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Figure 5.6: Fidelity in time (in 1/λ seconds), 10 qubit Krawtchouk chain with practical

scheme applied. Red dashed line: γ = 0, blue solid line: γ as in (5.2), practical scheme

applied 8 times per π/λ seconds. The protected time evolution (blue line) is again

periodic and the peaks come back very close to one. The shift in time is cause by the

applied correction method.

the required number of pulses. The results are in Fig. 5.7. For both the complete

and practical schemes the required number of pulses seems to increase with the number

of qubits in the chain while the partial scheme hovers around a constant number of

12, it can be again an increasing dependence, but with much lower increase. A more

detailed study would require the study of longer chains which was beyond the accessible

computational power.

Imperfect Pulses

Since we assume the additional interaction to stem from an imperfection, it was nat-

ural to ask ourselves what effect would it have if the pulses themselves in Dynamical

Decoupling were implemented incorrectly. So we tested the schemes against Gaussian

perturbations in timing of the pulses and against individual pulses being randomly ro-

tated on the Bloch sphere to σje−iθσ
j

with θ sampled from a Gaussian distribution.

Small perturbations seemed to have very little effect, but at a certain point became

more pronounced. To be specific, the peaks of the fidelity did not significantly drop if

the pulses happened between ∆T ± 0.4∆T and were not rotated more than θ < 0.1∆T .
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Figure 5.7: Minimal number of pulses required to make the first peak in fidelity larger

than 0.95 for different numbers N + 1 of qubits in the perturbed Krawtchouk chain,

γ from (5.2) and α in the middle of the chain. Red squares: complete scheme with

the symmetrization trick, blue circles: partial scheme, black triangles: practical scheme.

Even if the dependence of the number of pulses on the chain length seems to grow for

some schemes, it is nontrivial and based on the available data difficult to identify.

5.2 NNN Chains

Similarly to section 5.1, here we explore various realistic perturbations to the protocol

from 4.1.3. Since every qubit in this protocol has at least two connections and the

individual magnetic fields are always non zero, we are going to divide the perturbations

into three categories. The first one will scale all the connections of one of the qubits, that

corresponds to a similar situation to the bent chain. The second kind of perturbations

modify a single coupling in the chain and the third modify one of the magnetic fields.

For all the categories we give a way to construct a decoupling scheme that corrects for

them together with numerical simulations of their performance. When we construct the

schemes algorithmically, from now on we are always going to employ the symmetrization

trick.

The main criterion for comparing individual decoupling schemes is the number of

required pulses per π seconds for improving the first peak in fidelity above 0.95. The

reason for this is the varying number of operators in each Dynamical Decoupling scheme,

which causes the number of repetitions of the scheme per π seconds not to be comparable

between the protocols. When we say that certain schemes perform similarly, we mean

in the number of pulses per π seconds that bring the first peak in fidelity above 0.95.
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Figure 5.8: Fidelity in time (in 2/(βλ) seconds), 5 qubit NNN chain with all the

couplings of the qubit µ = 2 doubled. In the ideal case Fig. 4.4 the first peak appears at

π/βλ, at this time we see a noticeable peak here as well, but is much lower and narrower.

Overall the behavior is more irregular and although there are later peaks above 0.95,

the first peak is the most significant one for QST. Furthermore, it is realistic to consider

imperfect timing of the read-out operations as well and the peaks in fidelity are now

much narrower leaving less space for timing errors.

5.2.1 Perturbing All Interactions of Qubits

This perturbation assumes a choice of one of the qubits µ ∈ {0, . . . , N} for which all of

its couplings have been multiplied by some c > 0. The procedures to find decoupling

schemes are very different for the case of weakened couplings c < 1 and strengthened

couplings c > 1 (c = 1 means there is no perturbation).

A very illustrative case is when all the couplings are doubled c = 2. The severe effect

on the fidelity of the chain is in Fig. 5.8. The drop is most severe at the first peak and

the behavior becomes significantly more irregular compared to the ideal case in Fig. 4.4.

To find a decoupling scheme that corrects for this, remember the time reversal prop-

erty (5.6). Now consider the following decoupling scheme with m = 4

g0 = σzµ, (5.13)

g1,2,3 = I.

Now insert this into the lowest order approximation of the effective Hamiltonian obtained

from Magnus expansion (3.8). Doubling the couplings for some µ means that the relevant

interaction terms are present in the sum (4.68) twice. The operator g0 acts as the time

reversal operator on all the interactions of the qubit µ and does nothing to all the other

71



0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Figure 5.9: Fidelity in time (in 2/(βλ) seconds), 5 qubit NNN chain with all the

couplings of the qubit µ = 2 doubled. Blue line: protected with 400 pulses per π/(λβ)

seconds of the scheme (5.13), red line: protected with 200 pulses per π/(λβ) seconds of

the scheme (5.13). Both first peaks occur at nearly the same time and are very close to

one, the following evolution is significantly protected by the scheme with more pulses

(blue line).

terms. Therefore in the expansion they appear 4 times, but the sum is divided by four.

Therefore to the lowest order the perturbation is eliminated with no time scaling D = 1.

The performance of the scheme is plotted in Fig. 5.9, for both cases the first peak in

fidelity comes back close to 1 and the overall shape is much more reminiscent of the ideal

case presented in Fig. 4.4.

Coming up with a scheme for some other c > 1 essentially boils down to number

theory. If c is not a rational number, let r
s be its sufficient rational approximation. Since

simulating the performance of a scheme is straightforward, finding the sufficient rational

approximation becomes an iterative process of increasing the approximation accuracy

until the scheme performs in simulations as desired. If c is rational, let c = r
s , where

r and s are coprime integers and r > s > 0. Let e be the number of identities in the

scheme and f the number of σzµ pulses in the scheme. Writing out (3.10) gives

e+ f

e− f
=
r

s
. (5.14)

This is one equation for two variables, but naturally we look for the lowest possible f .

We can check the case of c = 2, in this case r = 2, s = 1 and (5.14) gives

e+ f

e− f
= 2. (5.15)

Solving for lowest f gives e = 3, f = 1.
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The cases with c < 1 are difficult to solve by hand, because the schemes must involve

all the other qubits in the network. Therefore solving (3.10) in this case completely

relies on the algorithms from 3.3.1 and 3.3.2. We applied those for multiple choices of µ

and c and most of the time the resulting schemes were characterized by D > 2 and m in

the lower hundreds, roughly 1/2 of them were identities. The resulting schemes showed

heavy dependence on N in the sense of different operators employed.

For example we applied the algorithms for 5 qubits (N = 4), c = 0.6, α = 2, β = 1

and µ = 2. The result is

g0...49 = I, g50 = σy3 , (5.16)

g51 = σx1σ
x
4 , g52...57 = σx1σ

x
2σ

x
3 ,

g58...59 = σy1σ
y
4 , g60...67 = σy1σ

y
2σ

x
3σ

y
4 ,

g68...69 = σz2 , g70...74 = σx0σ
x
3σ

y
4 ,

g75...79 = σx0σ
x
2σ

z
3σ

x
4 , g80 = σx0σ

x
1σ

x
2σ

z
4 ,

g81 = σx0σ
x
1σ

x
2σ

x
3σ

x
4 , g82...84 = σx0σ

y
2 ,

g85...90 = σx0σ
y
1σ

z
2σ

z
3σ

x
4 , g91...97 = σx0σ

z
1σ

x
2σ

x
3 ,

This is a decoupling scheme with m = 98 and D = 7/3. Fig. 5.10 shows its performance

using numerical simulation. The number of pulses required is much higher in this case

compared to the other schemes which might hinder its significance, but the first peak is

restored almost entirely. Notice how it scales time compared to the ideal case. Because

D = 7
3 , the first peak arrives in more than twice the time it takes for the unperturbed

chain, but it is several times higher than in the perturbed case.

5.2.2 Perturbing One Interaction

The second kind of perturbations only disturbs one interaction strength in Eq. (4.68).

We parametrize which I
(j)
i+j is perturbed by µ ∈ {0, . . . , N} and a ν ∈ {1, 2}, resulting

in the specific choice I
(ν)
µ+ν . This coupling is multiplied by a scaling constant c > 0

to become cI
(ν)
µ+ν . This time both the strengthening c > 1 and weakening c < 1 are

addressed by running the algorithms described in 3.3.1 and 3.3.2.

The effects of this perturbation are less pronounced than in 5.2.1, which is not sur-

prising since the perturbed Hamiltonian is much closer to the ideal one than before (Fig.

5.11). We give two examples of the solutions found algorithmically. Both for a 5 qubit

NNN chain (N = 4), α = 2, β = 1, µ = 2, ν = 1, but one for c = 2 and another one for
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Figure 5.10: Fidelity in time (in 2/(βλ) seconds), 5 qubit NNN chain with all the

couplings of the qubit µ = 2 scaled by c = 0.6. Blue solid line: protected with 10000

pulses per π/(λβ) seconds of the scheme (5.16), red solid line: unprotected, red dashed

line: ideal case (c = 1). The perturbation has a pronounced deteriorating effect on the

time evolution (red solid line compared to the red dashed line). The red solid peaks are

lower and none of them reach the fidelity of 0.95. The first four peaks stay below the

fidelity of 0.4 while the red dashed line reaches 1.0 two times in the same time frame.

The evolution is restored and scaled when protected by the decoupling scheme (blue

line).
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Figure 5.11: Fidelity in time (in 2/(βλ) seconds), 6 qubit NNN chain, α = 1, β = 1 with

one coupling of the qubit µ = 3, ν = 1 scaled by c = 1.7. Blue solid line: unprotected,

red dashed line: ideal case (c = 1). Both the maximal value of fidelity and the time of

QST are perturbed by the scaled interaction (blue line) compared to the ideal case (red

dashed line).
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c = 10/13. The solution for c = 2 is as follows

g0...510 = I, g511...553 = σz3 , (5.17)

g534...539 = σy2σ
x
2σ

x
3 , g540...569 = σz2 ,

g570...606 = σx1σ
z
3σ

x
4 , g607...636 = σx1σ

x
2σ

z
3σ

z
4 ,

g637 = σx1σ
z
2σ

x
3σ

z
4 , g638...661 = σy1σ

x
2σ

y
3σ

z
4 ,

g662...664 = σy1σ
z
2σ

y
3σ

y
4 , g665...699 = σz1σ

y
2σ

z
3σ

y
4 ,

g700...726 = σx0σ
x
3 , g727...741 = σx0σ

x
1σ

y
2σ

x
3σ

y
4 ,

g742...761 = σx0σ
x
1σ

z
2 , g762...795 = σx0σ

x
1σ

z
3σ

x
4 ,

g796...829 = σx0σ
z
1σ

x
2σ

y
3 , g830...863 = σx0σ

z
1σ

z
2σ

x
3σ

x
4 ,

it is a solution with m = 864 and D = 3
2 .

Applying the linear programming procedure for c = 10
13 returns

g0...78 = I, g79...81 = σx2σ
x
3σ

y
4 , (5.18)

g82...83 = σx1σ
x
2σ

x
3σ

z
4 , g84...85 = σx1σ

z
2σ

z
3σ

y
4 ,

g86 = σy1σ
z
4 , g87 = σy1σ

x
2σ

x
3σ

x
4 ,

g88...89 = σy1σ
y
2σ

y
3 , g90...91 = σz1σ

z
2σ

z
3σ

z
4 ,

g92...95 = σx0σ
z
2σ

z
3σ

x
4 , g96...97 = σx0σ

x
1 ,

g98...99 = σx0σ
y
1σ

z
2σ

z
3σ

y
4 , g100...103 = σx0σ

z
1σ

x
2σ

x
3 ,

which is a decoupling scheme with m = 104 and D = 13
10 . The fidelity with this scheme

is in Fig. 5.12. The first peak comes back to 1, but overall the number of pulses for this

scheme was much higher than for other schemes. A peculiar property in the cases of

c < 1 is that the scaling of the automatically found solutions was always D = 1/c, not

so for c > 1. However we are not able to prove this analytically due to the complicated

nature of the schemes like (5.18).

5.2.3 Perturbations in the Magnetic Field

The third category of perturbations we explore are the perturbations of one of the

magnetic fields labeled by µ ∈ {0, . . . , N}. The magnetic field strengths correspond to

the diagonal elements in (4.70). Again we change one of the variables from (4.71) to

cB̃µ, c > 0. The NNN Krawtchouk protocol seems to be very sensitive to the changes

in magnetic fields, see Fig. 5.13, the effects are very similar for both c > 1 and c < 1.

Again we rely on algorithmic solutions to find Dynamical Decoupling schemes to correct

for these perturbations.
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Figure 5.12: Fidelity in time (in 2/(βλ) seconds), 5 qubit NNN chain, α = 2, β = 1

with one coupling of the qubit µ = 2, ν = 1 scaled by c = 10/13, protected by 50000

pulses per π/(λβ) seconds of the scheme (5.18). The first peak in fidelity comes back

above 0.95 and is useful for QST.
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Figure 5.13: Fidelity in time (in 2/(βλ) seconds), 6 qubit NNN chain, α = 1, β = 1 with

one magnetic field µ = 3 scaled by c = 1/2. Blue solid line: unprotected, red dashed

line: ideal case. The fidelity of QST is severely affected and QST is lost completely by

the scaled magnetic field (blue line) compared to the ideal case (red dashed line).

76



In contrast to the effects being similar for c > 1 and c < 1, the respective decoupling

schemes vary for the two cases. Perturbations with c > 1 characteristically lead to lower

scaling in time (D < 2) and lower number of operators in the scheme m, while c < 1

characteristically leads to D > 2 and higher number of operators in the scheme m.

A representative case for c > 1 is the scheme for 5 qubit NNN chain, α = 2, β = 1,

µ = 2 and c = 5
3 which is corrected by the scheme

g0...17 = I, g18 = σx2σ
x
3σ

z
4 , (5.19)

g19 = σy2 , g20 = σx1σ
x
2σ

x
3σ

x
4 ,

g21 = σz1σ
x
2σ

x
4 , g22 = σx0σ

x
2 ,

g23 = σx0σ
x
1σ

x
2σ

z
3 .

It almost does not scale time with D = 6
5 and has a low number of operators m = 24.

On the other hand c = 3
5 is corrected by

g0...582 = I, g533...590 = σz2σ
y
4 , (5.20)

g591...614 = σz2σ
z
3σ

x
4 , g615...650 = σx1σ

y
3 ,

g651...686 = σx1σ
z
2σ

z
3σ

y
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z
3σ

y
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g724...725 = σy1σ
z
2σ

z
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x
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z
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z
2σ

y
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z
3 , g776...809 = σx0σ

z
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z
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x
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x
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y
4 ,
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x
1σ

z
2σ

y
3 ,

g865...897 = σx0σ
x
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z
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y
3σ

y
4 , g898...901 = σx0σ

z
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3σ

x
4 ,

g902...934 = σx0σ
z
1σ

z
3 , g935...953 = σx0σ

z
1σ

z
2 ,

g954...969 = σx0σ
z
1σ

z
2σ

x
3σ

y
4 ,

which involves m = 970 operators and scales time with D = 5
3 .

We experimented with different choices of the parameters α, β and numbers of qubits

in the chain. If we fixed the scaling factor and number of qubits in the chain, the schemes

we found for various α, β performed very similarly in the number of required pulses for

the first peak in fidelity to come above 0.95. A representative example can be found in

Fig. 5.14, in all the simulated configurations if the scheme brought the first peak above

0.95, the same was not true for the following peaks. In order to restore the periodic

behavior as well, the number of required pulses was roughly five times higher.
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Figure 5.14: Fidelity in time (in 2/(βλ) seconds), 6 qubit NNN chain, α = 1, β = 1

with one magnetic field µ = 3 scaled by c = 1.6, protected by 5000 pulses per π/(βλ)

seconds of algorithmically found scheme. The first peak in fidelity is back above 0.95.

5.2.4 Comparing Perturbations of NNN Chains

The considered perturbations were all inspired by realistic physical considerations, but

their characters and effects are very different. The perturbation of all of a qubit’s

interactions naturally affects the dynamics of a larger part of the network and thus even

a scaling factor close to (but different from) 1 has a pronounced effect. Compared to that,

in order to see similar effects on the first peak in fidelity, the scaling of a single coupling

has to be roughly twice as far from 1 for the same network. In contrast even though the

considered change in magnetic field affects only a single qubit, a small distance from 1

of the scaling factor of the magnetic field has adverse effects on the first peak in fidelity.

In the NNN case we had two families of couplings to choose from for the perturbation,

the NN couplings and the beyond nearest neighbor couplings. Surprisingly there was

almost no dependence in the drop of the first peak or the characteristics of the time

evolution found on the family of the perturbed coupling. This shows that the role of the

beyond nearest neighbor interactions in QST is as significant as that of NN couplings.

Using the required number of pulses to have the first peak in fidelity above 0.95 as the

measure of how difficult it is to correct for each perturbation for the same scaling factor

c and the same network, the most difficult to correct is the change of a single coupling,

followed by weakening of all of a qubit’s couplings, then change in the magnetic field,

and finally the strengthening of all of a qubit’s couplings.

In general all of the perturbations we have considered had more pronounced effects

on shorter networks than on their larger counterparts and perturbations close to the

ends of the chains had more severe effects than those in the middle. We have always
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experimented with a varying number of qubits in the network and the other parameters

of the protocols such as α and β for the NNN chains in order to check the effectiveness

of the Dynamical Decoupling schemes.

It is possible that there are schemes which involve a lower number of operators

than those found as well as schemes which eliminate the perturbation to more than the

lowest order. However, based on past experiences, the schemes found by the presented

algorithm are known to produce applicable schemes [46]. One of the most important

aspects of a QST protocol is the time it takes for the transfer to occur. Employing linear

programming in a way which minimizes the scaling factor D guarantees minimal arrival

time. Additionally, based on simulations, the required numbers of pulses (thousands per

second) are within experimental possibilities [26] and therefore realistically applicable.
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Chapter 6

Concluding Remarks

Various methods and approaches to realize QST in a simple yet realistic and hence

possibly useful protocol of quantum information processing have been found over the

years. We chose a framework general enough to demonstrate and work with several of

them and hopefully underline the differences between them. The analogy with angular

momentum operators allows one to solve easily the Schrödinger equation in the special

case of the Krawtchouk chain (2.20), which was the second QST protocol to be discovered

[3, 4]. The angular momentum analogy however stops short before giving a method of

engineering other QST protocols. On the other hand, the chapters devoted to finding

Hamiltonians which generate permutations of the computational basis (3.15) showed

how one can find infinitely many Hamiltonians with the QST property. Nevertheless

we only worked on linear chains of qubits. Working on graphs has then allowed us to

demonstrate how the topological character influences the QST property of the networks

and we commented on the first beyond nearest neighbor QST Hamiltonians. We were

then able to show most of the known properties of QST Hamiltonians using orthogonal

polynomials when we found the necessary and sufficient conditions for Hamiltonians

having the QST property and gave another method of engineering infinitely many of

them. We employed the orthogonal polynomials to arrive to new results when we showed

how to use them to engineer quantum networks on a two dimensional lattice and took a

look at constructing QST chains by joining them together.

The infringing considerations we placed upon various QST networks were inspired by

realistic conditions stemming from the relationship of the models to the actual underlying

physical systems. Both the study of effects of the perturbations on the performance of

the networks and the error correcting algorithms are novel results [7, 30]. In order to

correct for the perturbations we proposed to somewhat relax the minimal control often
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encountered in QST. We needed to assume the possibility of individual qubit control

sufficient to apply the Pauli operators. However, these single qubit unitary operations

have already been demonstrated experimentally on the very same systems that QST has

[16, 17, 18, 19, 28] and therefore the methods presented here should pose no additional

requirements on the experimental setups.

The method used — Dynamical Decoupling — has a serious limitation when con-

sidered as a tool to modify the performance of a transfer scheme. It cannot create an

interaction between the constituents which is not already present in the original system.

It is only capable of correcting any existing interaction i.e. decrease its strength in re-

spect to others. Hence the transfer times become longer. In such a case there always

exist infinitely many solutions to the main condition (3.10). Comparing the schemes

which weaken interactions to those that strengthen interactions in respect to others, we

have found the former to be simpler than the latter in the following sense. Schemes

which weaken interactions tend to involve a lower number of different operators and for

the same performance usually require a lower number of pulses per second. Intuitively

the reason for this can be found in the scaling of time. In order to correct for an in-

teraction too strong, the schemes usually only weaken the one interaction while leaving

the rest untouched. This scales the time evolution only marginally, we have even seen

cases such as (5.13) which are corrected for with no time scaling at all. On the other

hand if some of the coupling constants are too weak, Dynamical Decoupling essentially

weakens all of the remaining interactions to restore the QST property and this leads to

noticeable scaling in time. The scaling in time and the control required for single qubit

Pauli operations make up the cost of correcting for the perturbations in the proposed

method and can be the basis of a cost function used to quantify the price of correction.

Based on our simulations, the number of required pulses sometimes grew quite large

with the size of the system and could pose a severe obstacle for practical setups. Note

however that most of the decoupling schemes contain large numbers of the identity

operators which amount to doing nothing at all, this alone could bring the number of

actually required nontrivial pulses back down to experimentally tolerable numbers. The

known experimental setups are capable of applying up to tens of thousands of pulses per

π seconds [26], therefore in the most difficult cases we have reached the upper bound

on the number of required pulses and stayed well below it otherwise. Further more in

chapter 5.1.3 we show that in some cases it is possible to take advantage of the freedom

of choosing the solutions to the system of equations (3.26) so that the potentially difficult

operations are eliminated from the scheme altogether.

One of the important aspects of QST is the arrival time. For all the protocols
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we gave well defined times of arrival. The effect of some of the perturbations was

most pronounced in the arrival time. Sometimes the peaks in fidelity did drop, but

additionally they shifted in time, became erratic or considerably narrowed. Having a

longer read out time at a well defined moment is naturally preferable. Thus the ability

to give well defined arrival times once the Dynamical Decoupling schemes are applied

can be of significant importance.

Continuing the explorations of both the QST and imperfect quantum networks can

enrich our knowledge on quantum state manipulation (QST is a special example), extend

its applicability to new systems and make it a reliable elementary building blocks of a

functional quantum computer [56]. Many open questions remain. It is an open question

to what extend QST should be discussed beyond say one or two dimensions. For the

implementation of a quantum computer a two-dimensional structure might be complex

enough. However we can deal with other systems. The discussion of transport and

specifically QST on graphs is an active field of research and is not reducible to cases

in one or two dimensions. In higher dimension and sufficient connectivity among its

constituents we have a simple solution of PST at hand. We can guide the excitation

(using some decoupling scheme) to the desired target by removing all the interactions

except those along a simple linear chain while modifying the remaining ones accordingly.

This is a brute force method which works but requires quite a high degree of control

on the system and many operations to be applied. However ”more” elegant means

without so much external control would be certainly interesting and welcome both from

a theoretical point of view as well as experimentally.

One of the most recent results is the mapping of QST on the Krawtchouk chain to the

continuous time quantum walk on the hypercube. At first this seems like a theoretical

niche, but since quantum walks have been demonstrated experimentally repeatedly, this

and similar results could open a new path to demonstrations and implementing of QST

in many different systems and become a standard for more advanced protocols. The

implementation of known protocols on new physical systems is usually just the first step

in exploring the potential of such a system. It will require a rethinking of the known

approaches to respect and take advantage of all the features new implementation offer.

We saw that the freedom in constructing the decoupling schemes allowed us to tailor

them to specific needs such as eliminating all of the σz pulses. With new systems being

proposed for the demonstration of QST, new correction schemes might be needed since

the physical reality of these systems can lead to different restrictions. Additionally, the

response of many more QST protocols to perturbations has not been explored yet. For

such QST protocols new decoupling schemes could also be found and optimized. We

82



also saw that different decoupling schemes for QST perform differently and while we

gave one generic algorithm for finding such schemes with minimal possible increase in

the QST time, other algorithms could be found which would guarantee the efficiency

of the resulting decoupling schemes but might perform differently when efficiency and

transfer time are evaluated.
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