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Gauge-invariant descriptions for a free bosonic scalar field of continuous spin in a d-
dimensional Minkowski space—time using a metric-like formulation are constructed on
the basis of a constrained BRST-BFV approach we propose. The resulting BRST-BFV
equations of motion for a scalar field augmented by ghost operators contain different sets
of auxiliary fields, depending on the manner of a partial gauge-fixing and a resolution
of some of the equations of motion for a BRST-unfolded first-stage reducible gauge
theory. To achieve an equivalence of the resulting BRST-unfolded constrained equations
of motion with the initial irreducible Poincaré group conditions of a Bargmann—Wigner
type, it is demonstrated that one should replace the field in these conditions by a class
of gauge-equivalent configurations. Triplet-like, doublet-like constrained descriptions, as
well as an unconstrained quartet-like non-Lagrangian and Lagrangian formulations, are
derived using both Fronsdal-like and new tensor fields. In particular, the BRST-BV
equations of motion and Lagrangian using an appropriate set of Lagrangian multipliers
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in the minimal sector of the respective field and antifield configurations are constructed
in a manifest way.

Keywords: Single-valued UIR with continuous spin; Bargmann—Wigner equations; BRST
complex; non-Lagrangian and Lagrangian dynamics; tensionless string limit; higher con-
tinuous spin symmetry algebra.

PACS numbers: 03.65.Pm, 11.10.Ef, 11.10.Kk, 11.15.—q, 11.30.Cp

1. Introduction

The Poincaré group is a cornerstone of relativistic quantum field theories. For the
first time, its representations in R'3 were studied by Wigner.! The number of
group representations describes the quantum states found in a local field theory,
being some massless particles of fixed helicity (photon) and massive particles of in-
teger (for vector and Higgs bosons) and half-integer (for quarks and leptons) spin.
In higher space-time dimensions, the Poincaré group I1SO(1,d — 1) is shown to
be useful in (super-)string theories.2 # Until now, no examples have been found to
realize any other representations that exist in the Nature. So, a tachyon represen-
tation of imaginary mass, which appears to be an excitation of the lowest energy in
the spectrum of bosonic string theories, is used as an indicator of instabilities, for
instance, in spontaneous symmetry breaking. The other representations are known
as continuous spin representations (CSR) which describe a massless object with
an infinite number of helicities for which eigenstates of various helicities are mixed
under the Lorentz transformations, in a way similar to the set of massive particles,
leading to an infinite heat capacity of the vacuum, due to Wigner’s argumentation.”

Numerous attempts have been undertaken to associate CSR with physical sys-
tems. It appears that the actual discovery of this procedure is yet to come. At the
same time, the single-valued (bosonic) and double-valued (fermionic) CSR with an
infinite number of degrees of freedom (see e.g. Ref. 6) have not yet been observed
with confidence” in the respective spectra of second-quantized bosonic strings and
superstrings, as compared to the massless higher-spin (HS) fields of all the inte-
ger (0,1,2,...) and half-integer (1/2,3/2,5/2,...) helicities (each having a finite
number of degrees of freedom), so as to be extracted using the (super-)string
tensionless limit.2? However, there are ways to construct a special tensionless string
limit'®1!! in which CSR in the truncated string field may be found.

The above property of CS particles is quite attractive nowadays due to an intense
development of higher-spin theory;!2 17 see the reviews in Refs. 18 and 19, the
discussion in the string-theory context in Ref. 20 and references therein.

Unitary irreducible representations (UIR) using CS for the Poincaré and super-
Poincaré groups in a d-dimensional Minkowski space-time with d > 4 were first
studied by the team of Brink and Ramond,?! and in further detail, by Bekaert and
Boulanger.?2 It was shown by Khan and Ramond?? that it is possible to consider
CSR with CS E as a special limit for an HS particle of mass m and spin s, when
limy, 05500 Ms = E, used to derive the Fronsdal- and Fronsdal-Fang-like equa-

24,25

tions, albeit having CSR in the limit corresponding to massive HS particles,26
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and shown to be equivalent to the Wigner and Wigner-Bargmann equations®7-28
(for a review, see e.g. Ref. 29).

In turn, a search for Lagrangian formulations (LF's) and forms of relativistic field
equations, not necessarily Lagrangian ones, which are to equivalently reproduce the
conditions selecting massless UIR with CS, has been variously developed for R~
in both d = 4 and higher dimensions. So, a local covariant action for bosonic CS
particle formulated using an auxiliary Lorentz vector 7, and localized to the unit
hyperboloid 72 = —1 has been presented by an integral over d*zd*n in Ref. 30
(see also Ref. 31). An LF for a scalar bosonic CSR field in terms of an infinite
set of (double-)traceless totally-symmetric tensor fields of any rank in constant-
curvature d-dimensional spaces has been realized using an oscillator formalism (in
accordance with tensor representation”) by Metsaev,2 which was used in Ref. 33 to
construct a quantum action for CSR field in RV4~!, whereas a twistor description for
massless particles with CS has been suggested in Ref. 34 (for relationship between
the Fronsdal-like and Fang-Fronsdal-like equations®®> and ones obtained in Ref. 32
and for interactions, see as well, Refs. 36-39).

Some of the most efficient tools to reconstruct a local gauge-invariant LF from
the initial UIR of the Poincaré or anti-de Sitter groups previously used merely for
particles of discrete spin on a basis of the BRST-BFV approach originating from
the BFV method,*® 43 invented to quantize dynamical constrained systems, and
applied, nevertheless, to a solution of the inverse problem, in fact, to formulate
an LF in terms of Hamiltonian-like objects using an auxiliary Hilbert space whose
vectors consists of HS (spin-)tensor fields. It is not surprising that a first application
in this way of the BRST-BFV method to CS fields in R*3 has been recently pro-
posed by Bengtsson,** one of the inventors of the constrained BRST-BFV approach
to lower-spin fields.44® An inclusion of holonomic (traceless and mixed symmetry)
constraints, together with differential ones, into a total system of constraints which
is to be closed with respect to Hermitian conjugation with an appropriate conversion
procedure for a subsystem with second-class constraints, has resulted in augmenting
the original method by an unconstrained BRST-BFV method, with no restrictions
imposed on the entire set of initial and auxiliary HS fields. The application of this
method have been initiated by Pashnev and Tsulaia,*® followed by Buchbinder,
Krykhtin and Reshetnyak,?*®® for totally symmetric HS fields and mixed (anti-)
symmetric HS fields in RV4~! and AdSy, see Refs. 59-67 (for a review and the
interaction problem, see Ref. 68). A detailed correspondence between constrained
and unconstrained BRST-BFV methods for arbitrary massless and massive IR of
the ISO(1,d — 1) group with a generalized discrete spin has been recently studied
in Ref. 69, where a constrained BRST-BFV LF for fermionic HS fields subject to
an arbitrary Young tableaux Y (sy,...,s%), k < [d/2] was first suggested and an
equivalence between the underlying constrained and unconstrained LF was estab-
lished. A development of this topic has resulted in an (un-)constrained BRST-BV
method of finding minimal BV actions necessary to construct a quantum action
within the BV quantization™ "2 presented in Ref. 73 (for bosonic HS fields, also
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see Refs. 74-77). An application of the BRST-BFV method to a scalar bosonic CS
field in RY3 on the basis of a so-called four-constraint formalism** was recently
proposed using the Weyl spinor notation in Ref. 78 (for recent developments, see
also Refs. 79-82, 85). A prescription for a four-constraint formalism to derive an
unconstrained BRST-BFV LF for a CS field* is different from the one applied to
HS fields of any discrete helicity, because the set of conditions extracting a massless
bosonic UIR of any integer spin and the one having CS2728 contains the respective
2 and 4 equations, so that the “naive” numbers of the respective constraints being
linear in the ghost approximations of Hermitian BRST operators should be 3 and 7.

Having in mind the equivalence between unconstrained and constrained BRST—
BFV LF for one and the same HS field of a generalized discrete spin in RH4~1 69 we
shall assume that the same property is to be valid for BRST-BFV unconstrained
and constrained descriptions for the equations of motion (EoM), we intend to con-
struct an BRST-BFV descriptions for free massless CSR particles propagating in
RY4~1, The paper is devoted to the following problems:

(1) Derivation of a constrained BRST-BFV approach to constrained gauge-
invariant both non-Lagrangian description for EoM (and Lagrangians) for a
scalar CS field in R¥~! in the Bargmann-Wigner form, with a compatible set
of off-shell BRST-extended constraints in the metric formulation.

(2) Study of an equivalence between the resulting BRST-EoM for a scalar CS field
in RY4~1 with initial conditions extracting UIR of the ISO(1,d— 1) group with
CS and making a comparison with a Fronsdal-like representation.

(3) Construction of constrained BRST-BV descriptions for EoM (and action) in
the minimal sector of the field—antifield formalism on a basis of the suggested
gauge-invariant constrained EoM (and action) for a scalar CS field in R»¢~1 in
the Bargmann—-Wigner form.

(4) Construction of an unconstrained gauge-invariant EoM (and action) from a con-
strained BRST-BFV description for EoM (and action) on a basis of additional
compensating field.

The paper is organized as follows. In Sec. 2, we find an higher continuous spin
(HCS) symmetry algebra for a massless bosonic field with a given CS in Rb4~1
in Bargmann-Wigner form and suggest (in Sec. 3) a constrained BRST-BFV for-
mulation for EoM. In the latter point, we construct a constrained BRST operator
with an off-shell holonomic constraint, obtain a properly gauge-invariant EoM and
action with help of the Lagrangian multipliers, find its representations in terms of
Fronsdal-like fields and resolve the problem 2 concerning an equivalence with the
initial set of UIR CS conditions. BRST-BV minimal formulations for EoM (and
action) are derived in Sec. 4 and an unconstrained quartet-like EoM and action
are presented in Sec. 5. The short-list of the results is presented in the Conclu-
sion. Finally, in App. A we construct a representation for higher continuous spin
symmetry algebra with two pairs of oscillators, then demonstrate in App. B the
problem of Fock space realization and, thus, LF for the single pair of oscillators
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within Wigner-Bargmann form of CSR equations as well as suggest a new way to
find CSR in the special tensionless limit for open bosonic string in App. C.

The convention 7,,, = diag(+,—,...,—) for the metric tensor, with the
Lorentz indices m,n = 0,1,...,d — 1, and the notation €(A4), [ghm, ghr, ghtot](A4)
for the respective values of Grassmann parity, BFV, ghy, BV, gh; and total,
ghiot = ghg + ghp, ghost numbers of a quantity A are used. The totally symmetric
in indices my, . .., my quantities """k and A™* ... A™* are denoted, respectively
as @M« and ([]A) (m)s Phe supercommutator [A, B} of quantities A, B with
definite values of Grassmann parity is given by [A, B} = AB — (—1)(<(B)B A,
The Heaviside 8-symbol determined as 6y; = 1(0) for k > I(k <1).

2. Higher Continuous Spin Symmetry Algebra A(Z;R}4~1)

The irreducible Poincaré group massless bosonic representation with CS in R14~1
is described by the R-valued function ®(x,w) of two independent variables ™, w™
(being by scalar CS field?!:3) on which the quadratic Cy = P™P,, and quartic,
Cy =Wy ooomy_s WM 4=3 Casimir operators take the values

Co®(z,w) =0, Cy®(r,w)=vE2d(z,w)

with V[/vmlmm'al*3 = €m1mmdpmd,2M7nd,1md . (21)
Wmimd=s ig the generalized Pauli-Lubanski (d — 3)-rank tensor® with Levi-Civita
tensor €14 momentum P, = —2%7 angular momentum M,,, = My + Smn,
for orbital and spin parts:
~ 0 0 0 0

(2.2)

Mpn = sz% - Zajnaxim s Smn = Zwm% - anawim )
and with the real positive constant =, enumerating the value of CS in R»*~! when
v = 1. Explicitly, the field ®(x,w) should satisfy to the 4 relations [as it was
suggested for d = 4 case by Wigner and Bargmann?”-2® when v = 1 for the field
®(p, ) in momentum representation, being Fourier transform of O (z,w): d(p,€) =
(2m) =92 [ d%z diw exp{ipmz™ + i&mw™}P(z,w)]. In terms of ®(p,€) and ®(z,w)

the equations read:

0 - .mn T
<nm”pmpn, N EmPns mm"iafmpn = E, 0" Emén + V)‘P(p, §) =(0,0,0,0), (2.3)
mn 00 B mn O 0 B

2For d > 4 there exist additional Pauli-Lubanski tensors

mycme _ _my-mg
w € =€ Preis Mmeomeys X X Mmg_ymg

such that [Pn,, W™t "e] = 0, thus providing for the operators Coe = Wy ...m, W™L " Me,
e=1,3,...,d—3 ford =2N, (e =0,2,...,d — 3 for d = 2N — 1) to be by Casimir operators?!
which are characterized by the parameters v,= and integer spin-like parameter si,...,s; for

k= [(d—4)/2).
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0 o 0
—zwm87¢>(x,w) =E0(z,w), nm”&d—mawné(x,w) =vd(z,w), (2.5)
with some dimensionless parameter v € R (being the squared length for the space-
like internal vector €™, €2 = —v), expressing the fact of ambiguity in definition

of internal variables w™ and determining the value of the quartic Casimir opera-
tor Cy on the elements of IR space of the Poincaré algebra iso(1,d — 1) as vZ2.P
Equations (2.4) and (2.5) are non-Lagrangian.

Because of the absence of nontrivial solutions, with except for, ®(z,w) = 0,
due to the first equation in (2.5), when expanding ®(z,w) in powers of only non-
negative degrees in w™, we consider the representation of ®(z,w) in the form of
series both in powers of w™ and in powers of its inverse degrees, (w™/w?) in terms

of independent usual in HS field theory tensor fields q)?m)k,(n)o(x) = &), (2) and
new ones for [ > 0: @l(m)k (), (@)1

l
Z Z (m)k,(n)l H U 7 = ((I)O + Z ) ) x w) (26)

>0 k>0 ! i=1 I>1

(for w? = W™w,,) to provide the completeness property when resolving the respec-

tive BRST complex in the corresponding vector (or Hilbert with endowing by an

w L does

appropriate finite scalar product) space. Because of the monomial w(mk
not uniquely determine the positive and negative degrees of w™ its dual element
<I>l(m)k (n): should have the respective dual property for VI > 0:

(M wn — w<m>k{ H W } < Hé:? ) H

o2 2(1+9) L1 e ma
=

Jj=1

l =~} _ i FHl+ Mt N4
= <©<m>k,<n)lﬁ‘1’(m)k,<n>z =D A0 T ’“>v (2.7)
i>0 j=1

where for the latter row a decomposition for the monomial w(™)% “:;)l
traceless parts was used (with account of the notation for totally-symmetric sets of

indices (m)x = my ---my and (n); = nq ---n; and 8 — =0hp)

wm,gzd—l mn+(5m5n_d 1, mn ) ﬂ
UJ2 n p o n npo' UJ2

(n); min(k,l) o
= <w(7n)k“;2l: H {d 1 nm (5;?115m d-! mmnpim)wm‘:ﬂ}

i=1

(n)i—k
m)e_ w
X {Qk,lw( Je—t 4 0l=k_1w2(l—k)}> (2.8)

PFor £ = 1, v = p? from above equations the relations given by (1.1)—(1.4) in Ref. 34 are obtained,
whereas for v = 1 the Wigner and Bargmann equations27:28 hold.
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(for w™o = 1). So, the trace part of w™%; corresponds to scalar d='nme),
which can be added to pure scalar ®°. The component fields ® (m) (n), are totally
symmetric not only with respect to separate group of indices (m)y and (n);, but with

respect to whole set of indices (m)y, (n); due to the relation: w™ £ = M <20,
In particular, the property holds
(I)l() e, (m) for k>1,
Pl = gt o)
m)i,(n);
(I)(”)k,(m)knkJrl ny for k <1

true. The symmetry properties (2.9) mean that the different traces of the functions
1 .
(b(m)h(n)l are equal:

mEn; (I)l M M1

l
Dy, (m) 1

m)k—kamk+17mk—1(n)l—1n

P (2.10)

= ¢(m)k—1nl—la(n)l—2nl”l+l
Indeed, we have the sequence of relations, e.g. for the first equality,

l men; . FHl men
¢(m)k7(n)zn = q)m)k—2mkm,mk—1(")l—1n o

MEMp g1
q)(m)k ampmyp1,mi—1(n)i—1" :

In particular, for k—1=1=1(l—1=Fk = 1) we have,

1 man 2 nin 2 nin
é(m)g nn (I)an,mln 2 ((I)m (n)277 = (I)nl mngn ! 2) . (211)

The relations (2.4), (2.5) take equivalent, [but ambiguous(!) due to freedom in
the definition of the monomials and therefore component functions (2.7), (2.8)]
representation in powers of w™ (2.12) and of Hle w™ % H§:1 w"i Jw? (2.13):

WO Op ), (a )=07
Lo ) O By, (@) = (2.12)
D B0, 1}(35) 2P, (7)),
gl (2) = e, (z);
" OO0 @iy, = 0
3mk+1q>l(m)k+l (e T Mo 0" ‘I’@zl)k,(n)z z}n
=200 = 10, @0 1y =
w(m)k%: Dioms Py, 11,0+ Eomatn Py, 11,1y = 0 (2.13)
Yy ™ 0 = VPl e 22 ()1 i
— 4= DR
L an sz} i)
+2(=2)2 = )O3, (), T} =0
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(for @ = 0 when [ < 0; k € Np) being respectively for each systems by D’Alambert,
divergentless, gradient and generalized traceless equations. Note, first, that all the
component tensor functions @?m)k in (2.12) and (I)l(m)k,(n)z in (2.13) are determined
with accuracy up to the transformations (2.7), i.e. may be changed on the re-

spective functions <i>0m . and &)l( ® Second, we have used the symmetrization

m)g,(n
in indices my, (m)g—1: {mg, (M)g—1}; in ni_1ng, (n);—2: {m—1ny, (n);—2} and in
4 indices n;_3n;_a,...,n; with (n);—4 in (2.13) without numerical factor. Third,

the left-hand side of the last equation in (2.12) may be equivalently written as,
e o (2) = @, (z) as it was done in the similar traceless equa-
tions in (2.13). The representation (2.6) leads to nonempty set of nontrivial solu-
tions for the systems (2.12), (2.13) with account for the first note. Fourth, the set
of Egs. (2.12) appears by the subsystem of the set (2.13) for [ = 0 with allowance
made for ambiguity (2.7), (2.8). For instance, from the third equations in (2.13) for
=1, k=1 (with n{ml{mq)(()m)o},(n)o} = 20, n, ®°) it follows:

Za{ml (i)7111}(x) + 277m1n15(i’0(95) =0
1d=PO"dL () + 20°(z) = 0,

. (2.14)
(07,07 = A ) 9,83 () = 0.

Note, that the similar equivalent equations take place for the third equations in
(2.13) for i > 1.°

To describe the dynamics of the fields ® jointly, we may follow by two ways
both being based on BRST-BFV approach. First variant consists in applying the
algorithm®% 68 for construction of the Lagrangian formulation, second variant is
concentrated within scope of non-Lagrangian equations of motion, as it was realized
for UIR with discrete spin, see e.g. Ref. 76 and for CSR.82 Whereas, the former
case requires an introduction of more complicated set of oscillators to provide string-
inspired Fock space structure presented in App. A, the latter one may be realized
without using of finite scalar product.

In spite of these problems, Eqs. (2.12) and (2.13) can be derived from the Lagran-
gian actions both in unconstrained with help of four sets of Lagrangian multipliers
A;‘(m)"’(n)l, 1 = 1,2,3,4, k,l € Ny and in constrained form with three sets of

K2

¢Another variant of solutions for (2.4), (2.5) due to the first equation in (2.5) can be chosen
without poles in w™ as its explicit solution:

(b(sz) = 6(“*)17 - E)‘P(a;vw) P

l m m
P(,0) = 3 Py (@)™
k>0
9]
= —1 .
Pm O™

To get the UIR with CS for the field ¢(z,w) one should to modify the rest equations in order to
include the value of CS Z in it that should provide the fulfillment of the equations on the Casimir
operators (2.1) that was done, e.g. in Refs. 32 and 78. We develop the above procedure in Ref. 97.
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(m)g,(n)i

Lagrangian multipliers without A, as follows:

E+1,(n)1

l(m)k,(n l(m)k,(n m
Seis = /dd Z NI Cg2gl AL (a gl
l>0

-1 -1
+ Nn—an 0" (I)(m)k,(n)l 2n T 2(1 - )6{m‘b m) g, (n)i— 1})

1 () () _ .
X (D, Bl oy e @i i) o (215)

d 1(m)r,( I
== Sci+ /d E V. ((b(m)km J(n) (b(m)ka(n)l
k,1>0

n
1]

+ 20!~ 4(1-1)9! !

(m)kn,{(n)l T (m)s{ni,(n)i—1}

-2 n -2
Pt myian Tusm} i) +2(0=2)(2 _d)q’(mn,{(n)z_ﬂm—lm}) '
(2.16)

In this respect, note that since the Bargmann—Wigner equations is linear in ® the
respective actions (2.15), (2.16) have a quadratic form which leads, of course, to
a nondiagonal form of the respective propagator and to a wider set of the degrees
of freedom due to Lagrangian multipliers. However, the EoM for ®(x,w) and those
for )\ll(m ()i (x) are completely decoupled from each other, and thereby form in-
dependent systems. By selecting the appropriate initial and boundary conditions
for /\” Jes(n)e () one can always fix the unwanted degrees of freedom completely.
We will use this form of free actions as auxiliary ones in order to deduce the EoM.4

dThe actions (2.15), (2.16) reflect the points of a general procedure known as the augmentation
method for the classical and quantum descriptions of (non-)Lagrangian systems,®3 which, owing
to an idea also suggested in Ref. 84, may be used to obtain the respective actions entirely in terms
of the field ®(z,w). To do so, one should consider the actions SA S‘EL‘ augmented by the terms

L[(m)g, ")l( )—)\M( ):

[eli=

quadratic in A;

§SA, -

A d N; . (cn=E
Ston= = Scen= +/d sz TN

1
=\ (@)Gupn, + F(®(@)n,i =0,

for F(®)n,s = lex\fii‘:I)Mii being EoM (2.13) for constrained at ¢ = 1,2,3 and unconstrained
i =1,2,3,4 cases. For a nondegenerate matrix |G, n, ||, we have actions being quadratic at the
extremals F(®)pn,s:

A _ QA
Sicnz = S(C|)5|(/\M_-:—F(<I>) Gyl )

d M; 1 N;
:—7/d GMNF(q))i

d 1(m)g,(n); gll’ U|(m1)grs(na)y
Q/d Z ¢ k lg(m)m(n)l?(ml)k/,(m)u(I) Yk o
kLK 1/>0
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The Poincaré group IR relations (2.4), (2.5) take the equivalent form in terms
of the operators,

(l07ll7mf7m11)®(1‘7w)e =0, (217)

0 — o 0
(lo7 ll,mf,mn) = (nm"()man, —a—mam *wmam + 1=, 77’]mn8u}7m% + )
(2.18)

It is impossible as it is shown in App. B to realize a Fock space structure on a
set of the generating functions ®(z,w) given by (2.6) and its dual with finite scalar
product with standard Hermitian conjugation property, when using the one set of
oscillators: (ap,,a™) = —1(8/0w™,w™), [a™,a*"] = —y™ for a™|0) when acting
on a vacuum vector |0). However, we enlarge the set of the operators (2.18) by its
(formal) duals (If",m1,m;):

(i) = ("0 50" — E e ) (21)

;{ &(jm} , (2.20)
(O3

(x,w +Zl>0 ol (x, w)}

and by the “number particle” operator,

_l[m m+}. —w i_i_il
90—4 11,My1 5  go = m8wm 9

being characterized by its action on ®(z,w) = {
for the values of the map degree (deg,,,deg,, /wz)fbé’l

(gofd/Q)fIJ(x,w):Z 509 (z, w) +Zsfl<1>‘”xw) , (2.21)

s >0

so that the component tensors ®*!(z,w) from ®(x,w), for s = I, belong to the
kernel of the operator (gy — d/2). From the commutators:

[go, mﬂ} = 2(mi"1 - V) , [go,mll} = 72(m11 — 1/) (2.22)

it follows, that the nonzero number v should be considered as a noncentral charge.

footnote d (Continued)

In the case of a gauge presence for ®(z,w): §®(z,w) = R(z,0z;w, Ow)s(z,w), we have the deter-
minant det ||Gpr; ;|| = 0, so that there exist (local) generators Ry ¢ of gauge transformations
(dual to the (local) generators R(x,0z;w, Ow)): 5/\?11' = RYio® with their own gauge parameters

o°. The quantities RY¢ are proper eigenvectors of |G s, v, 1|, so that we should find an invertible
supermatrix ||GM 5, | in a larger configuration space M)y = {)\?/[i, Cxi,Cai, b} having its
own ghost Cy, antlghost C and Nakanishi-Lautrup by fields in addition to the ones for the EoM
F(®)n,- The only problem here which may be controlled by an appropriate choice of the initial
conditions is that the maximal order of the EoM following from the S(ACDE is greater than the one

for EoM implied by the respective actions S(C|>~

°For quartic Casimir operator Cy = (Myn P™)? evaluated for massless case on ®(x,w) we have
after explicit calculation with allowance made for Egs. (2.4), (2.5) that: C4®(z,w) = (li")Q(mll —
V)®(x,w) = Z2v®(x,w), so that the relations (2.1) hold.
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Table 1. Higher continuous spin symmetry algebra A(Z; R1:4—1),

b= b m mi Iy ir mi1 mi 9o
lo 0 0 0 0 0 0 0 0
m1 0 0 lo 0 lo 0 -2 I
mt 0 -l 0 —lo 0 213 0 i
L 0 0 lo 0 lo 0 —21f L
i 0 0 ~lo 0 214 0 i
mi1 0 0 -2l 0 -2l 0 4g0 2(m11 —v)
m, 0 2 0 21f 0 —4go 0 —2(mf; —v)
g0 0 -l ZIL -l ZIL —2(m11 —v) 2(m1+1 — 1/) 0

Because of any linear combination of the constraints oy = (oa, oz) should be
constraint, we have, that

mi =1l =42, mi -l =—1=Z, (2.23)

and = should be considered as the noncentral charge too, because of not extend-
ing the zero-mode constraint, ly. Note, because of the operators lf,ml cannot be
imposed as the constraints on ®(x,w) we could ignore the reducibility above.

Being combined, the total set of bosonic operators oy = {OA, 0ay 0% 90, B, u},
for {oa} = {lo,ll,lf,ml,mf}, {ogﬂ} = {mﬁr)} can be interpreted within the
Hamiltonian analysis of the dynamical systems as the respective operator-valued
five first-class and two second-class constraints subsystems among {or} for a topo-
logical gauge system, with additional operators gg, =, v, which are not the con-
straints due to (2.20), and because of the commutation relations for the operators
oy (forming a Lie algebra)

[OIaoJ}:fIIf]OKa ff]:_f£7 (224)

the following subsets can be extracted:

[0a7 Ol-)‘r} = f;bOC + Aab(QO)v [OAv OB} = ngOCa [Oa’ OB} = faCBOC' (2'25)

Here, the constants f¢,, f{g, f<5 are determined by the Multiplication Table 1
and possess the antisymmetry property with respect to permutations of lower
indices, whereas the quantities Ag(go) form a nondegenerate (2 X 2) matrix:
IA]] = antidiag(—4go,4g0), in the space V of vectors {®(x,w)} (2.6) on the surface
Y CV: [|Alljs # 0, which is determined by the equations: (04,04)®(z,w) = (0,0).

We call the algebra of the operators oy as the higher continuous spin symme-
try algebra in Minkowski space with notation A(Z;R“4~1) (shortly HCS symme-

try algebra).® Note, first, that we omitted in Table 1 the center of A(Z;RYM~1)

¢One should not identify the term “higher continuous spin symmetry algebra” using here for free
HS formulation starting from Ref. 56 with the algebraic structure known as “higher-spin algebra”
(see, for instance Refs. 15-17) arising to describe the (half-)integer HS interactions.
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consisting from =,v. Second, the linear dependence of o = (mq,l1,Z) and
02‘ = (mf, I, E) for k = 1,2, 3 means the existence of independent bosonic proper

zero eigenvectors ZF; ZtFk:
onZF =0, OXZHC =0, for zF¥=p5(1,-1,1),

o (2.26)
Z :6(1a_17_z)7 VﬁGR\{O},

whose set is linear independent. Third, because of the elements 0%, w,, transfer
the fields ®*0(z,w), s > 0 (see (2.21)) into the fields 65 @5, 10(z,w), P50, the
elements oy from A(Z; R14~1) have the same property and for their actions on the

fields ®*!, I > 0 both operators 0, w,, obey by the similar property:
0L o5 = @51l _j@sitl -, @l = @l (2.27)

Thus, all operators oy when acting on ®(z,w), preserve the grading in V, induced
by the decomposition of ®(z,w) by go: (2.21).

The algebra A(Z;R“9~1) contains the subalgebra Apw (Z;RV4"1) = {ig, 1,
mj,mi1} being closed with respect to the [, ]-multiplication. This algebra does not
closed with respect to the formal Hermitian conjugation in V, but may be effectively
used to formulate (un-)constrained BRST-BFV description of dynamics for the CS
field ®(z,w).

3. Constrained BRST-BFV Descriptions

To construct constrained formulations we extend the results of general research,%
realized there for HS fields with generalized integer and half-integer spins on R~
for CS case, however on the level of the equations of motion.

3.1. Constrained BRST operators, BRST-extended constraints

There are two ways to develop constrained BRST-BFV descriptions for CS
field, based respectively on the HS symmetry algebras A(E;Rl’d_l) and
ABw(E;Rl’d_l).

3.1.1. Case of A(Z;RV41)

We consider the set of the first-class constraints {04} as the dynamical one with
the element =, and the off-shell algebraic constraint (one from the second-class
constraints) mq1. Due to the fact that the operator gg does not now relate to CS
value Z, as it was for the case of discrete spin,®® we introduce generating equation for
superalgebra of the Grassmann-odd constrained BRST operator, Q¢, and extended
in the space Vo: Ve =V ® ;;j, off-shell constraint Mj; in the form:

Qc,Qcy =0, [Qo, M} =0 for ghu(Qc, M) =e(Qc, M) = (1,0),
(3.1)
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with boundary conditions for Q¢, Mu:

5 5 5 4
SOA s ) e 40 o QC = <OA7E,ZZI€’P]€7ZZ+IC'P+> ’
A _ + k
(56 577: 577Z 5772) c—0 % (3.2)

k
Mu|o_p_y=ma1,

when vanishing ghost coordinates, momenta (CA, Pasn=, 7)5) for constraints (04, E)

and ones for eigenvectors Z#, Z+k: (77(;)7 P(ZH), being by the generating elements
for the space V77

The solution for the system (3.1) is sought in powers series in ghost operators
with choice of some (CP)-ordering for [CA, ’PB} = 04, which satisfy to the Grass-
mann, ghost number distributions and respective nonvanishing (anti-)commutator
relations:

ch Py omz P= 77(Z+) 7’(ZJr)

€ 1 11 10 0 | (3.3)
ghg | 1 -1 1 -1 2 —92

{nlatpi}:{nfvlpl}:l’ {n{n77){n+}:{77;n+’7){n}:1’
{7707770}:{7757735}:% [nZ’,P;]:[,PZ’nJZF]:]'

In (3.3) and (3.4) the formal Hermitian conjugation for the zero-mode ghosts is
determined by the rule: (770, Po, n=, 775)+ = (7707 —Po, 1=, —735) for formal Hermi-
tian operators lp, = from the center of .A(E; Rl’d_l) with the rest ghost operators,
which form the Wick pairs.

The BRST operator, @', for the Lie algebra A(Z; RY41) of the constraints oy
(2.24), whose linear dependence means the presence of proper zero eigenvectors Z {1:
OIZ}1 =0, e(Z{l) = 0, such that they supercommute with o;: [01, ZIJI} = 0, should
be found from the equation: [Q’, @'} = 2(Q’)? = 0, and has the form:

(3.4)

Q =Clos+ %cch EPr+ClzZl P (3.5)

Here the set of fermionic ghost operators (CI , PJ) for the bosonic constraints oy and
bosonic ghost coordinates and momenta (CI i le) for Z {1 corresponds to the min-
imal sector of BRST-BFV method*? for the topological (i.e. without Hamiltonian)
first-stage reducible dynamical system with the first-class constraints.

For the case of the constraints 04 (2.25) whose algebra is subject to Table 1 and
constant proper zero eigenvectors Z{l = (Z’“, Z*‘k)7 the solution for Q¢ in (3.1)
follows from the general anzatz (3.5) in the form:

~ 1
Q¢ =CA (oA + 503 ngPD) +n=E+nz Y ZVPE gy Z8PL, (3.6)
k k
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for Py = (P",P1,P=) and P} = (P"", P, —P=). Explicitly, we have
Qc = molo + 07 11 + Umy + man™ + nP'm
+ (im0l + il + 0 m) Po
022 + 0z (P — P — P=) + 0 (P — P+ P=). (3.7)

Because of, first, the physical space (as the set of states being equivalent to one
described by Eqgs. (2.4) and the first from (2.5)), in fact, should be extracted by
imposing of linear in ghost C#, = terms from Q¢ (see, e.g. Statement 2 in Ref. 69),
second, the operator = cannot be imposed as the constraint on the vectors from V),
we instead consider another variant of inclusion of the term, n==, when calculating
of zero ghost number cohomology of Q¢ in Ve.

To do so, we define the representation in Vg:

(771a771”+7Pl773{n+,79077]5,7727732)
B < 0 0 0 0 0 0 0 0 0 )
~\oP T OPR anf o oy’ Yops P} on),
such that the requirement (n=)Zx¢c = 0, for arbitrary physical vector x¢: x¢ € Ve,

ghu(xc) = 0 to be not depending on P= means that we, in fact, extract only linear
independent constraints, when acting on arbitrary xo = xc(z,w,C, P):

= S )" ) P PR ) (P) (P

X O(z,w)

(3.8)

(3.9)

MNFONF1LN fmMplsNpm N fzNpzNp=E 7
where 1y, ny,, are running from 0 to co, whereas the rest n’s from 0 to 1. The ghost-
.. have the dependence in w according to (2.6). Thus,

’I’Lfo
we resolved the linear dependence problem for the sets: {l1,m;,Z} and {ll ,mf, =

independent vectors ®(w)

on the space of Pz-independent vectors (3.9) and should remove dependence on

proper zero eigenvectors and respective ghosts 77(+ PH in Q¢ and Xc¢ turning to

(Qe,xc) = (QC»XC)‘(W(ZH:P(;):PE:O) : (3.10)

It provides that from Qcxc = 0 it follows, due to the choice of (3.8), the equations
in power of ghosts: (lo +0 (CA) ,L+0 (CA) , mf +0 (CA))XC = 0, being compatible
with (2.17). It is in the agreement with the observation that the operators lf‘, m
cannot be imposed as the constraints on ®(z,w), so that among the operators lf‘,
my (l1,m1) the only mj (l;) is the constraint. The solution for the second equation
n (3.1) can be found in the form

My = may + 2Py + 200" Py . (3.11)

The respective BRST-extended number particle operator 6¢(g), €(6¢(g)) = 0
(known for the discrete spin as the spin operator®?), which should satisfy to the
additional equations

[Qc.oc(9)} =0, [Mi1,6c(9)} =2(My; —v), (3.12)
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is uniquely determined in the form?

6c(9) = go+ 07 Pr —mPy + 0" PL— 0" Pf . (3.13)

3.1.2. Case of Apw (E; Rl,d—1)

The nilpotent unconstrained Q'zy, and constrained Qpw|c BRST operators for
the algebra Agyw (Z; R“?1), which contain only linear independent first-class con-
straints subsystems by the respective numbers 4 and 3 look as (for the Grassmann-
odd ghost coordinate and momenta nf“l, Pr1: {nﬁ, 7311} = 1 corresponding to m1)

Qsw = Qpwic + nh MEW Qewic = molo + n L +nm +w Py, (3.14)

QBW|C = QC|(77{”:771:7’?:7’{”:715:7’5:?7(;):P(ZH:()) . (3'15)

The BRST-extended constraint ]\Zlelw is determined from the generating equation,
[QBW|C, M1131W} = 0, by the expression:

M1B1W =mi + 277?17)1 5 MlBlw = Mll — 2’1717)1 . (316)

The extended vector xpw|c from the space Vpw|c: Vpwic = V ® V;’EW for the
primary constraints ogw = {lo7 l1, mf} has the representation

XBW|C = anfo (nr)nﬂ (n?l)nfm (,Pf_)npl ('P{n)npm‘l)(ﬂhw)nfo;nﬁ,nf,,“npl,npm 5
! (3.17)

that implies x pw|c = XC"(nE:PE:n}:szo)'

3.2. Constrained dynamics

To derive BRST constrained dynamics we should solve spectral problem for the
vectors xb € V5 due to existence of Z-grading in Vo: Vo = @, V& for ghu(xE) =
—k, k € Ny for the case of A(Z;R"¥71) algebra:

Qexe =0, Mixg =0, (e, ghg)(x%) = (0,0), (3.18)
6XOC :QCX%J) MHXlC =0, (€,th)(ch) = (17_1)’ (319)
5X10 = chzc, MMX%; =0, (fvth)(X%*) =(0,-2). (3.20)

The closedness of the superalgebra of Q¢, Mi, guarantees, the joint set of solution
for the system (3.18)-(3.20). Thus, the physical state yc = x% for the vanishing
of all ghost variables 7, nf, ne, Pf“ , P, contains only the physical vector & =

(P('CL.7w)0f0§0f1»Ofm,aoplaop'm.’szwOpz (26)7 so that

0 _ —
Xc = o + (I)aux ) (I)aux’(n07nrr,nin77);r77>{n):0 =0. (321)

fThe operator 6c(g) (3.13) is differed from the standard spin operator by the latter two terms
due to [go, m] = 1] # m].
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The vectors X]é inherit by the construction the decomposition (2.6): X’é = X(g)k +
o1 Xg)k, in the sum of the vectors with only positive and mixed degrees in w,,.
The equations of motion: Qcxc =0 (XC = X%) in (3.18) obtained at independent
degrees in powers of the ghost oscillators are yet non-Lagrangian (due to absence
of finite scalar product definition in V¢ ) to be invariant with respect to reducible
gauge transformations with off-shell constraints

Qoxs =0, oxE =0:QcxE™, Muxt =0, k=0,1,2. (3.22)

The vanishing of all XlCa for [ > 3 is due to the possible maximal ghost momenta
degree: P;"PI™ to be realized for only x2:

X%’ = Plerlmw(wi) for w(aj’w) = ¢($7w)ofo;oflxofmylplylp‘ln . (323)

Thus, we constructed the constrained gauge-invariant non-Lagrangian formulation
of the first-stage reducibility for the massless scalar bosonic field with CS = for
v=1.

Having the decomposition in ghost oscillators for the field and first-level gauge
parameters y., [ = 0,1 with R-valued coefficient functions (as well as for w(z,w)):

X% = @) + 0 (PFxi(w) + PIxT(w)) + 0 (P xz(w) + Pix5'(w))
+ 10 (P xo(w) + PIXG (w) + 0 PP xo1(w) + 0" P P xGE (w))

+ i PP (W) (3.24)
X = Pro(w) + PIe™(w) + PP (1 so1 (w) + nis11 (w) + moso(w)) s (3.25)

from the BRST-extended constraints (3.22) and structure of operator M;; (3.11)
it follows the constraints in powers of independent ghost monomials for the gauge
parameters and field vectors:

1=2: muw=0, (3.26)
I=1: mui(s,%0,51) =0, muc™ + 251 =0,
mi1611 + 2501 = 0, (3.27)
1=0: mi(xo,xo1) =0, mu(x1,xT x11) =0,
mi1xg + 2x01 =0, (3.28)
muxer +2x01 =0, muxg’ —2x11 +2x71" =0,
my1xe +2x1 =0, (3.29)
m11P+2x1 =0. (3.30)
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The 7ng-independent equivalent representation for the equations of motion and gauge
transformations (3.22) in the supermatrix form look:

( lo ~AQc ) S2w) | _ <0> (331)
~AQc  (nf + ") (m+n1) ) \ BY(w) 0
Sew) | _ [AQc —(n +n"") (m +np)
BL(w) o —AQe
Sl+1
¢ @ 102, (3.32)
BZC'H w)
AQc =nfly + n'm{ + I + man?* (3.33)

for x4 (w) = SL(w) +noBL(w), x5' (w) = BZ(w) = 0. The respective gauge trans-
formations in the ghost-independent form follow from (3.32) for the zeroth-level
gauge parameters:

6(@7 gm’ S015 611, gO) (OJ) - (_mla lf_a l17 mii—a lo)w(w) ) (334)
and for the field vectors (omitting explicit w-dependence)

§® =1 ¢+mic"™ — g,
ox1 =lis + misor, (3.35)

SXT =16" =1l so1 — 0

Sx2 =mis+misi — o,
oxg' =mi <" =, (3.36)

SXT = lisi — mi g1 — <o,
Sxo =miso +los, ST = —Ii o+ los™, (3.37)
Sxo1 = —l1so +losor,  Oxfy = —m7 o + losit - (3.38)

The respective ghost-independent equations of motion from (3.31) take the form in
powers of ghost monomials C(CP)* for k = 0:

no: lo®—1xo—mixg =0, (3.39)
n o h® =1 xa —max? — xo—xo1 =0, (3.40)
e mi® — I xe —max 4+ XG0 — xor =0, (3.41)

mp®+2x1 =0, miix1 =0, (3.42)
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as well as for k =1,2:

noni Pt loxa — lixo —mixor =0, (3.43)

nonf P s lox T — hixg + 1 xon =0, (3.44)
non" Py loxa — mixo —mixg =0, (3.45)

non" Py loxs' —mixg' + 1 xg =0, (3.46)

noni PP+ loxit +mi xo1 — hixgi =0, (3.47)
nn" Py —mixa 4 lixa — maxii — xo — xo1 =0, (3.48)
mony P s =X L X - X e =00 (3.49)

Thus, the relations (3.34)—(3.49) determine the constrained gauge theory of the
first-stage reducibility for the massless free field ®(z,w) of CS Z in RV¥~! subject
to the constraints (3.26)—(3.30), (3.42) with 9 auxiliary tensor fields. This theory is
non-Lagrangian with off-shell holonomic constraint (3.42) and corresponds to the
algebra A(Z; RM-1).

The special structure of the constraints permits to make gauge-fixing procedure
starting from the lowest gauge parameter w which together with the linear com-
bination of the gauge parameters (¢ — ¢;1) (that follows from (3.27)) belongs to
the set of kermi;. After invertible change of the basis of the zeroth-level gauge
parameters:

1
{c,s™ so1,511,%0} = {5,¢™ 01,G11,50)  for (™, Gn) = §(§m Fai) (3.50)

we may gauge away the parameter ¢ from 0¢" = —5=w by means of complete
using of w. Now, the theory becomes by irreducible gauge theory with indepen-
dent gauge-invariant parameters <, o1, <11, so for m3;&; = 0 and with the rest
parameters satisfying to the first constraints in (3.27).

Turning to the field vectors we replace the parameters ¢™, ¢11 in (3.35)—(3.38)
on ¢j; and see, that two pairs of the fields x{*, x¢i and x7*, x7} obey to similar
constraints in (3.28)—(3.30) as the parameters (gm - €11) = 2¢11. Making invertible

change of the basis of the fields:

om o om

{X(7)n7X(7)ri7X71n7Xﬁ} — {X6n7>2(%aX1 qul

~m ~m ~m ~m 1 m m m m
for  (X6", X0t X1 X11) = §(X0 Fxoux F M), (3.51)

with untouched rest fields: ®, xo0, xo01, X1, X2, X5', we may gauge away the fields x{’
from ox¢* = 5= and x7* from dxT" = 5Z¢o1 by means of complete using of ¢y and
o1, respectively, in view of theirs satisfaction to the same constraint. Then, from the
gauge transformation, dx5' = 1=¢; we gauge away the field x5', which now obeys,
together with &1, to the constraints: mulxgl> = my1$11 = 0 (3.29) after using
Go1- Thus, the following 7 fields with gauge transformations survive after partial
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gauge-fixing with unique gauge parameter ¢, my1¢ = 0:

5((1)7 X1, X2 )271”17 X0, X015, )Zgll) = (lf7 lla mrv 07 l()» 07 O)C . (352)
From the transformed equations of motion (3.46), (3.49): «=(xp1, XT3) = 0 follow
vanishing of the fields xg}, x7i. Therefore, the remaining equations (3.39)—(3.49)

transform as follows except for (3.43):
lO(I)_lTXO = 0, llq)—lfxl — X0 — Xo1 = 07 qu)—leQ :O7 (353)
Fxo1=0, mixo=0, loxa—mixo=0, (3.54)

—mi X1+ lix2 — Xo — xo1 = 0. (3.55)

The first two equations in (3.54) have unique general solution: x91 = 0. The result-
ing equations of motion for the rest 4 fields take the form
®—1xo=0, L®—Ix1—x0=0, loxi—lixo=0, (3.56)
lox2—mixo=0, hxa—mixi—xo=0, mi®—1Ix2=0, (3.57)
which may be considered with account of algebraic traceless constraints (3.28)—
(3.30) as the triplet-like non-Lagrangian formulation for scalar bosonic field with
CS in the Bargmann—Wigner form, due to presence of the field xo(w) by analogy
with case of HS fields with integer spin.®6-8¥ Indeed, Eqgs. (3.56) do not contain the
field x2(w) and coincide with the conditions which determine the triplet formulation
for the case of integer spin, but with more involved structure of the fields. Almost
the same triplet interpretation (if makes the change lgﬂ — mgﬂ) valid for the
latter equation in (3.56) and two first equations in (3.57) for the triplet: x2(w),
Xo(w), x1(w). The latter equation in (3.57) entangles the basic fields: ®, x2 from
both triplet equations.
After resolution of the second algebraic equation of motion in (3.56) with respect
to xo we get the system:
(lo— 1)@+ (7)1 =0, (lo+ul)x1— (L) =0, (3.58)
loXQ — mf‘ll@ + mi"lf)ﬁ = O7
ll(Xg - ‘I’) - ZEXl = O7 (359)
I (x2 — ®) — 12 =0,

given in the configuration space M, parametrized by ®(w), x1(w), x2(w) subject
to the gauge transformations (3.52) and to the independent holonomic constraints

miix1(w) = miic(w) =0,
miixe(w) + 2x1(w) =0, (3.60)
m11®(w) +2x1(w) =0.

Equations (3.58) and (3.59) may be interpreted as the duplet-like non-Lagrangian
formulation for scalar bosonic field with CS in the Bargmann—Wigner form by
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analogy with case of HS fields with integer spin.®6#® Equations (3.58) coincide by
the form with the conditions which determine the duplet formulation for discrete
spin.

If we gauge away the field x1(w) by using the part of the gauge parameter ¢(w),
which therefore should be divergentless, l1¢(w) = 0, (for details, see Subsec. 3.4),
the same gauge-fixing procedure may be applied for now myi-traceless field yo
so that the field yo may be removed completely by means of using of the gauge
transformations with remaining degrees of freedom in ¢(w) so that the remaining
from the systems (3.58)—(3.60) equations on the initial field ®(w) coincide with the
IR conditions (2.4), (2.5).

Expressing the field xi(w) as generalized trace of the basic field ®(w): x1 =
—1m11®, according to (3.60), we derive from the duplet-like formulation (3.56),
(3.59) and (3.60) the system:

1
{lo — Il - 2(lf)2m11}<1> =Ly® =0,
(3.61)

1
lox2 —m (11 + 2lfrm11>‘1> = F(®,x2) =0,
(3.62)

I (x2 — ®) —1Z® = L] (P, x2) =0,

1 _

Lhix2 — @)+ FEmn® = L1(P,x2) =0, mi(x2—®)=m}®=0. (3.63)
The second equation in (3.61) and the first one in (3.63) are the respective algebraic
consequences of the first equation in (3.61) and the second one (3.62), when applying
to the latter ones of the trace operator mq1:

Lo® =mi1Lo®, Li(P,x2) =mnLy (P, x2). (3.64)

Thus, the independent system of equations consists from 3 differential equations
and 2 mi;-traceless (holonomic) constraints to be invariant with respect to gauge
transformations, §(®(w), x2(w)) = (I, m{)s(w) for m11¢(w) = 0. Note, the impos-
ing of the above described gauge-fixing procedure on the auxiliary field yo turns
the system (3.61)—(3.63) to the Bargmann-Wigner equations (2.4), (2.5).
Presenting the independent gauge-invariant equations (3.58)—(3.63) in powers

of w(mi x &0t k,1 € Ny similar to Egs. (2.12), (2.13):

w2l

(n)
w l
w2l (‘Coq’)u(m)k,(n)z -

mor

0,
(3.65)

+ ! — ! —
('Cl ((I)’Xz))ﬂ(m)k,(n)l - Oa (f(q)aXZ))”(m)k7(n)l - 07

2050154-20



Int. J. Mod. Phys. A 2020.35. Downloaded from www.worldscientific.com

by UNIVERSITY OF NEW ENGLAND on 09/23/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

BRST-BFYV and BRST-BV descriptions for bosonic fields with continuous spin on RY:4—1

we get with help of the real-valued Lagrangian multipliers }é‘(m)’“(n)l, i=1,2,3,
k, 1 € Ny (being different with ones used in (2.15)) the constrained gauge-invariant
LF for CSR scalar (real-valued) field ® of CS = in the tensor form

SC\ (@ X2a /dd Z /\” R (£ ‘I))(m)k (n)1

k,1>0

AR (4 VS H

+ A5 (F (@, x2),

l|(m)k,(n)l} ’ (366)

l l
0@ X2) (), ),

l l — -1
= 7(a{mk§(m)kf1},(n)laa{mkg(m)k,l},(n)l - Z'_‘n{mk{"lC(M)k71},(n)L,1}) s (367)

5}\l(m ks n)l Z Rl(m)k, l (:r,ax)al/(ml)k/(”l)“(:v) o 55\{% — RaNiaa

o 1l’(m1 k/(nl G
(3.68)

AL (m)k,(n)
W (ma) g (na)y

d5Sc|z = 0, being dual (see footnote d) to those for the fields, whose specific form

may be determined explicitly. Here, we should impose the double (single) mq1-
(m)k,(n) (

with certain generators R; of gauge transformations for Xé(m)k’(")l,

traceless holonomic constraints on the auxiliary fields )\ ! on dual gauge
parameters: (m310)* = 0) due to the structure of the action and the constraints
(3.63) on the fields <I>l|(m)’“’(”)’,Xlzl(m)’“’(")l and gauge parameters gé(m)k (ny, accord-

ing to the last representation in (2.13):

()i, (n) ;
(mi ) = (0309) e = (11 O = 2)) o,

= (m11<), =0. (3.69)

m)k,(n)

The analogous forms of the constrained gauge-invariant LF's may be formulated
with help of respective sets of the Lagrangian multipliers for the triplet-like non-
Lagrangian formulation (3.56), (3.57) (see, Eq. (5.4) in Sec. 5) and for duplet-like
non-Lagrangian formulation (3.58), (3.59) within Bargmann-Wigner form of the
CSR equations.

One should stress that an analysis of the form for the nonscalar field
\Il(gc,w)(#l)sf.,(ﬂk)% with CS, E, and integer generalized spin, s = (s1,...,Sk),
k < [(d — 4)/2],2! should be necessary by a gauge-invariant theory with reducible
gauge symmetry, and based on the respective HCS symmetry algebra.

3.2.1. On higher continuous spin symmetry algebra A(Z;Y (k), Rb4-1)

The most general massless nonscalar CS one-valued irreducible representation
of Poincaré group in a Minkowski space RV4~1 is described by a tensor field
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— k
\Il(w)(ul)sl“-(uk)sk = \Il(x,w)u% """ [T ST I L S of rank 2121 s; to be corre-
sponding to a Young tableaux with k rows of length s1, ss, ..., sg, respectively
M% M% . . . . . . . //[/;1
2 2 . . . . . 2
/’Ll /’LQ MSQ (3.70)

(W) 1)y, (12) g eons (), €

[T 78 R RN T

This field is symmetric with respect to the permutations of each type of Lorentz
indices p?, and obeys in addition to (2.4)—(2.5) to the Klein—-Gordon, divergentless
(3.71), traceless (3.72) and mixed-symmetry equations (3.73) (for4,j =1,...,k; [,
m; = 17...,81‘)2

(W) (1) (12) g seons(ih)e, = O

. (3.71)
oM \Ij(w)(ﬂl)sl7(M2)52»~~~7(Mk)sk =0,
nuliMMi\Ij(w)(ﬂl)sl7(“2)827"‘7(Mk)8k
HL P _
=) (1) (1) g (i), = 00 b < (3.72)

\Ij(w)(ul)sly-u,{(ui)si oot e Yeepd s (0F) sy T 0, i<j, 1<l<s;, (373)
——

where the bracket below denote that the indices in it do not include in

symmetrization, i.e. the symmetrization concerns only indices (u')s,, u{j in

(s s -l )

For a joint description of all the CSRs with given CS, but different spin s we
following to the case of HS fields with only integer spin® introduce an auxiliary
vector space Vi, (Vo = V) generated in addition to w by k sets of bosonic variables
w = (wil,...,wﬁk), i,j=1,....k p', 7 =0,1,...,d -1, and a set of constraints
for an arbitrary string-like vector ¥(x,w, &) € Vg,

Sk—1

p,
Z Z D W@, W) (1), (12 Jer H Hw YL (3.74)
s1=0 s2=0 sk=0 i=1 1;=1
(ZOali7lij7tiljl)\Ij('r7wa(‘_J)
B 1 o o . 0
2 no_ - .mn i1 N, =\ )
<8 “oar " G aur awm> (@,w,@) =0, (375)

(for i < j;iy < j1). The set of (k(k + 1) + 1) primary constraints (3.75) with
{03} = {lo,li,lij,t“jl} describes all CSR with given CS Z, if, in addition, the
constraints og hold

lo, 11, m{,mi1)¥(z,w,&)=0. 3.76
1
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In turn, if we impose to Egs. (3.75) the additional constraints with number particles
operators, gé,

GV (z,w, @) = (5, + d/2)V(z,w, &), g{= Q{WL, &i} ) (3.77)
m

then these combined conditions [which are reduced to ones (2.17) for scalar
CS field, ®(z,w) = ¥(z,w,0)] are equivalent to Egs. (3.71)~(3.73) for the field
\I](UJ)(#I)Sl’(y})Sz ,,,,, (%), with given spin (=, s).

The procedure of LF implies the property of BRST-BFV operator Q, Q =
C0% +C%04+more, to be Hermitian, that is equivalent to the formal requirements:
{65}T = {03}, {0oa}™ = {0a} and closedness for {o04,0%} with respect to the
commutator multiplication [, ]. To provide these conditions we consider an quasi-
scalar product, (, ), on Vg:

o)

o0 P1
Z Z ZO Z (Vl)P17(” Jpg - (Vk)pk
»=0p1=0 po= =0

s1=0 s2=0
k Pj o ks il
<[] W W) (1), (42 () ITI] i (3.78)
j=1 m;=1 Qw, I i=11;=1

The quasi-scalar product (, ) presents the w-dependent bilinear operation on V;®V
being differed from the standard scalar product on the Fock space H used for HS
fields with only integer spin s, see Ref. 65 [under identification of the oscillators

(aii,afj) = —1(0/0uw! H‘) with commutation relations, [aii,a{/ﬂ = —11,509].

As the result, the set of {oa} and {0f} are extended respectively, formally to o;
(2.24) and to {05} = {05, (05) ", g4} extended by means of the operators (o )+,

[0}

P ; 1 0
(ll+,ll]+7t’bl]1+) = (—wfﬁ” 5&);(,0]” wftl aw) . i<, i1 <71, (3.79)
11p

with taken into account of formally self-conjugated operators, (la' , gé+) = (lo, gé).
The set of all operators oy has therefore the structure,

{OW}: {01;07—7‘} = {Odvogvg()vgvl/;02702¢+;gé}7 [0170;] =0. (380)
Explicitly, operators oy satisfy to the Lie-algebra commutation relations,
[0W70X] = f%//XOYa fV}I//X = (ffhf}gz%) = _f;(/Wv (3~81)

where the structure constants fj,y with nonvanishing components ( ffg, ng) are
determined from the multiplication Tables 1 and 2.
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Note that in Table 2, the operators %272, ¢t . satisfy the properties

7 1292
N -
(892,05 ) = (272,855, )07, (3.82)
the products B;f;f, At2dzingi - piuuni s Lizdzadt gre determined by the explicit rela-
tions,5°

Bizjzhjl = (962 - 962)6?25]:2 + (tj1j29j2j1 + th;eﬁjz)fﬁf

171

(0 40,0, )5

J1?
Af2dzid — piage gi2dt _ pi2g1 §iage , Fri2dzyt — yi2g2 (5j2i _ 51'21') ,
R P . , (3.83)
[2d2:0101 — Z{512215]2]1 [296261212 + 962 + 962]
— gi2lnn [tjl}izgiﬁl} + ti2j1}+0j1}i2}
_ 6i2{i1 [tj1}j29j2j1} + tj2j1}+9j1}j2] } ,
with known properties of theirs antisymmetry and Hermitian conjugation.®®

We call the algebra of the operators oy the higher continuous spin symmetry
algebra in Minkowski space with a Young tableaur having k rows with notation
A(Z;Y (k),Rb471). Note that A(Z; Y (0), Rb41) = A(Z;RY41). The subalgebra
of {0%} without space-time derivatives, i.e. (lij,t“jl,lij‘*‘,t“jl"‘,gé) is isomorphic
to the symplectic algebra sp(2k). The Howe dual algebra8®?C to the algebra
so(l,d —1) is sp(2k) if k = [(d — 4)/2].

The algebra A(Z; Y (k), RV4~1) provides a basis to construct BRST-BFV gauge-
invariant descriptions for the equations of motion and for the (un-)constrained LFs
following to the proposed above receipt for scalar CSR in the Bargmann-Wigner
form.

The situation with ISO(1,d — 1) representations with integer spin looks

another, 968,69

3.3. Comparison with dynamics for higher integer spin fields

First, let us present the result for the BRST-BFV descriptions for scalar CS field
obtained in Subsec. 3.2 in terms of the bosonic fields being subject to the usual
traceless or double traceless condition, generated by the operator 11 = mi1|,—o,
following to Fronsdal proposal for (half-)integer HS fields.242° To this end we will
use the representation (2.6), (2.21) for the fields ®(z,w) and for x&:

=S Qe S e P =P, 80

s >0

ghu(x&) = ghu(x*V%) = =k, (deg,,, deg,, ;2 ) x D% = (s,1), (3.85)
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so that the generalized-traceless constraints for the field and gauge parameter satis-
fying to:

mi®(w) =0, mus(w) =0 (3.86)
should be rewritten in terms of Fronsdal-like double traceless ¢*°(w) and trace-

less 9% (w) fields and new fields double traceless ¢*!(w) and traceless ¥*!(w), Vs,
(l4+1) € Ny, (for fixed degree in powers of w™ according to (3.84) and due to

relation: ®*!(w) = (—1)!®5T:0(w) (If )_l) as:8

[n/2]
Z Z (7}7c n n 2k0+z,ykn ¢n 2kl>7 (387)

n>0 k>0 >1
[n/2]
n>0 k>0 >1

with untouched negative-like part of ®(w) (as for the standard Fronsdal-like fields)
and in more general form

[n/2] [n/2]—k . l "
Z Z Z <7kn l-‘r ¢n 2k— SS_FZ;}'/]CSR l-‘r ¢n2ks,l+s>,

n>0 k>0 s>0 >1
(3.89)

/2] 2k k+€ N k+s
Z Z Z <6k . <wn—2k—s,s + Zék:sn (li‘rl) ‘wn—Qk—s,H—s) ,

n>0 k>0 s>0 >1
(3.90)
w>:<ﬁ0+2ﬁl><w> for 9e{p0}, B¢ =0, Ly =0, (391)
1>1

where the fields ¢(w), ¥(w) have the decomposition (2.6) according to (2.21). Here,
the unknown rational coefficients 4%, o}, for the decomposition (3.87), (3.88)
are determined from (3.86) as the solutions of the system of recursive equations
at each fixed monomial (17 ) gn— 2k (lfl)kﬂlngb"’zk’l and (lf‘l)kw”*%’l for k =
0,...,[n/2]; n,l € Np:

. k . k+1 | - k+2 n—
{lﬂ’y’l“v" (lfrl) + 2V7’l€+17"+2lll (ll+1) + 'Yll@+2 n+t4 [1%17 (l;rl) } }éf’ =0,
(3.92)
< kE oz k+1 n—
{V(S;c,n (li‘rl) + 5§c+1,n+2 |:llla ( ) :| }IZ) 2t — (393)

(for yen = %gm’ Skn = Sgn) In case of decomposition (3.89), (3.90) the coef-
ficients vk o 52; should be determined from more general system at each fixed

8The presentation of (double) traceless condition, l( )1/15 l(w) = 0 is as usual for | = 0, whereas
for [ > 0 should be understood according to the latter algebraic equations, respectively in (2.12),
(2.13), but for v = 0.
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monomial (lfl)k+sﬁvz—2k—s,l+s, (lfl)k+5l11¢n—2k—s,l+s and (lE)k""swn—Zk—s,l—&-s for
k=0,...,[n/2],s=0,...,[n/2] — k; n, | € Np:

~l,s k+s ~l,s
{V2’yk7n (ll+1) + 209 1 g2l (lfrl)
~l,s k+s+2 n—2k—s,l+s _
+’yk+2,n+4|:l%1’(ll+1) ]}¢> Zhosilts — (3.94)

(V8 () 4 8y [T, (1) Jyn s — 0, (3.95)

(for ¢, = 772:;, Opm = 52;’;) The solution for the system (3.92), (3.93) is found in
the form

k+s+1

ﬁl _ (_V)k%,nf%
BRI [((n—2k— 14+ d/2—1) +i—1]

(_V)k;y(l],nfﬂc

_ , 3.96
AkEl(n =2k —1+d/2—1), (3.96)
5~l _ (71/)]“56’”72]6
BT [0 — 2k — 1+ d)2) +i — 1]
_ (_V)kgé,n—mc (3 97)

4kl (n — 2k — 1+ d/2),

with arbitrary constants S(l),n, %’n concrete choice of which depends on n, I,
d and with (x), being by the Pochhammer symbol. The coefficients related as
(5217171/(56’”717%) = (;?llc,n/ﬁ/é,n72k)' The solution (3.96) for (3.92) follows from
the recursive relations

V¥ ki + 80k + DV Aksrnpaln — b — L+ d/2]

k+1
+ % s [+ Di+n—2k—1+d/2] =0, (3.98)
i=k

{207} 11 mp + 8(k + 2k o ppalk + 1 — 2k — 1+ d/2]Hi =0,  (3.99)
with account for
g2l = ((n — 2k — 1) +d/2)9" 2K 9 e {9}, (3.100)

Substituting %+2,n+4 expressed from (3.99) in terms of ﬁllc+1,n+2 in (3.98) we get
(3.96).

Note, as to the general systems (3.94), (3.95), that due to the ambiguity in the
definition of the monomial

(lrl>k+519n—2k—s,l+s

(lii-l)(k+m)+(5—m)ﬂ(ner)72(k+m)f(sfm),(ler)Jr(sfm) L m=1,...,s, (3.101)
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the respective coefficients % o 6,?” should satisfy to the relations:

~l,s _ ~l+m,s—m <l,s Sl4+m,s—m _
Vim = Vet » (5,67” 6k+mn+m, m=1,...,s. (3.102)

One can easily see that the solutions for (3.94), (3.95) can be found analogously to
(3.96), (3.97) in the form:

shs Fls ) _ (—v)* Yo,n—2k 5(l),bn 2k
(7"’7”’ ’“")  4kg) ((n —2k+s8)—1+d/2—1) (n—2(k+s)—1+ d/2)k> ’
(3.103)
so that 'Ny,l;gt = 5/}67”, 5221 = gén
Now, substituting, instead of ®, x;, ¢, for 7 = 1,2 theirs presentations in terms
of series of respective traceless: X;"ll, n, I € Ny and double traceless tensor fields:

w, w; e {¢,xF2}, i =1,2, as well as the gauge parameters €

[n/2]

Z Z Z 4FE(n 7(; 1 ;’;2 Dr (lfl)kw?_%’l ;

n>0 k>0 (>0

nl

Hwi' =0, (3.104)
[n/2]

v) (S(Z)f 2k k_n—2k,l
Z Z Z4kk'n—2k—}+d/2) (l+) Xpp1

n>0 k>0 (>0

X =0, (3.105)

[n/2]

—v) 5ln e
Z Z Z4kk" - lj_kd/2> (lf—) € 2k,l,

n>0 k>0 >0
L€t =0, (3.106)

(for W; € {®, x2}) we get gauge-invariant non-Lagrangian duplet-like (3.58), (3.59)
and with expressed field x1, x1 = 1/2m11 9P, (3.61)—(3.63) (with the fields @, xo
and ¢™!, XT}"Q) formulations in terms of Fronsdal-like totally-symmetric standard
(for I = 0) and new (for I > 0) fields. Representing the expression (3.104) in

powers of w(m)k w! ) we may derive the latter gauge-invariant EoM from the action
Sciz(®, x2) (3. 66) Wlth help of the Lagrangian multipliers )\ll(m)k’(n)’ 1=1,2,3, k,
[ € Np. Because of the multipliers are double m;-traceless as well (3.69) they should
be expressed according to the above receipt (3.104) in terms of double l;;-traceless
Fronsdal-like multipliers )\ll(lm)k ‘("1 The constrained gauge-invariant action (3.66)
for CSR scalar field of CS = presenting in terms of Fronsdal-like fields in the tensor

form (but in Bargmann—Wigner approach) in this case looks as

SC|E(¢) aXF|27>‘nl)

:SC|E(¢7X27)\Z')‘(q>’X2’5\f:\(m)kv(")1) (<1>(¢>nl) .l /\@,z(;\n,z)). (3.107)

XQ(XF‘Q) i Fli
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To compare these results with triplet, duplet and Fronsdal LFs for the fields with
all integer spins we remind that the latters are encoded by only the D’Alambert,
divergentless and usual traceless (for v = 0) Egs. (2.12) for the basic field ¢* = ¢*°
of any integer spin s, s € Ng: go¢® = (s + g)qﬁs, without the presence of new fields
%!, 1> 0.

The respective constrained gauge-invariant LFs for the massless field, ¢° of in-
teger spin s in terms, first, of triplet: ¢*, xg_l, Xi72, second, of duplet ¢°, x5 2
(having expressed of x5~ ', being similar to xo(w) (3.24), from triplet formulation
through algebraic EoM) with indices s, s — 1, s — 2 meaning the rank of the compo-
nent Lorentz tensors, i.e. deg ¢(x)® = s (3.87), and third, in terms of unique field

¢° look as
SC\S(¢»XO7X1) = (¢S(3w)X871(5w)X1972(8w))

lo _lf 0 ¢*(w)
-t 1 || x|, (3.108)
0 b x1° 7% (w)
3(e° ()Xo~ (@), i w)) = (I lo, n)e ™ w) (3.109)

hi(e(w), xo(w), x1(w), €(w)) = (=2x1(w), 0,0,0),

]+ +\2 S0
SC|S(¢7X1) _ (¢>5(3w)><§72(8w)) (lo l1 1 (11) ) ( (f,(g ) ) 7 (3.110)

5 —lo — Ll ) \xi*(w)

. 1 1 1
S21s(0) = ¢°(0.) (lo — 1~ §(lf)2111 - ilﬁl% - Zlﬁ (lo + lllf)lu)W(w) ,
(3.111)
§¢%(w) =l e Hw) and 13¢%(w) = l11e57H(w) =0, (3.112)
for SC|3 = S¢|slxo=xo(¢,x1) and S’g‘s = SC\S|X1=—(1/2)111¢~ Thus, the gauge-invariant
actions
(SC\OO(¢05 Xga X?)aSC\m(¢Oa X?)agg’\oo(qso)) = Z (SC|sa‘§C|saSg|5) ) (3113)
s>0
with
(¢, x0,x1) (w) = (ZW,ZXSHZ)&Z) (w)
s>0 s>1 §>2

according to the rules (2.6), (3.91) for massless fields of all spins s = 0,1,2,... take
in the ghost-independent vector-like notations the respective forms: (3.108), (3.110),
(3.111) with allowance made for the changes (qSS,X(S)*l, XTZ) — (gbo, X9, X(l)). The
corresponding gauge transformations (3.109), (3.112) are now written for the fields
of all integer spins with the gauge parameter: e = D1 e*~ !, with the same forms
of the traceless constraints. N
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In the tensor notations the latter duplet and Fronsdal LFs read (up to the
common factor (1/2)):

82¢(m)9 Samsan(ﬁ(m)s_ln

Sgk)o((bo’x(l)) -
+ S(S . 1)amsf1amsxgm)372) - S(S . 1)X1(m)s_2

« (282X§m)572 +(s— Q)Oms,zamxgm)s—am _ ams,lam5¢(m)s

(3.114)
SC|oo(¢O /dd { 82¢(m)< Samsan¢(m)s—1n
s>0
1
+ S(S — 1)8’”3*18’”5¢(m)572mm) _ 58( )Qb(m oo 2m
1

with traceless field: > -, x1(™s=2: y (Msmam  — () gauge parameter D1 elm)s—1.
etms—sm  — 0 and double traceless basic field: Y os>0 Py plm)s—am - —
x1™s=2 providing the standard form of the gauge transformations:

5<Z¢(m)ssz1(m)sg> = - Z (a{ms€(7n)571},amsflﬁ(m)sfl) y (3116)

s>0 s>2 s>0

from (3.109), (3.112). To be complete, note the constrained BRST-BFV LF for HS
field, ¢°, of integer spin s are given by the relations:

SC|S(¢O7X87X(1)) :/dUOX%S(aw)QC|intX%(W)7

(3.117)
6<X%§?chs)(w) = (QC\intxle(w))O) )
Luxg = (i +2mP1)x& =0,
) ’ d ‘ (3.118)
Gl (9XE = (8 + 2>X]86 ., k=01,
which are related with ones (3.22) for CS field ®(w) as follows:
(Qcmm > X L+, (}C|int(g)>
s>0
— 0k0 pr o - )’
- ’ 7M ) 5 3119
(QC Xc 11,6¢(9) (= =PIt Zpm o) ( )

where Y% = % Oy Y50 Xockl and x2(0,,) is dual for x%(w) with respect to the
natural scalar product in the respective Hilbert space Ho. Explicit comparison
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of the duplet LF (3.114), (3.116) for HS fields of all integer spins and duplet-like
LF (3.66), (3.67), (3.69) for CS field shows its difference both by the contents
of the configuration spaces, due to presence, first, of “negative spin value” fields:
(@"I,X;’I,X;’l), second, by the field (Zs,l>0 x*!(w)) in the latter, third, by the
Lagrangian multipliers presence for CS field, by the structure of the constraints
among the fields. The only EoM (3.58) for the standard fields ®°(w), x{(w) have
the Lagrangian form (without using Lagrangian multipliers) and when rewritten
in terms of Fronsdal-like fields ¢°(w), X}, (w) may be derived from the functional

Sg\a((bo’X(l)):

88‘5(4)0, X(l)) |((I)O’Xil)):(@0(¢w,,0)7x(11(xn,0)) = SA%|<><> (QI)O, X(l)) . (3.120)

F|1

We stress that the main difference concerns the presence of infinite number of new
tensor fields with “negative spin values,” that in turn, follows from the Bargmann—
Wigner and Fronsdal forms of the equations selecting respectively the CSR and
the integer spin representations. In case of Fronsdal-like form of the equations
(suggested by Schuster and Toro?) they can be derived from the Lagrangian
BRST-BFV EoM (without new fields presence) with the constrained Lagrangian
formulation closely related with one for massless totally-symmetric fields for all
integer spins (see footnote c).

3.4. Equivalence to initial irreducible relations

Let us preliminarily consider the problem of establishing of the equivalence of the
Lagrangian EoM for massless totally-symmetric field ¢(,,), (z) with integer spin s,
in the triplet formulation (3.108), (3.109), which have the form, when expanding the
EoM: QC|intX%S (w) = 0, in powers of ghost coordinates (together with respective
traceless constraints (3.109)):

Mo lod™” = Iixg 0 =0,

. y (3.121)
o™ =TT =X T =0,
nont P s loxi 0 — llxg_l’o =0,
(3.122)

L (0% xg 0 x % e 10) = (=245 %,0,0,0)

with non-Lagrangian conditions which should extract the massless UIR of the
Poincaré group ISO(1,d — 1) with discrete spin s in terms of tensor fields:

(lo, 11, 111)9%° = (0,0,0) . (3.123)

The conditions (3.123) do not fix completely an ambiguity in the definition of ¢*°
as a representative of the UIR space of ISO(1,d — 1) group due to existence of a
residual gauge symmetry, which we intend to determine. First, we use part of the
degrees of freedom from the gauge parameter €10 to gauge away the field XTZ’O

by means of the gauge transformations (3.109). For s = 0 the equivalence is trivial,
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whereas for s = 1 there is no field Xfl’o = 0. To do so, we expand €~ into sum

of longitudinal, €]~ 1.0 , and transverse, esfl’o, components:

s—1 —

I ) Ik (I)kik

510 _ 310y 510 1)k (I 155*1’0+ 1+ EREVAG WAL PEES K

k=1 k=1

(3.124)

so that lleJ_ 10 = 0 and both of the components are traceless: l11€;, = l11€, = 0.
Thus, first, we use only part: €} from the parameter €} e el + ff, for s > 2
to gauge away the field x7~ 2,0 completely. So we have, from the stability of the
solution x5~*% = 0 under the gauge symmetry that oy > =0 o e, " =0 =
lleL —1,0 _ 711 )L<s 1, O.h

Second, from the first equation in (3.122) we observe that the field X(Sfl’o is

the transverse one and we may therefore use the unused parameter esfl’o choosing
T 0= _(1p)~ X(‘Tl 0 to gauge away this field completely, so that the stability of
the solution x5~ 19— 0 under the gauge transformations means that dxg Wope
s—1,0 _ 0.

As the result, from Eqgs. (3.121), (3.122) it follows the validity of the system
(3.123) with residual gauge transformations determined by the longitudinal gauge
parameter, 6L571’07 which satisfy to the same restrictions as the field ¢*° in (3.123).
Therefore, the conditions which should select the (tensor) field of any spin s € Ny as
the element of irreducible massless unitary representation must be determined as:

(loy 11, 111)9%° = (0,0,0), 6¢*° =1€ 50 (lo,1y,111)e¥ 0 = (0,0,0). (3.125)

loe

The latter equations on €~ 1? means that the parameter may be considered as the

element of massless UIR of ISO(1, d—1) of spin s—1, but without own gauge symme-
try.! Note, first that the dimensional reduction procedure being applied to massless

hThe realization of the first step allows one to get Maxwell-like LF with traceless field ¢%°,
when having substituted Xs 1.0 being expressed from the second equation in (3.121) into the ﬁrst
one, as follows: (lg — ml)w 0 =0, so that & (¢°) = ¢>°(8u)(lo — I711)¢>Y with 6450 =
li" s=1,0 1,¢571.0 = 0. The equivalent reducible respective LF for the latter with elimination of
the differential constraint on € were considered in Refs. 92 and 93 among them for AdS space.
iFor the case of mixed-symmetric massless HS field with generalized integer spin s = (s1,. .., s%)
given on R4~ the conditions of extraction of only UIR of Poincaré group ISO(1,d — 1) in the
space of tensor fields ¢>(m1)51 cr(mk),, (@) €Y (81,5 8k), k < [d/2]: (lo, bis Lijs trs) @) (s),, = O being
initial in Ref. 65 (with use of the Fock space notatlons) should be augmented according to (3.125)
by adding the reducible gauge symmetry: 5¢(m1)51-»-(mk‘)k = lfe(ml)sl_r'-(mk)k""’ subject
to the same requirements as for the tensor field itself. For the half-integer totally- and mixed-
symmetric massless HS fields the situation with the exact formulation of the UIR is the same,
e.g. one can show that for totally-symmetric case it is necessary to add the gauge transformations
of the same form with gauge spin-tensor of rank (n — 1), but for basic spin-tensor field Y(m), of
spin, n + 1/2, with suppressed Dirac indice and being subject to the same conditions: Dirac and
7y-traceless constraints. Thus, the theorem in Ref. 69 concerning the equivalence of the solutions
of the equations of motion from the respective constrained BRST-BFV LF and ones for UIR
conditions will be guaranteed, because of the latter solutions contains some gauge identities due
to residual gauge symmetry presence.
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UIR conditions (3.125) of ISO(1, d) in R*¢ space-time permits one explicitly derive
the massive UIR conditions of ISO(1,d—1) in R¥~! with the same spin, as follows:
(lo +m?, 1, lu)(bs’o = (0,0,0) without any gauge symmetry. Second, the indepen-
dent counting of the numbers of the physical degrees of freedom being extracted
by (3.125) and by Egs. (3.121), (3.122) with the gauge symmetry transformations
(3.109) shows their coincidence.

Having in mind, the above analysis for HS field with integer spin, let us consider
non-Lagrangian EoM for the basic field ®(w) with CS, which follow from BRST-
BFV equation (3.18) (or from (3.32)), as well as the holonomic constraints.

Again it may turn out that the conditions (2.17) do not fix completely an ambi-
guity in the definition of ®(w) as a representative of the CSR space of ISO(1,d—1)
group, due to existence of a residual gauge symmetry, which we should to deter-
mine. We will call Egs. (3.39)—(3.49) as the BRST-unfolded equations, due to the
appearance of any field variable there with a coefficient being, at most the first
degree in powers of the symmetry algebra A(Z;RY9~1) elements o;.J

First, we repeat the procedure from Subsec. 3.2 of gauge fixing up to surviving
of only the fields (@, x1, x2,X0)(w) with equivalent transforming of Egs. (3.39)-
(3.49) into triplet-like non-Lagrangian formulation (3.56), (3.57) with the gauge
transformations (3.52) with unique independent gauge parameter ¢(w) with account
of algebraic traceless constraints (3.28)—(3.30). Second, we expand ¢ into sum of
longitudinal, ¢, (w), and transverse, ¢ (w), components:

S (S0 Ll I = SRR ()
s=sptsi=) (-1) H )k§+Z(—1) R (3.126)
k=1 0 k=0 o

so that I35, = 0 and both of the components are generalized traceless: mi15;, =
ma1s1 = 0. Then, we use a part ;' (w) of the longitudinal gauge parameter:

5L =+ 47 (3.127)

to gauge away the field x1(w) completely. From the stability: dyi(w) = 0, of the
solution y1(w) = 0 under the gauge symmetry, it follows the relations:

(le =0 lisy =lic=0= llgzb + l1§2<2 = —lqul and m;1®=0. (3.128)

Third, from the second equation in (3.57) we obtain that: I1x2 = xo and thus the
field x2 is double transverse, due to l;xo = 0 from the third equation in (3.56).
Then, we use the remaining degrees of freedom from the parameter ¢ (both ¢}
and ¢, ) to gauge away the field yo completely. Then, the requirement dys = 0
leads to:

mi(F?+sf +c1) =misc=0=mjcf =-—mf(}*+c1) and xo=0.
(3.129)

IThe analogous type of the BRST-unfolded equations were written in (3.121), (3.122) for totally-
symmetric integer spin case.
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As the result, the only initial field ® survives after the procedure above, satisfying
to the relations (2.17) without any residual gauge transformations due to using
of the parameter ¢ completely. Indeed, from a possible expression §® = I ¢ and
(lo,ll,mf,mn)g = (0,0,0,0) it should be that §& = —Z=¢ and it would mean
that the field ® does not contain any physical degrees of freedom. It means, that
in opposite to the case of integer massless UIR of ISO(1,d — 1) one-valued CSR
conditions do not include residual gauge transformations. Again, we suppose, that
the dimensional reduction when applied to massless CSR conditions (2.17) in R4
can be used to derive massive-like CSR relations in R»¥~! for the same value of
CS =

Thus, we show, that the CSR equations (2.17) [or, equivalently, (2.4), (2.5)],
can be achieved by using the BRST-BFV equations (3.22) after gauge-fixing and
removing the auxiliary fields by using a total set of the equations of motion.

4. BRST-BV Minimal Descriptions

To construct a quantum action being sufficient for determination of the nondegener-
ate path integral within conventional BV quantization method,” 72
to derive preliminarily the so-called BV action in the minimal sector of field and
antifield variables organized in terms of respective vectors on a space V,, when
considering instead of the field vector x& € V¢ the generalized field-antifield vector

Xglc € Vy|C:

one necessary

M
Voo ==V, @ Vit with Z-grading Vo = MhHlm @ Vé|c (4.1)
I=—M
for ghyot (Xglc) = —I, Xé|c € Véw. The total configuration space for initial first-

stage reducible gauge constrained LF in the minimal sector, M i, = {@éﬂn(a w)},
contains, in addition to the field x%, the zeroth-level ghost field vector, C2, and
first-level ghost field one, C}, introduced by the rule according to (2.6):

w(z,w) = Cl(x,w)uoul = XQC = Céuoul , (4.2)
G(1,w) = Oz, o = X& = Copo, Co=Cg'+> Ca',  (4.3)
1>1
CA Py Cl(z,w) C’,g(:v,w) C’é I
€ 1 1 0 1 0
ghg | 1 -1 0 0 1—i of =01, (44
ghr | 00 P 1 it1 -1
ghios | 1 —1 P 2 0o -1
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(where under 5 and C§) we mean all component fields in x¢ (3.25) and with constant
pit {pi i} =0, 4,5 = 0,1), which due to the vanishing of the total ghost number
and Grassmann parity may be combined with x% into generalized field vector:

1
0[0 10 i
Xge11|c = XgLn\C + ng‘en\c = X%’ + Z Ce, (e, ghtot)Xgen\C =(0,0). (4.5)
1>1 i=0
The corresponding (according to (3.9)) antifields

(I)zmin(x’w) = ((b* C C*l)(l',UJ)

nf07nf17nfm7np17np7n70 0, 0’

and respective space vectors from Vgl ¢ with the Zs-, and Z-gradings

@;‘Lm (z,w) C}%z,w) C*z,w) X2 C¥
€ 1 1 0 0
gh 0 0 0 1 244 |, i=0,1; (4.6)
ghr -1 9 -3 1 -2
Ghiot —1 —9 —3 0 0

are combined into generalized antifield vector as follows:
Xodujc = X& + Zc ={B&+B}%} +no{sc + Zscc} (4.7)
i>0
E(C,P,w) = nf xg () + 0t xg™ (@) + 07 PnT xo1 (w) + i 0 PP xei (w)
+10[ + Py (] X3 (w) + 0" X7 (w))
+ P (0 (W) + 0™ (W) + i PEPEXAT (W)], (48)
CE(C,P,w) = no(nf CZ(w) +n*CI™ (W) + 0 P Clio, (w)
+ Pl g C*|11(w)) + i co(w), (4.9)
Cé'l (Cv P,W) = 7]07]?_77?0;(“) ) (410)

for B:ll =0 and Xgen|c g:g‘ ot 2121 Xlgz%\ ¢+ The ghost-independent antifield
vectors have the decompositions in powers of w™ similar to (2.6) and (2.21) as for
the respective field vectors. The generalized field (4.5) and antifield (4.7) vectors
are uniquely written in terms of the generalized field—antifield vector:

* 0 0 1|0
Xgc = Xgen|C F Xaenlc = I ot ZX l\cv €, ghtot) Xgc = (0,0). (4.11)
1>1

The presentation of the constrained minimal BV actions are different for the
case of Lagrangian form of BRST-BFV EoM, QChntXOCOO (w) = 0 as for the field

2050154-35



Int. J. Mod. Phys. A 2020.35. Downloaded from www.worldscientific.com

by UNIVERSITY OF NEW ENGLAND on 09/23/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Burdik, V. K. Pandey & A. Reshetnyak

X =300 X%, of all integer spin s = 0,1,... (3.117) and for the non-Lagrangian
BRST BFV EoM (3.22) as for the free massless field ®(z,w) of CS Z (for v = 1)
in R:4~1 In the former case the minimal action Smin = Sc|eo is given according to
the general prescription: Spin = Sp + ®% i, SPA4,, 772 with account for specific
of the vector space Vgl ¢» now being endowed by Fock space structure, irreducibility
of the gauge theory and reality of S¢|oo:

SC|oo = SC\oo + / an{X*COO(aw)gongoo + Cg'oo(aw) gooX*Coo(w)} ) (412)
XEC (W) = o [P + P\ (w)] + 1 xo™ (W), (4.13)

with right 5 (left ) generator of Lagrangian BRST-like transformations in the
minimal sector of the fields combined within the generalized field ngglc(w):

0 0 0 2 0 0
ng?qc =xc. +C&, 5Bng§|c = NSongg?qc = ﬂQChnth:ch- (4.14)

For dual vector, xpov o (0w) = (x&° + C)(9.), the transformation (4.14) with

account of hermiticity Qc|int, 4 looks as:
o0 o0 + o0
5Bchn\C(aw) = (5Bchn\C(W)) : 5Bchn\c(aw)
= ng?l\c(aw) gooﬂ = ngch‘(aw)QC\int . (415)

Explicitly, the action S¢| and its BRST-like invariance transformations can be
given in the form

S¢ioo :/dﬂo Xoi6(0u) Qe Xao (@)

o0 o0 *Uoo 4.16
Xg\c(w) = (chmc + Xg2n|C)(w)7 (4.16)
0BSclee = 0.
Here, both the generalized field, ngfll ¢ and antifield, X;ggloc, vectors are subject
to the off-shell BRST extended constraints Lq; (3.118):
Luxe =0 L (X000 Xaonte) = (0,0). (4.17)

However for the non-Lagrangian BRST-BFV description for free massless CSR
field ®(z,w) in the Bargmann-Wigner representation the minimal BV action,

Sminz = S¢|z, may be found with help of only Lagrangian multipliers procedure.
We apply it for the duplet-like non-Lagrangian formulation with expressed field
x1(w): x1(w) = —3m11®(w) (3.61)—(3.63) with only independent gauge-invariant

equations of motion derived from the action S¢=(®, x2,Ai) (3.66). The functional
Sciz = Sc= (@,Xg,j\i7<1>*,x§,5\f,0§700) and its nonvanishing global invariance
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transformation (following from (3.67), (3.68))

Sciz = Scj= — /d ! { D, Clay 1y
k,l>0
*(m) g, ( = =1
3 (O, Clony, .00 = E et Colimd i)

+ Z Al(m Yoo ”)lRil'mT)nkl)(:l')(Lm)u( ’am)cé (ma e (maJu (:C)} ’ (4’18)
kU

L1
5 (%% X2) s o
l l — -1
- _<6{mkc<(m)k71}7(n)z78{mkc<(m)k71},(n)l - Z:n{mk{"zCS‘(m)k_l},(n),_1}>U7 (4.19)

53)\l m)k,(n) — Z Ril(’y?glkl)(;i)(lnl)l/ (x, az)c’g(ml)k’(nl)l’u, (4'20)
Nz

solve the problem in the tensor form. Thus, we have derived the constrained BRST—
BV minimal action for an irreducible form of constrained BRST-BFV LF (3.22) for
free CSR of the ISO(1, d—1) group described by the field ®(z,w) and auxiliary clas-
sical xo(z,w), the ghost C.(z,w), the Lagrangian multipliers by (z),71=1,2,3, the
ghost C,, fields and theirs antifields subject to the generalized traceless constraints
(3.69) where the substitution ¢ <+ C; should be made.

The difference of the BRST-BFV descriptions for the fields describing all integer
spin representations and the fields for CSR presented in the Subsec. 3.3 is inherited
for BRST-BV descriptions as well. Note, the constrained BRST-BV actions for the
CSR field in case of Fronsdal-like form of the equations (following to Schuster and
Toro®?) can be derived from the constrained Lagrangian BRST-BFV LF (without
the fields with “negative spin values”) which should be closely related with the
minimal BV action S| (4.16) for massless totally-symmetric fields for all integer
spins.

Different BRST-BV minimal actions may be used as the starting points to con-
struct a LF for the CS field, being interacting both with itself, or with another scalar
CS fields and with HS fields with integer spin in RV~ on a base of preservation
underlying master equation.

5. Generalized Quartet-like Unconstrained Descriptions

To solve the problem, beyond of the extension of the constrained BRST-BFV
approach to unconstrained one, it is sufficient to start from the triplet-like non-
Lagrangian formulation (3.56), (3.57). We may obtain unconstrained quartet-like
non-Lagrangian formulation (following, in part, to idea of Ref. 91 for the case of
integer spin) by introducing a compensator field ¥(w): é9(w) = mi15(w). Then we
should enlarge the constraints (3.28)—(3.30) on the fields (®, x1, X2, Xo) with non-
trivial gauge transformations (3.52) leaving by invariant the EoM (3.56), (3.57) u
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to the gauge-invariant equations as follows:

ma1xo — loY =0, mi1x1 — L =0, (5.1)
mi1Xe + 2x1 — mfﬂ =0, mn®+2x — lfﬁ =0. (52)
Introducing four new sets of bosonic (real one-valued) fields A;, j =1,...,4, playing

the role of the Lagrangian multipliers for the modified constraints (5.1), (5.2) in
addition to ones A,, p =1,...,6 for the equations of motion (3.56), (3.57), we get
an unconstrained LF with the action in the tensor form:

SE = SC‘E ((I)7 X0 X1y X23 S\P)

m)g,(n l
/dd Z [)\ll( k>(n)1 (mll(I)‘i'QXl I ﬁ)(m)k .
k,1>0

l

+ A (et (maixz + 2x1 — m{ V) (M), (n)y

+ )\13|(m)k7(”)l (mlle I 19)

(M), (n)

1), ()
F X o = 109) g, ]

Sci=(®, x0s X1, X25 Ap)

/dd Z )\l|(m)k,(n l(I)—llXO) m)g,(n)

k,1>0
m n l
+ )\l|( ks (1)1 P — ZTXI _ XO) ()0

l|(m)k7(")z I

(1
(
(
(

l
oxX1 — llXO) (m)k,(n)l

ll(m)ka(n l

! 0XxX2 — My XO)(m)k ()

l|(m)k,(" i lle — mf)ﬂ - Xo)(m)kw(”)l

T )\”(m)k;(n) ( +‘I) _ li‘rxg) (5.4)

(M) (n)z] ’
which is invariant with respect to the gauge transformations with the unconstrained
gauge parameter ¢(w) for the fields

5((1)7 X15X25 X0, 19)(&)) = (l;r’ lla mev lO; mu)g(w) 3 (55)
and with respect to the dual gauge transformations for the Lagrangian multipliers
Aps Aj with additional unconstrained gauge parameters atlm)e,(n),

S(AL, ALY e () = N (R, Ry (s (@, 8p)o Um0 0 () (5.6)

"(ma) s (na)y
YR

with some local field-independent generators ]?pi,(zzgf)’g();“)“, ]ﬁ,(?;)f)itl();l)l,

specific form should be derived from the gauge invariance for the EoM for the

whose
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Lagrangian multipliers:

0S= - -
sp = oM+ 9% +miN +mi A =0,
‘SSE__er~ Y. _gdX. o 4dY .y d _
= ll )\1 )\2 ll)‘3 my )\4 )\5 + mu)\4 = 0,
dXo
085 a8 — 11936 + mify g =
= loA4 T 1T A5 1 6+m11)\2—0, (57)
dx2
0S= - < <
6X~ =loxs — 17 — m7 s + mE A3 + 200 + A2) =0
1
6S=
55 =l - A —mfiN — 1§03 =0.

Here, the form of the dual operators I, m, l+d m¢, are determined with help of

(2.13), (2.18) according the rule for any tensors G(m)k (@), F(lm)k,(n)l(x) with a
compact support

d l n d l m n
/d 3Gy, gy (AF) 10 _/d (A9G) oy FI
de{umPt}, (5.8)

(mllF)l\(m)kv(n)l — (mtlila)l FUm)(n)e

l
Gm) e (n):

ks(n)
Again, by the choice of appropriate initial and boundary conditions for )\” M), (n)e ,
)\y( MM e always able to fix their unwanted degrees of freedom completely.33
We use again such form of the free actions as the auxiliary ones to derive preferably
the EoM for the fields @, x1, X2, Xo, ¥

Applying the terminology from the HS fields with discrete spin we will call the
obtained irreducible gauge-invariant LF as the quartet-like unconstrained formula-
tion for scalar bosonic field with CS = on R1¢~! within Bargmann-Wigner repre-
sentation. In turn, the functional SC|E((I>, X0, X15 X2; 5\1)) (5.4) should describe the
constrained irreducible gauge-invariant LF in the so-called triplet-like formulation
with constrained fields, Lagrangian multipliers and gauge parameters ol (ma)ws (na)

The unconstrained LF given by the relations (5.3)—(5.6) presents the basic result
of the section.

6. Conclusion

In this paper, we have developed a constrained BRST-BFV approach to a gauge-
invariant description of EoM and action of free scalar CSR for the Poincaré group,
with a fixed arbitrary CS Z (when parameter ¥ = 1) in Minkowski space-time
RY4=1 of an arbitrary dimension in a “metric-like” formulation within Bargmann—
Wigner representation. The final constrained BRST-BFV representation for EoM,
given by (3.22), in fact, determined by Wigner fields of two space—time variables
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™, W™, represents a first-stage reducible gauge theory and contains an auxiliary set

of fields providing a BRST-unfolded form (in a ghost-independent representation),
of the field equations (3.39)—(3.49) and gauge transformations (3.34), (3.35)—(3.38).

To present a constrained BRST-BFV gauge-invariant description of EoM, by
transforming the Bargmann-Wigner equations (2.3) into four constraints (2.4),
(2.5) (equivalently, (2.17)) imposed on the CS real-valued field ®(x,w) in the co-
ordinate form. The decomposition (2.6) for the field ®(x,w) presents an original
ansatz for the nontrivial solution for (2.4), (2.5) in powers of direct and inverse
degrees in the variables w™ (2.6), using an infinite set of conventional indepen-
dent @?m)k(:z:) and additional <I>l(m)k7(n)l(x) tensor fields. The vector ®(z,w) (in
the space V having no scalar product structure) contains a standard contribution
with the usual CI)?m)k(x) massless tensor fields of rank £k = 0,1,2,... and a new
one, <I>l(m)k’(n)l (z) from which the number particle operator extracts some vectors
with “mixed positive and negative spin values” (k,0): k,1—1 = 0,1,2,.... CSR
realizations on (2.12) and (2.13) ones are different but not independent, due to
“coupling” equation for [ = 0 in the second, third and fourth lines of (2.13), due
to an ambiguity in the definitions of <I>l(m)k7(n)L(m) (2.7), (2.8). The closure of the
constraint algebra (2.17) under the commutator multiplication and a formal Hermi-
tian conjugation generates a higher continuous spin symmetry algebra A(Z; R4—1)
given in Table 1 with two center elements: the parameter v and the value of CS, =
for v = 1, since any linear combination of constraints should also be a constraint.
Extracting a second-class constraint subsystem: the generalized trace, mi1, its dual,
mfp and the particle number, gy, operators from the remaining (4 + 1) first-class
differential constraints, i.e. the divergence, l1, the generalized divergence, m1, their
formal duals, lf, mf, and the D’Alambert operator, we construct, with respect to
a reducible set of first-class constraints (considering m; —I; = —iZE as a constraint),
a constrained BRST operator, Q¢ (3.7), and a BRST-extended off-shell constraint,
Mll =mq1 + -+, in an enlarged vector space, V. They are found as a solution of
the generating equations (3.1) with the boundary conditions (3.2). Calculating the
Qc-cohomology in the ghost number zero subspace of V¢, which should lead to the
Bargmann-Wigner equations fixes in a unique way, the representation (3.8) in V¢,
which allows one to select an independent set of constraints and then to reduce Q¢
to the constrained BRST operator Q¢ (3.10), without first-stage reducible ghost
operators, and to determine the off-shell constraint M, (3.11). The familiar appli-
cation of the spectral problem, with a BRST equation Qcx2 = 0, (3.18)-(3.20),
however with no spin condition, as in the case of HS fields with discrete spin,? leads
to the constrained BRST-BFV description of the first-stage reducible EoM (3.22).
In the ghost-independent form the latter problem is realized with EoM (3.39)—(3.49)
for one initial and nine auxiliary fields (in Bargmann—Wigner form with two sets of
variables ™, w™) invariant with respect to reducible gauge transformations (3.35)—
(3.38) with five gauge parameters, invariant under the transformations (3.34) with
an independent gauge for gauge parameter w(z,w) and off-shell holonomic con-
straints (3.26)—(3.30).
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A specific structure of the constraints and gauge transformations has permit-
ted one to realize a partial gauge-fixing, jointly with a resolution of some of the
non-Lagrangian EoM to obtain from the constrained BRST-BFV description the
triplet-like (3.56), (3.57) and then duplet-like (3.58)—(3.60) formulations of EoM
for scalar CSR fields in Bargmann—Wigner representation. These formulations are
classified as irreducible gauge theories, respectively, with constrained three and
two additional auxiliary fields, by analogy with the triplet and doublet descrip-
tions for an HS field of an integer spin s.8588 Expressing the field yi(z,w) as a
generalized trace of the basic CS field ®(z,w), the non-Lagrangian gauge-invariant
EoM (3.61)—(3.63) has also been derived with the help of an additional field x2(z,w).
The respective constrained gauge-invariant LF for triplet-like and latter formula-
tions with the actions Sci=(®, xo, X1, X2; 5\,,), SC|E((I)7X275\1') have been obtained
with the help of some appropriate sets of real-valued gauge Lagrangian multipliers
(following Ref. 83) for CSR scalar (real-valued) field ® of CS E in the tensor form,
respectively, in (3.66)(3.69) and (5.4)(5.6) for only gauge A,. The fields and gauge
parameter ¢(w) satisfy the generalized traceless (simply, mi;-traceless) conditions
(3.60). We stress that the dynamics of the fields and Lagrangian multipliers is com-
pletely decoupled in the presented LFs for free CS field and the unwanted degrees
of freedom for the Lagrangian multipliers can be accurately treated, e.g. it can
be removed by the appropriate choice of the initial conditions for the respective
EoM.

The characteristic feature of the constrained BRST-BFV descriptions of EoM
and theirs derivative descriptions is the presence of respective sets of new infinite
set of tensor fields with the so-called “negative spin values.”

We have found, first, the interrelations of the resulting BRST-BFV description
of EoM for a scalar CSR field (in the Bargmann—Wigner form) given in the basis of
ma-traceless fields with those for totally-symmetric HS fields with any integer spin
$=0,1,2,... in terms of Fronsdal-like (traceless) standard and new fields. Second,
we have found the correspondence of the (double) mq;-traceless fields with the usual
and new Fronsdal-like (double) traceless fields in (3.104)—(3.106). The latter allows
one to present the parts of all the constrained LFs which contain the usual tensor
and auxiliary fields for an CSR field entirely in terms of Fronsdal-like fields. We have
shown that the constrained LF's for all integer spins do not coincide with respective
ones for a scalar CSR field. However, for vanishing CS = = 0 the EoM (3.61)—(3.63)
under the identification ® = yo without new (negative spin values) tensors they
coincide with ones for HS field ¢°(x,w) (3.113) with all integer spins. We stress that,
in case of the Fronsdal-like form of equations (suggested by Schuster and Toro3°)
which select the CSR field, they can be derived from the Lagrangian BRST-BFV
EoM (without new fields presence) with the constrained LF closely related with
that for massless totally-symmetric fields for all integer spins. We intend to solve
this problem in a separate work based on the result of App. C, which justifies the
presence of a CSR field in the spectrum of an open bosonic string within a special
tensionless limit.
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We have established an equivalence of non-Lagrangian EoM in the BRST un-
folded form (3.39)—(3.49) of the suggested constrained BRST-BFV description with
the irreducible CSR relations (2.4), (2.5). Incidentally, we have clarified the form
of conditions necessary to select UIR of ISO(1,d — 1) with integer spin (3.125) and
with residual gauge transformations, thus determining a class of gauge equivalent
configurations instead of its unique representative. Note that the constraints in the
respective conditions that select massless UIR both with CS and with integer spin
are sufficient (without using the residual gauge transformations) to construct the
constrained BRST operators and to derive the respective BRST-BFV description
of EoM and LFs.

We have developed a BRST-BV approach to the suggested constrained BRST—
BFV gauge-invariant description of EoM for a CSR field in a RY“%~! space-time
and explicitly constructed the BRST-BV action (4.18) for the classical action
Scz(®, x2, 5\1) with 2 fields and with a corresponding BRST-like invariance (4.19),
(4.20) in the minimal set of constrained field-antifield configurations both for the
fields and for the Lagrangian multipliers. The crucial point here is that all the
fields, ghost fields and their antifields are combined within a unique generalized
field—antifield vector (4.11) and contain new auxiliary (anti)field tensors as well.
The actions serve, first, to construct quantum actions under an appropriate choice
of gauge conditions, and second, to develop a construction of theories interacting
with the CS field with accurate elaboration of the degrees of freedom for the set of
Lagrangian multipliers. We stress that the construction of the minimal BRST-BV
actions is differed from the procedure of finding BRST-BV minimal and quantum
actions developed in Ref. 33 for the scalar CS field.

An unconstrained quartet-like LF (similar to the one for the integer spin case®!)
has also been found in (5.3) by including a compensator field to remove the mqi-
tracelessness of the gauge parameter and by adding to the action for a triplet-like
LF (5.4) of the augmented gauge-invariant constraint conditions (5.1), (5.2) with
(4 4 6) unconstrained Lagrangian multipliers. These multipliers are subject to the
attributed gauge transformations (5.6) being dual for the gauge transformations
(5.5) for the fields.

The higher continuous spin symmetry algebra A(Z;Y (k), R¥~1) which corre-
sponds to the most general massless nonscalar CS one-valued irreducible represen-
tation of Poincaré group in Minkowski space R4~ for k = 0,1,...,k = [(d—4)/2]
of the Bargmann—Wigner form is suggested in Subsec. 3.2.1 as well to be different
from one in Ref. 82.

We have presented in App. A another way of higher continuous spin symmetry
algebra A(E;Rl’dfl) realization by means of two sets of oscillator pairs corre-
sponding to direct and inverse degrees in variables w™ with endowing the Fock
space V = H with a new scalar product. It should serve for further study of the
algebra A(Z;RV4~1) and its application for BRST LFs for CSR field.
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It has been shown in App. B that there is no possibility to endow the vector space
VY with a Hilbert space structure with finite scalar product when explicitly working
with the inverse degrees in powers of oscillators. This point proves an impossibility
to use the latters for the purpose of BRST-BFV Lagrangian formulation of the
form Sz ~ (P|Q|D)".

There are numerous ways to elaborate the suggested constrained BRST-BFV
and BRST-BV approaches for CSR in the Bargmann—Wigner representation, so
as to study the Lagrangian dynamics of CSR in RM¥~! in the case of arbitrary
one-valued mixed-symmetric UIR with CS as well as to adapt the formalism to
accommodate two-valued CSR in R141,
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Appendix A. Higher Continuous Spin Symmetry Algebra
A(E;RV94~1) with Two Sets of Oscillators

In this appendix, we describe another way to present the algebra A(Z; R1471) in the
sector of new tensor fields @l(m)h(n)l (x). To this end, we endow V by the Fock space
structure V — H with a new scalar product by presenting H as H = H° + > 50 H,
which is generated by two pairs of the Grassmann-even bosonic (dependent) oscil-
lators with help of translational invariant vacuum vector: |0): 9™|0) = 0:

(am, a+") = —2(6$,w") ,
9 n (A.l)
(b, b°7) = (W Z:;) , (@m,bm)[0) = (0,0),
which are subject to the commutation relations:
[arn,7 a+n] — _,r}mn’ [bm7 b+n] — _,r)mn’ ( )
A2
[Cljy_m b:] =0, [avm b:] = 777rm(b+)2 - QbEbZ :

The validity of the latter commutator in (A.2) follows from (A.1) and the explicit
calculation of [0, 1" /w?], whereas the commutators [am,by], [a;;,b,] are still
remained undetermined.

2050154-43



Int. J. Mod. Phys. A 2020.35. Downloaded from www.worldscientific.com

by UNIVERSITY OF NEW ENGLAND on 09/23/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Burdik, V. K. Pandey & A. Reshetnyak

The field ®(x,w) (2.6) is presented as the vector from H

k
) = Z T Bl (o H o H b*"10)
k>0 =
= |0%(z,2a™) + Z@l(x,za+,zb+) |0y = ‘¢>O> +|@7), (A.3)

1>1

for square integrable component functions in ®° (:um“‘) and ! (m,la+,zb+)
obtained from the decomposition (2 6). The different pairs of the oscillators are
not independent, in view of w™ “(’U =whe “'1(2.9) and (A.1):

(a™™bt™ = o™ and aTb), = —1) = (A4)

m

at?™? =1= 0t =D /D*? = —DT™™C*? for C,D € {b,a}, (A.5)
because of, at?b*? = (—wmwy) @ (—w"/w?)(wp/w?) = (—w™{wp/w?}) -
(—wm{w™/w?}) = (a™b}) - (a},bT™), so that they both look as the inverse-like
operators for each other, creating “particle” and “antiparticle,” respectively.

An idea to consider the oscillators at™, b1t" as independent ones but with
additional constraints imposed, explicitly on the vector ‘q)):

[F(a™by),G(a®?)]|®) =0, for [F(0),G(0)] =0

wt [0, 460

dy ) dy = [CFa CG] ) (AG)

y=0

(for unknown analytical functions F', G)) with some real constants Cr, Cg leads to
highly nonlinear expressions for the operators F'(a™b,,) and G(a?b?) generating the
mixed traces for the component tensors in |®) as it was shown in Sec. 2. Instead, we
will explicitly resolve the oscillator constraints (A.4) thus reducing the ambiguity
(2.7) in the choice of the component fields in |®). To this end, we introduce system
of projectors generated by the decomposition (2.8): Py, Pi; Py + P = 1, such
that P;P; = 0;;F;, 1,5 = 0,1, which are associated with the decomposition of any
product a™™b*™ on trace and traceless parts (according the rules (2.7), (2.8)) when
decompose of any product a™™b*" in each monomial (] a*)(k)l (I1 b+)(n)l for k,
I > 0 and the same for the product a™™ta™™2p ™1 p+"2 but for k, [ > 1 as follows:

a+mb+n —d 1nmnnk1k a+k1b+k2 + (6]7;71, LLz —d 177mn77k1k ) +k1b+k2

= (Poik, + Puitk,)aothe (A7)

(Ha+)(m)2 ( H b+) (n)2
_ g2 g ( H a*) (K)2 (H b+)

+d—1nm1m2(6l71115ln2 d- 1 nlnz 1l2)a+2(Hb+>(l)2

()2
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d—l nin 5m1 5m2 d—l mimeo + (k)2b+2
AT (S —d ™ ) ([ @

(k)2
+ (5;’;15;’;25;’116? —d7 R ) (H‘ﬁ) (H b+)

SN k) 0)
=3 >orgeri (ITar) (IT07) (A8)

i=0 j=0

(OF

Due to the properties (A.4) the first summands in (A.7), (A.8) are equal respec-
tively to

P0ﬁ22a+kl b+k2 _ 7d71nmn ;
A.9)
(k) 0 (
moppory (ILat)  (T007) " = a o,

The projectors P;7*t"*? (because of the total symmetry of all component tensor fields
) k1 ko

P! , and thus due to a™™b™" = ™6™ inside |®)) satisfy to the symmetry
(m)s(n)
properties:
P = P = pame = 0,1, (A.10)

The last properties permits to find that the decomposition of the quartic term
(Ha+)(m)2 X (Hb+)(n)2 = (a“‘b“‘)(mn)2 into components generated by the rela-
tions (A.7), (A.9):

(a+b+)(m")2 _ d—2nm1{n1nm2}n2
(AR e A
coincides with the decomposition (A.8) with account for Egs. (A.4), (A.9):
n1}tne

(a+b+) (mn)2 _ d—2nm1{mg77

e (P R S A @b (a2

lll2 lll2

Therefore, the decomposition (A.7) is sufficient to reduce an ambiguity in the choice
of the component tensors in ‘@) (A.3), which should now be determined as

k okt [ 1
1 on
|(I>> - Z { Z k! ( H Pm{fﬁl) CI)Z(U)zmHl'“mk,(P)z

k>0 \ 1>0 h=1

Zk-H u o l : +m; l +n;
+ Z K H P177{th7§jh, (D(U')k’(lj)knk-f—l"'nl H ar™ H b |O>
h=1 i=1 j=1

>k

= (tI’O (z,207) + Z P! (2, za+,zb+)> |0) = |<1>0> + |(i>7> , (A.13)
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(I)(m)k, )t <prr{;p7;;h> (o)imgr- mka(ﬂ)zek’l

k
( H 1thpf?h> U)k,(p)knk+1~~~nlel,k—l B (A14)

where the operators a™™, b are already considered on the set of such vectors as

independent oscillators. Note, the traceless projection concerned only new tensor

fields ®! (z), I > 0, whereas the standard fields, ®? . (z), have not been
(m)r,(n) (m)g

touched when resolving the operator identities. Because of Pogf_’;ji(i)l(m)k (n): (x)=0
for ¢ = 1,...,min(k,() the field &)l(m)k,(n)l given by Eq. (2.7) contains the field

@I(m)h (n), 35 its traceless part without summands proportional to Pogrfk  projector

according to (A.14), (2.10). It means, in fact that all new tensor fields CIDI(m)Ic (. (@),
[ > 0 should be traceless when calculating of any traces:

By = 1 Dy = T Ry, = 05 (AL15)

fori =1,....,k—1, 7 = 1,...,1—1, when [,k > 0. Therefore, instead of the
tensors @ém)k’(n)l we may equivalently write (I)l(m)k,(n)], in the decomposition (A.13)
implying validity of the traceless condition (A.15).

The Poincaré group IR relations (2.4), (2.5) in the tensor form (2.12), (2.13)
take the equivalent representation in terms of the operators [confer with Eqs. (2.17),
(2.18)]

(ZOallam—l‘ramll)l(I)> :07 (A16)
Iy = —1a™0,, — ™" [2b+mbn - b;bm]am , mi = —atmo, +1=, (A.17)
g = a® + {a™, bt (26 b, — b by ] Y+ 012 (51202 — 2(d — 2)btFDy) + v, (A1)

where, first, the sign “{, }” in (A.18) is the anticommutator, second, we have used

m

the rule to express the derivative 9/0w™ in terms of the oscillators without their

negative degrees:

0 0 0

o™ Gg™ A.19
ow™ Jw™ *Z:fg:lfr":const ow™ |*Zw":a+n:const ( )
= 1a + ab+n 8 =0 — ZM 8
S Qwm Pbtn T ow™  Jbtn
on, wWwi, (52’Iwkwk W,
:Zam+z<c‘12_2w4 )b":w’"'i'z(wz,wz -2 " )bn
= 1y, + 107" 20, by — b b, | (A.20)

To get Lagrangian form of the equations (A.16) (without Lagrangian multipliers)
we need R-valued Lagrangian action within BRST-BFV approach. Therefore, the
set of initial constraints {0} = (lo,{1,m},m11) (A.17), (A.18) should be closed
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with respect to [,]-multiplication and Hermitian conjugation in H. To do so we
determine the scalar product on the space of the vectors (A.13) and its dual as
follows:

(w]@) = (v7|0%) + (v~ |‘1> >

= /ddl’{ Z k‘l'k’g O| Ha \Ij(m)kz (n)ky HaJrnl

k1,ka=0

> (72)12+k2111+k1 ka2l

A n’; i lo*
S IATNTSTRE [T voea™=w,, o,
k1,ka,l1,l2>0 12,J2=1

k1,01
l +miy png,
®lhy o, L a7 |0>}

i1,j1=1
= (-1 d L(m) ()
- i |4 R T LI (A.21)

where the nondiagonal terms proportional to
2p+1* n 1(m )i, (m)p(n
(Zval\II(rZ:L)p(m’)k,7(n’)l(”)p( )”>(I3p+ (s (m)p (n): + c.c. (A22)
p=1

(for some rationals z, ;) arising in (A.21) from the noncommutativity of a™ and b,/
(A.2) and its (usual) Hermitian conjugated for a™™ and b,, should vanish due to
the traceless condition (A.15). For instance, for p = 1; I,k = 0, we have,

(O[WZr (), " b2 BLbTH|0) = 202 "I — 42, T
= 202" "™ =0. (A.23)
The Hermitian conjugated for (A.2) mixed oscillator’s commutators take the form
[am,bn) =0, [a},by] = —1mnd® + 2bby, - (A.24)

From the Hermitian conjugation of the identity (A.4), (a*mb;)Jr = bpa™ = —1,
the operator my; in (A.18) is simplified to

mir = a® +2{a"™ bbb, } — a"b* b,
F (14677 — 2(d — 2)bt b)) v (A.25)

The closedness of the set of operators (A.17), (A.25), first, with respect to the
Hermitian conjugation in H with a scalar product (A.21) leads to its augmentation
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by the operators
my = —1a"" O, — 12, (A.26)
If = —1a®0, —1[2b50™ — b1, |00, (A.27)
mi = at? 4+ 2{at" bbb, ) — b bRat™
+ (146720 — 2(d — 2)b™0,) 0 + v (A.28)
Second, its closedness with respect to the [, ]-multiplication for lf, l1, mq, mf:

[1,07] = (14367262 — 4(6™0,)) o
— 2{b+2bmbk + bbb b? — 2b (b”bl + %(d - 2)) bk}amak
— (1436720 — 4(b™"b))lo — 287 (I — m?)
—2(1; —m)I — 411{*{;(61 —2)— b*lbl}ll{ —2=2(T - 1), (A.29)
[1,mi] = (146701 — 2(b" by by + bh b ) 0™ 0

+ 4b,tbb+lbl b 0™ oF

= (L4202l — 287 (I —mF) — 2(1y — ma)

— 4T lh — 2= (15 - 1), (A.30)

i, t] = [lomt] = ([bomi])* (A.31)

[, ma] = 2(b+ 1y + 46721076t b, — abt210H 00 (A.32)

(with account of [If,m{] = —([l1,m1])") implies an inclusion in itself of the

operators of divergence and gradient with respect to the second group indices (n),
in the tensors ®!
(m)k,(n)o?

(12,154) < —4(byn, b77) 0™ s0 that [15,15%] = 1. (A.33)

This fact requires a further careful study of the nonlinear HCS symmetry algebra,
in question, in the representation with two pairs of dependent oscillators.

Appendix B. On Problems with Lagrangian Formulations with
Single Set of Oscillators

In this appendix, we present the algebra A(Z; R"~1) with use of the inverse degrees
in a™ = —w™ oscillators, which however leads to the problem with finiteness of
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the scalar product. To this end, we endow V with a new scalar product, { | )’, by
presenting V as V = VY + 2150 V! = VO 4 VY~ permitting the representation for the
vector |®) as in (2.6) or (A.3) but for b™ = —w" /w? = —atm/at?:

(U]@) = (0| 0%) + (T~ [~

[e'e] k1
o d ? ( m; +n1
-/ { > nbae mna Wiy e, I

k1,k2=0 i=1
ka,l ’
S R R A N
+ ———(0| mig l2*
kl'll'kQ‘lQ' a2 (m )kza(n )
k1,k2,l1,12>0 i2,j2=1

kil —a +nj,y
x @l;ﬂkl - H atmin 2 |0>}

i1,51=1

% kot
_ Z (=1 g Tl Pl (n)
1 (M), (n)

k!
k,1=0
— (=% [ 4 0% g0(n) Ix I(n)
:Z o dzq Wiy, O Wiy, K@ '+ more] ¢,
k=0 ’ 1>0

(B.1)

with some real numbers K;;. Here, the term “more” denotes the summands pro-
portional to a respective product \I/l(’;n)k’(n)l‘bl(m)kv(")l for £ > 0 and some possible
others.

Indeed, the orthogonality properties among the vectors (0|a™(a®™|0)) and
‘Z:; |0)(<0|‘;—:) take the form:

P q
<0| H a™ Ha:i|0> - 5pq(*1)pp!s((glp
j=1 =1

B.2
k1,1 +nj, (B-2)
(0 Ha 5 [T e sgrlo) =0,
i1,51=1
p k +n
Cl/mj a'’™
ONTT 5 1 G0
Jj=1 =1
6PJ<?+21( )Ppls(m) Kk+21 EMngpainggs = Tngpor—1neyo p>k, (B 3)

o2t (L) RIS FC ™o 1oz sz p <
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a,,
. . k k ;
(and with more complicated form for (0| JT%";™ ”a n [1725 . _ a™™e x
e Ji,i1=1 i2=1,j2=1
2

a+ > \0)), where Ky, pt21 = Kp+2[’pk and explicitly for [ = 0:

k Pk

t
K,,,p:/ dtldtgz ” — [ 2ild+2G+p-1), (B.4)
O .

j=1

Vp, k, ¢ € N with the symmetrizer S(( )i’“
The first products in (B.2) are standard, whereas to prove the validity of the
second ones, we apply the induction. For p = 1, Vk € N we have

k +n; 1

a / ) k a-i—m-
(0]a™ H WK)) = (0] ([a"“,a”“]w —at™[a™, a*?] (a‘lf)‘l) H (@ )? |0)

i=1 =2

_<0|(nm1n1 (a+)2 _ 2a+n1a+m1) (a+)4 H (C;+)2 |0> _
(B.5)

due to (0]at™ = 0. Let for Vp < py € N the same equations as one (B.5) hold.
Then, for p = py + 1, Vk € N it follows, with account of the relation above:

Po k ot
o T Jor 1550
j=1

i=1

Po +n1 k i
1 a a
_<0|{(H amj> (nmroti (@ h)? =20 gt o) (@)t~ (a+)2“mm+l} I1 @z
j=1 ‘

Po at™ k atm
_ m; M 41
= (0] Ha ’ (ah)z” rot H (a+)2|0>
i=1

=2

k+2 +n7,

Po
m;j m n Mpo+1 ¢n
- ( 1_[1a ]> (7] PO i ymica = 6{m2+15mlk+2}) 1_[2 (a"")Q‘ )
Jj= =

k Again, the nondiagonal terms in the scalar product (B.1) are proportional to

2p+1x n +1(m ), (m)p(n'
(ZlZﬂ,l‘l’ﬁ)p(m')k,,<n/>l(n>p( “)‘PP (mDestmlp (W' 4 g
=

as in (A.22) (for some rationals Z, ; ~ K, ;,4-2;) which may vanish due to symmetry (2.10) of the
new tensor fields in case choosing only traceless components from it (A.15) following to (A.14) with
projectors ﬁ’ﬁ,{ﬁ{‘h(a*) = Pkl (ot bt = —a+/a+2), so that the only diagonal terms with
Kp p survive in (B.1). The last argument provides the correct spectral property and nondegeneracy
for (\Il|(1>) , in which for any tensor <1>(m)k () the only one tensor \If(m)k (), exists which gives
input in the scalar product.
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Po
. m +1
—(0] ( 1_[1 am;) { (77mpo-¢-1n277mk+3mk+4 — 5{7,’;(;”5&2“4})
j=

atm k44 qtmi qgtn gtne k +n; }| >

X — aml"0+1 L
@ L @~ @™

Po k a+ni
=1

due to the repeated applying of the induction hypothesis, e.g. for the first summand
in the relation before last (and for the second term in the previous relation), as
well as with commutating of a™ro*! with =z T)Lz for i = 3,...,k. The Hermitian

ai

conjugated quantities for ones in (B.2): (0 Hl 1% Hp Latm |0> vanish as well.

To establish validity of (B.3) we should commute (aﬂzp through — —%» which may

be done with help of the integral representation for W = fooo dt exp{—ta(+)2k },
starting from the case, p = k, by means of the auxiliary relation:

a —1t5)9(aT2)F9
<|a2k +2‘,€|0 o|/ dtldtgz tl Z( t2)?(a™”) 0) (B.7)

|
e>0 g>0 g
0 ke +2 kg 0
= [T,y GO OLE 0
e g>0 €9
(t1t2)®
dtldtQZ (el)? 0|H4J (90 +37 —1)|0)

e>0 e

o0 (tita) v .
:/0 dty dty » i [T 2ild+2G - 1) (B.8)

e>0 j=1

with using of the expansion above in Taylor series for exp{—ta(“‘)%}7 spectral
properties: (0|(a?)k¢(a2)k9|0) ~ §4¢ - -+, and that Vk € Ny:

k
(0](a*)*(a H (0]45(go +7 — 1)|0) and

(Ol(go +4 = DI0) = (d/2+j—1). (B.9)

Therefore, we have respectively forp=k=1land p=2, k=1

a™ a+ t1t2 2e +26 +
015 otszlo) = o0 [ S 12 )ait10)

e>0

tt
:7531/ dtldtgz 1t) H0|4] g0+ 7)[0)
0 ! j=1

e>0
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:_5;;1/ dty dty Y ilt? H id+2j], (B.10)
0

e>0 : j=1

NI

a™: am2

028 2|o /)dtldtgz

e>0

O| my o ma (a4ea+4e)a:‘0> — O,
(B.11)

so that, for any p = k+ 1, p, k € N the presentation (B.3) is valid. Whereas for
p =k, Vp € N the average values in (B.3) calculated with account of (B.7), (B.8):

:/Ooo ity Z ( e'g' O‘Ham] pe +2 pg}Ha—l- |O
o0 pe p

= | dnan Y ST Uit {mHamJH@ (90+7 - DT :,.,o>}
j=1 i=1

+
’I’L

/mdtldtgz(?t;) {0|H4] go+j+p—1) ﬁ
0 e! j=1

Jj=1

i ":]w

10}

— (—1)rpistm /O ity G4+p—1), (B.12)

that proves the validity of (B.3) with K, in (B.4). The case p # k in (B.3) due
to the argument from footnote i is not essential for the evaluation of the scalar
product (B.1).

Let us evaluate the finiteness of the quantities K, , (B.4). It is enough to check
it for simplest case of Ky i:

k
tt
KM:/ dtldtQE 12 || jld + 24]
0 ! j=1

k=0

e tt
>/ dtldtQ L 2 H
0 k

e>0 ! j=1

o0 oo
= / dty dts Z (4t1t2)k > / dtq dto exp{4t1t2} =00. (B13)
0 =0 0
Thus, the operation ( | )’ (B.1) cannot be consider as the scalar product with finite
norm, therefore not endowing the vector space V with the Hilbert space structure.
This point proves impossibility to use inverse degrees in powers of oscillators for
the purpose of BRST-BFV Lagrangian formulation of the form Sz ~ (®|Q|®)’.
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Appendix C. Towards Tensionless Limit in Open Bosonic String
with CSR

In this appendix we will show the way to find the CSR fields in the spectrum of
open bosonic string within a special tensionless limit.

Let us recall some standard properties of open bosonic string oscillators that
satisfy the commutation relations

[, of] = —kép ™, k, LEZL. (C.1)
The Virasoro generators Ly, and the Virasoro algebra for their commutators take

the form

1 = m d
Ly =—3 > o omr, Lk L) = (k= 1)Ly + ﬁk(/{“ -1), (C2)

l=—00

with the zero mode rescaling as
ayt = —ivV2a/9™ = V2a/p™. (C.3)

We define the reduced generators

lo=—p* = —%ag"amo, lt1 = p" a1 TIE,
) (C.4)
E=— <l2a/>0f_"2am3 ,
I, = Py, = \/%ag"”amh |k| > 1, (C.5)

where the real-valued dimensional parameter =, 2 = =1 should satisfy the property

+

[1]

1
(Z\/ﬂ>amgam2 = a"50m2 = =5 0m3 (C.6)
with a strong operator constraint on the values of the oscillators a'f’s, a,+o (for
comparison, see, e.g. Ref. 9, where the reducible massless (half-)integer representa-
tion of ISO(1,d — 1) was deduced for = = 0).

The algebra of the constraints ly, l11, ; for |I| > 1 satisfies to the simpler algebra,

related to the algebra for continuous spin fields in R14~1 in the Schuster-Toro-like

form:3°

1
(Ui, 1] = Kkbkt10 (lo + @5|k|71{2a’12aug - 3a’igau3}>

1
V2!

The nondiagonal nonvanishing commutators above are

[li2,l41] = :F(\/%>lﬂ:37 (l3,l51] = :F(\/%)l:ﬂv (C.8)
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which in the naive tensionless limit o/ — oo vanish as well as the terms,
(1/a/){20" yau2 — 30" 50,3}, in the first commutator.

The Grassmann-odd BRST charge Q subject to the ghost number ghy(Q) =
1 with the Grassmann-odd operators of ghost coordinates Cj; and momenta Py,
ghu(Cr) = —ghu (Py) = 1, satisfying the anticommutator relations

{Ck, P} = k.- (C.9)

are written in the known form?9496

Q= Z < Ly — f(k —1) ;ckclp,m;) —Cy. (C.10)

Rescaling the ghost operators (C, P) — (¢, p) without changing the commutation
relations (C.9):

1
gk =—V2'Ck, pr= _<\/ﬂ>Pk7

1
kE#0, (co,po) = (0/00, (o/)PO>

and make the tensionless limit in Q:

lim Q= lim l( >c0{azo+Lo} Z(\/F>C #{—V20'ly + Ly}

o' — 00 o' — 00
k0

()

(C.11)

1
X e { V20 Pt (1 = 0p,—1) — &/ Sk, —1po } 1) + (O/)CO]
= OZO + 3 kalk — ﬁC,kapO s (C].Q)
‘ k40 :

where the operators (fLO, f,k) = (LO —lo, Ly, + 20/lk) do not contain the terms
with o/-dependence and the algebra of the operators Ij; ((C.4), (C.5)) has the form
(C.7) for o — oo:

(L, U] = Kbkt1,0l0 s (C.13)
which encoded by the nilpotent BRST operator @ for any d

Q= _z: (c_klk — QC_kapo) = O}1_12[100 Q, (C.14)

which coincides with Q¢ (3.10) for |k| < 1, for vanishing 7, " and for

m . .
(@™, am1; 11,115 €0, ¢1,¢1,p—1,P1,P0)

= (—w™, = s mi, mysno, ny 0 P PT APy (C.15)
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The operator @) still contains the dependent oscillators a'f, o/l 5 due to identity
on right-hand side of (C.6). In order to get the truncated BRST operator Q from
Q without its presence, i.e. without the constraints lyo, l+3 as well as without the
ghost variables ¢4, p+k, kK = 2,3 we modify the rescaling only for the latter ghosts
as it was done for the zero mode ones:

1
(Ck,pk) = — (20[/Ck, <2O/>Pk) s k= :|:27 +3. (C].G)
As a result, the operator Q = limy/ 0, Q has the form
O}i_I}nOO Q= Q = Q|(Ci27piz;cisvp:ts)=0 (C'17)

and is nilpotent for any space-time dimension d. After rescaling for the oscillators
ot = /Ik1[(af Ok, 0, a’f,:l 00,k, ) for |ki| > 0 the relations (C.1) are transformed to
nonvanishing commutators

laf,a} ] = =6kn™, k,l€N. (C.18)

The operators Q and Q coincide when acting on the Hilbert subspace #H from the
total Hilbert space H (H C H), whose vectors do not depend on a™,, a4

oo

Qly=Q=colo+ > (el +cfls —creypo), (C.19)
E>0,k#2,3

whereas the algebra takes the form

[lk, llJr] = (5]@’110 , gy =p"amr — ZE(SLk R l]j = pm(fL + ZEél,k . (020)

mk

From the nilpotency of Q in d = 26 and the standard string BRST-complex with
free string equations and infinite chain of reducible gauge symmetries

QI®) =0, 4|®)=Q|A), A) = QIAY),... . 5|AP"H) = QIAP), peN (C.21)

[for ghp (|®), |AP)) = (0, —p—1)] it follows the same BRST-complex with nilpotent
Q in the tensionless limit for any d.

Recalling the representation in 7 for the vacuum vector |0) has the form (a?, Ck,
pk,po)|0> =0, k > 0. Extracting the zero-mode ghosts in Q and in |®), |AP)

Q = colo = Mpo + AQ,  (|2),[A")) = (), 1AG)) + colln), [AT))  (C.22)

for
M= e, AQ= > (cklf +cflk) (C.23)
k+#£0,2,3 k#0,2,3

we get the cp-independent sequence

(Aon _—?WQ><||Z>>):0’ 5(%%(6? —_AA@(RO (C.24)
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In case of scalar CSR (k = 1) the fields |¢), |¢1), gauge parameter |Ag) (for [A1) =0
and |A?) = 0, when p > 0 due to ghy distribution) can be presented in powers of
oscillators

<Z e @)+l D l,D(’"”( )) at, ---at [0)

1>0 1>0
= )+t pi |D> (C.25)
(160, 180)) = pT 3 (=00 (@), A (&), -, [0
1>0
=1 (1C),1N). (C.26)
Because the number particle operator, gy = —%{a;, am}, (usually associated with

the spin value of basic field in case of integer HS field) no longer commute with

enlarged divergence (gradient) l§+):

[90,11) = —(li +1:5),  [g0, 1] = (If —5), (C.27)

the ghost-independent equations and gauge transformations
lole) —I1C) =0, lilp) =1 |D) = —|C), ©b|D)—1u|C)=0, (C.28)
3(le), 1C), 1D)) = (1, 1o, 1) [A) (C.29)

contain all tensor fields @™+ (z), C™* (x), D™k (z) starting from the scalar fields.

Equations (C.28) are Lagrangian, follow from the action, S(p,C,D) =
[ deo(®|Q|®) and represent the triplet analogue of EoM for the fields from scalar
reducible CSR. The irreducible CSR should be selected by means of the specified
trace conditions imposed on |p), |C), |D), |\) which are realized by the operators

L1 =11 + O(Cl,pl) for i1 =a"am,, (CSO)

which should commute with BRST operator Q: [Q,En] = 0 to get consistent
dynamics.

However, within the Fock space H generated by a;, ci*', pf it seems impossible
to realize such operator due to

[ ] =2 +08) (= [l lh] = —20F —i2), I = aha™™). (C.31)

The problem of nonclosing for the commutators (C.31) may be effectively resolved
within a special conversion procedure in a larger Hilbert space H @ H’ (we develop
the respective study in Ref. 97). One can show, that the evaluation of the Casimir
operators (2.1) (see, as well the footnotes a and e) on the field |¢): Ca|p) = P?|¢) =
0 and Cyl¢p) = (M™"P,,)%|¢) = Z2|¢) + 0,|F), with accuracy up to the gauge
transformations of some vector |F) can be done following the recipe of Ref. 30 with
allowance for the appropriate traceless conditions.
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