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NESTED BETHE ANSATZ FOR THE RTT ALGEBRA OF sp(4) TYPE
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We show how to formulate the algebraic nested Bethe ansatz for RTT algebras with an R-matrix of the

sp(4) type. We obtain the Bethe vectors and Bethe conditions for any highest-weight representation of

these RTT algebras.

Keywords: RTT algebra, nested Bethe ansatz

DOI: 10.1134/S004057791901001X

1. Introduction

The quantum inverse scattering method, or algebraic Bethe ansatz, formulated by the Leningrad
school [1], provides eigenvectors and eigenvalues of the transfer matrix. The latter is the generating function
of the conserved quantities of a large family of quantum integrable models. The transfer matrix eigenvectors
are constructed in the framework of the representation theory of the RTT algebras. To obtain these
eigenvectors, we should first construct Bethe vectors depending on a set of complex variables.

The Bethe vectors for gl(n)-invariant models were first constructed by Kulish and Reshetikhin in [2],
where the nested algebraic Bethe ansatz was formulated. In the framework of this method, the Bethe
vectors are given by a recursion on the rank of the algebra. The Bethe vectors corresponding to the algebra
of higher rank are expressed in terms of the Bethe vectors of an algebra of lower rank using the embedding
gl(n− 1) ⊂ gl(n), while the result for the case gl(2) is well known. In [3], the construction was generalized
to the cases of the RTT (super)algebras and deformed RTT (super)algebras with an R-matrix of gl(m|n)
type. We describe this scheme in detail for the known case of the RTT algebra of gl(3) type. The crucial
fact for this construction is that the RTT algebra of gl(2) type is the RTT subalgebra of the RTT algebra
of gl(3) type.

In the case of R-matrices invariant under the action of the SO(n) and Sp(2n) groups, the Bethe
vectors and Bethe conditions have been found only for special representations. The reason is that there is
no obvious embedding of the RTT algebra of sp(2n−2) type into the RTT algebra of sp(2n) type. In [4]
and [5], Reshetikhin studied representations for which the matrix Bethe ansatz can be used, and Martins
and Ramos in [6] dealt with representations that are directly constructed using the R-matrix. Our aim here
is to extend this scheme to the case of an arbitrary representation of the algebra sp(4).

This paper is structured as follows. In Sec. 2, we give the basic definitions for RTT algebras and
formulate our problem. In Sec. 3, we recall the known results regarding the algebraic Bethe ansatz for the
RTT algebra of gl(2) type and the main ideas of the nested Bethe ansatz for the RTT algebra of gl(3) type.
Our main result is in Sec. 4, where we show how to generalize the method of the nested Bethe ansatz to
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the RTT algebra of sp(4) type. Using this generalization, we obtain eigenvectors and the Bethe conditions
for the RTT algebra of sp(4) type. In the conclusion, we compare our construction with the already known
results for the Bethe vectors and Bethe conditions of the RTT algebra of sp(4) type.

The proofs of many statements of this paper are simple but relatively long. We therefore do not include
them in text here, but they can be found in [7].

2. RTT algebras

We let Ek
i denote a matrix that has all elements equal to zero except the element at the intersection

of the ith row and kth column, which is unity. Then I =
∑

k Ek
k is the unit matrix, and the relations

Ek
i E

s
r = δk

r E
s
i hold.

We consider an R-matrix
R(x, y) =

∑

i,k,r,s

Ri,r
k,s(x, y)Ek

i ⊗ Es
r,

which is invertible and satisfies the Yang–Baxter equation

R1,2(x, y)R1,3(x, z)R2,3(y, z) = R2,3(y, z)R1,3(x, z)R1,2(x, y). (1)

The RTT algebra A is an associative algebra with the unit generated by the elements T i
k(x), where the

monodromy operator
T(x) =

∑

i,k

Ek
i ⊗ T i

k(x)

satisfies an RTT equation

R1,2(x, y)T1(x)T2(y) = T2(y)T1(x)R1,2(x, y). (2)

It follows from the invertibility of the R-matrix that the operator

H(x) = TrT(x) =
∑

i

T i
i (x)

has the property H(x)H(y) = H(y)H(x) for any x and y.
We consider the RTT algebras of the types gl(2) and gl(3), which are defined by the R-matrix of gl(n)

type

R(x, y) =
1

f(x, y)

(

I⊗ I + g(x, y)
n∑

i,k=1

Ei
k ⊗ Ek

i

)

,

where
g(x, y) =

1
x − y

, f(x, y) =
x − y + 1

x − y
,

and also the RTT algebra of sp(4) type, which is associated with the R-matrix

R(x, y) =
1

f(x, y)

(

I ⊗ I + g(x, y)
2∑

i,k=−2

Ei
k ⊗ Ek

i − h(x, y)
2∑

i,k=−2

εiεkEi
k ⊗ E−i

−k

)

,

where the indices i and k take the values ±1 and ±2 and the function h(x, y) has the form

h(x, y) =
1

x − y + 3
, εi = sgn(i).
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All these R-matrices satisfy Yang–Baxter equation (1) and the unitarity relation

R(x, y)R(y, x) = I ⊗ I.

We assume that in the vector space W of a representation of the RTT algebra A, there exists an
element ω ∈ W , called the vacuum vector, for which W = Aω and we have the relations

T i
k(x)ω = 0 for i > k, T i

i (x)ω = λi(x)ω. (3)

The values of λi(x) define a concrete representation of the RTT algebra.
We seek the eigenvectors of H(x) in the vector space W = Aω, i.e., nonzero vectors w ∈ W such that

H(x)w = E(x)w holds for any x.

3. Nested Bethe ansatz for RTT algebras of the gl(2) and gl(3)
types

We define the vacuum vector ω by equalities (3). For the gl(n) RTT algebra, RTT equation (2) is
equivalent to the commutation relations

T i
k(x)T r

s (y) + g(x, y)T r
k (x)T i

s(y) = T r
s (y)T i

k(x) + g(x, y)T r
k (y)T i

s(x),

T i
k(x)T r

s (y) + g(y, x)T i
s(x)T r

k (y) = T r
s (y)T i

k(x) + g(y, x)T i
s(y)T r

k (x),

whence it follows that T i
k(x)T i

k(y) = T i
k(y)T i

k(x) for any i, k and x, y.

3.1. Bethe ansatz for the RTT algebra of gl(2) type. The Bethe ansatz for the RTT algebra
of gl(2) type means that we seek the eigenvectors of H(x) = T 1

1 (x) + T 2
2 (x) in the form

|ū〉 = T 1
2 (ū)ω, where T 1

2 (ū) = T 1
2 (u1)T 1

2 (u2) · · ·T 1
2 (uN).

In this paper, we use a special notation for sets of complex numbers

ū = {u1, u2, . . . , uN}, ūk = ū \ {uk}.

Lemma 1. In the RTT algebra of gl(2) type, we have the relations

T 1
1 (x)T 1

2 (ū) = F (ū, x)T 1
2 (ū)T 1

1 (x) −

−
∑

uk∈ū

g(uk, x)F (ūk, uk)T 1
2 ({ūk, x})T 1

1 (uk),

T 2
2 (x)T 1

2 (ū) = F (x, ū)T 1
2 (ū)T 2

2 (x) −

−
∑

uk∈ū

g(x, uk)F (uk, ūk)T 1
2 ({ūk, x})T 2

2 (uk),

(4)

where

F (ū, x) =
∏

uk∈ū

f(uk, x), F (x, ū) =
∏

uk∈ū

f(x, uk).

Applying Eq. (4) to the vacuum vector ω, we obtain the following result.

Theorem 1. If the Bethe condition

λ1(uk)F (ūk, uk) = λ2(uk)F (uk, ūk)

is satisfied for any uk ∈ ū, then the vector |ū〉 is the eigenvector of the operator H(x) for any x with the

eigenvalue

E(x; ū) = λ1(x)F (ū, x) + λ2(x)F (x, ū).

This result can found in [1].
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3.2. Nested Bethe ansatz for the RTT algebra of gl(3) type. The nested Bethe ansatz for
the RTT algebra of gl(3) type (see [2]) is characterized by the fact that the eigenvectors of H(x) =
T 1

1 (x) + T 2
2 (x) + T 3

3 (x) can be found in the form

2∑

a1,a2,...,aM=1

T a1
3 (v1)T a2

3 (v2) · · ·T aM
3 (vM )Φa1,a2,...,aM .

Here, Φa1,a2,...,aM ∈ W̃ = Ãω, Ã is the RTT algebra generated by the elements T a
b (x), a, b = 1, 2, and

R̃(x, y) =
1

f(x, y)

(

I(2) ⊗ I(2) + g(x, y)
2∑

a,b=1

Ea
b ⊗ Eb

a

)

, I(2) =
2∑

a=1

Ea
a,

is the R-matrix of gl(2) type. Because the commutation relations between the elements T a
b (x) are the same

as in the RTT algebra A, the RTT algebra Ã is the RTT subalgebra of A.
It is essential for the Bethe ansatz that the subspace W̃ is invariant not only under the actions of

the elements T 1
1 (x) and T 2

2 (x) but also under the action of T 3
3 (x). This follows because the commutation

relations yield

T 3
3 (x)T a

b (y) = T a
b (y)T 3

3 (x) + g(x, y)T a
3 (y)T 3

b (x) − g(x, y)T a
3 (x)T 3

b (y),

T 3
c (x)T a

b (y) = T a
b (y)T 3

c (x) + g(x, y)T a
c (y)T 3

b (x) − g(x, y)T a
c (x)T 3

b (y),
a, b, c = 1, 2.

Because T 3
a (x)ω = 0 for a = 1, 2, we conclude that the equations

T 3
a (x)w = 0, T 3

3 (x)w = λ3(x)w

hold for any element w ∈ W̃ . It is also easy to see that the commutation relations between T 3
3 (x) and

T a
b (x), a, b = 1, 2, restricted to the subspace W̃ are

T 3
3 (x)T 3

3 (y) = T 3
3 (y)T 3

3 (x), T 3
3 (x)T̃(y) = T̃(y)T 3

3 (x),

R̃1,2(x, y)T̃1(x)T̃2(y) = T̃2(y)T̃1(x)R̃1,2(x, y),

where T̃(x) =
∑2

a,b=1 Eb
a ⊗ T a

b (x). It follows from the commutation relations that the eigenvectors of

H̃(x) = T 1
1 (x) + T 2

2 (x) ∈ Ã on the space W̃ are simultaneously eigenvectors of H(x) ∈ A.

Remark. The original work [2] on the gl(n) case used the fact that the RTT algebra Ã with the
monodromy operator T̃(x) =

∑n−1
a,b=1 Eb

a ⊗ T a
b (x) and the R-matrix R̃(x, y) is the RTT subalgebra of the

RTT algebra A and also the fact that T n
n (x) acts as a multiple of the unit operator on the vector space

W̃ . But another interpretation of the commutation relations on the vector space W̃ is also possible. The
commutation relations can be written in the form of the RTT equation

R(0)
1,2(x, y)T(0)

1 (x)T(0)
2 (y) = T(0)

2 (y)T(0)
1 (x)R(0)

1,2(x, y),

where
R(0)(x, y) = E3

3 ⊗ E3
3 + E3

3 ⊗ I(2) + I(2) ⊗ E3
3 + R̃(x, y)

and T(0)(x) = E3
3⊗T 3

3 (x)+ T̃(x). Because the R-matrix R(0)(x, y) satisfies the Yang–Baxter equation and
the condition R(0)(x, y)R(0)(y, x) = I⊗ I, we can consider the RTT algebra A(0) generated by the elements
T 3

3 (x) and T a
b (x) with the R-matrix R(0)(x, y). But the RTT algebra A(0) is no longer an RTT subalgebra

of A. It is in fact the RTT algebra of gl(2) type generated by the elements T a
b (x), where a, b = 1, 2, with

the R-matrix R̃(x, y) extended by the central element T 3
3 (x). This is precisely the interpretation that we

use in considering the nested Bethe ansatz for the RTT algebra of type sp(4).

4



We permute T 1
1 (x), T 2

2 (x), and T 3
3 (x) with T a1

3 (v1) · · ·T aM
3 (vM ). To avoid a long expression with

indices, we introduce the notation

b(v) =
2∑

a=1

ea ⊗ T a
3 (v) ∈ V ⊗A,

where e1 and e2 form a basis of the two-dimensional vector space V . In general, for an ordered set of M

pairwise distinct numbers �v = (v1, v2, . . . , vM ), we define

b1,2,...,M (�v ) = b1(v1)b2(v2) · · ·bM (vM ) =

=
2∑

a1,a2,...,aM=1

ea1 ⊗ ea2 ⊗ · · · ⊗ eaM ⊗ T a1
3 (v1)T a2

3 (v2) · · ·T aM
3 (vM ) ∈ V ⊗ · · · ⊗ V

︸ ︷︷ ︸
M times

⊗A.

Let f b be dual bases of the dual space V∗. Hence, 〈ea, f b〉 = δa
b . We can write the assumed form of the

eigenvector as

2∑

a1,a2,...,aM=1

T a1
3 (v1)T a2

3 (v2) · · ·T aM
3 (vM )Φa1,a2,...,aM = 〈b1,2,...,M (�v ),Φ〉,

where

Φ =
2∑

b1,b2,...,bM=1

f b1 ⊗ f b2 ⊗ · · · ⊗ f bM ⊗ Φb1,b2,...,bM ∈ V∗ ⊗ · · · ⊗ V∗
︸ ︷︷ ︸

M times

⊗ W̃ = Ŵ .

We regard the matrix Ea
b as a linear map on the space V defined by the formulas Ea

bec = δa
c eb. The

corresponding dual map is denoted by Fa
b , and we hence have the equations

〈Ea
bec, fd〉 = 〈ec,Fa

b f
d〉, i.e., Fa

b f
d = δd

b f
a.

Then I∗ =
∑2

a=1 Fa
a is an identical map on V∗, and in contrast to similar relations for the map Ea

b , we have
the relation Fa

bF
c
d = δc

bF
a
d.

Using the above notation, we can write the interesting commutation relations like

T 3
3 (x)b(v) = f(x, v)b(v)T 3

3 (x) − g(x, v)b(x)T 3
3 (v),

T̃0(x)〈b1(v), I ⊗ f b〉 = f(v, x)〈b1(v), T̂0,1∗(x; v)(I ⊗ f b)〉 − g(v, x)〈b1(x), T̂0,1∗(v)(I ⊗ f b)〉,

where

T̂0,1∗(x; v) = R̂0,1∗(x, v)T̃0(x), T̂0,1∗(v) = T̂0,1(v; v) = R̂0,1∗T̃0(v),

R̂0,1∗(x; v) =
1

f(v, x)

(

I ⊗ I∗ + g(v, x)
2∑

a,b=1

Ea
b ⊗ Fb

a

)

,

R̂0,1∗ = R̂0,1∗(v, v) =
2∑

a,b=1

Ea
b ⊗ Fb

a.
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It can be shown that for any Φ ∈ Ŵ , we have the relations

T 3
3 (x)〈b1,2,...,M (�v ),Φ〉 = λ3(x)F (x, v̄)〈b1,2,...,M (�v ),Φ〉 −

−
∑

vk∈v̄

λ3(vk)g(x, vk)F (vk, v̄k)〈bk;1,2,...,M (x,�vk), R̃∗
k;1,2,...,k(�v )Φ〉,

T̃0(x)〈b1,2,...,M (�v ),Φ〉 = F (v̄, x)〈b1,2,...,M (�v ), T̂0,1,...,M (x;�v )Φ〉 −

−
∑

vk∈v̄

g(vk, x)F (v̄k, vk)〈bk;1,2,...,M (x,�vk), R̃∗
k;1,2,...,k(�v )T̂k;0,1,...,M (�v )Φ〉,

where

bk;1,2,...,M (x,�vk) = bk(x)b1(v1)b2(v2) · · ·bk−1(vk−1)bk+1(vk+1) · · ·bN (vM ),

R̃∗
2,1(y, x) =

1
f(y, x)

(

I∗ ⊗ I∗ + g(y, x)
2∑

a,b=1

Fa
b ⊗ Fb

a

)

,

R̃∗
k;1,2,...,k(�v ) = R̃∗

k,1(vk, v1)R̃∗
k,2(vk, v2) · · · R̃∗

k,k−1(vk, vk−1), R̃1;1...,1(�v ) = I∗,

T̂0,1,...,M (x;�v ) = R̂0,1∗(x, v1) · · · R̂0,M∗(x, vM )T̃0(x),

T̂k;0,1,...,M (�v ) = T̂0,1,...,M (vk;�v ).

If we set

T̂0,1,...,M (x,�v ) =
2∑

i,k=1

Ek
i ⊗ T̂ i

k(x;�v ), T̂ i
k(x;�v ) ∈ V∗ ⊗ · · · ⊗ V∗

︸ ︷︷ ︸
M times

⊗ Ã,

then we obtain the following proposition.

Proposition 1. Let Φ ∈ Ŵ for any x be an eigenvector of the operator

Ĥ1,2,...,M (x;�v ) = T̂ 1
1 (x;�v ) + T̂ 2

2 (x;�v )

with the eigenvalue Ê(x;�v ). If the equations

λ3(vk)F (vk, v̄k) = Ê(vk;�v )F (�vk, vk)

hold for each vk ∈ v̄, then 〈b1,2,...,M (�v ),Φ〉 is an eigenvector of the operator

H(x) = T 1
1 (x) + T 2

2 (x) + T 3
3 (x)

with the eigenvalue

E(x;�v, μ) = λ3(x)F (x, v̄) + Ê(x;�v )F (v̄, x).

Hence, we must find eigenvectors of the operators Ĥ1,2,...,M (x;�v ). It is easy to see that T̂0,1,...,M (x;�v )
satisfy the RTT equation

R̃0,0′(x, y)T̂0,1,...,M (x;�v )T̂0′,1,...,M (y;�v ) = T̂0′,1,...,M (y;�v )T̂0,1,...,M (x;�v )R̃0,0′(x, y).
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This means that they generate the RTT algebra of type gl(2). Therefore, if we find a vacuum vector in the
vector space Ŵ , then we can use Theorem 1 to construct eigenvectors of Ĥ1,2,...,M (x;�v ).

W can show that for the vector Ω̂ = f2 ⊗ · · · ⊗ f2

︸ ︷︷ ︸
M times

⊗ ω, we have

T̂ 2
1 (x;�v )Ω̂ = 0, T̂ 1

1 (x;�v )Ω̂ = μ1(x;�v )Ω̂, T̂ 2
2 (x;�v )Ω̂ = μ2(x;�v )Ω̂,

where
μ1(x;�v ) =

λ1(x)
F (v̄, x)

, μ2(x;�v ) = λ2(x).

We obtain the following proposition from Theorem 1.

Proposition 2. If the equality

λ1(uk)F (ūk, uk) = λ2(uk)F (uk, ūk)F (v̄, uk)

holds for every uk ∈ ū, then the vector Φ(ū;�v ) = T̂ 2
1 (ū;�v )Ω̂ is the eigenvector of the operator Ĥ1,2,...,M (x;�v )

with the eigenvalue

Ê(x; ū;�v ) = λ1(x)
F (ū, x)
F (v̄, x)

+ λ2(x)F (x, ū).

From Propositions 1 and 2, we then obtain the final result for the RTT algebra of gl(3) type.

Theorem 2. Let the Bethe conditions

λ1(uk)F (ūk, uk) = λ2(uk)F (v̄, uk)F (uk, ūk),

λ3(vk)F (vk, v̄k) = λ2(vk)F (v̄k, vk)F (vk, ū)

be satisfied for every ui ∈ ū and vk ∈ v̄. Then the vector |�v, ū〉 = 〈b1,2,...,M (�v );Φ(ū;�v )〉 is the eigenvector

of the operator H(x) with the eigenvalue

E(x; ū;�v ) = λ1(x)F (ū, x) + λ2(x)F (x, ū)F (v̄, x) + λ3(x)F (x, v̄).

This theorem follows directly from the results in [2].

4. Nested Bethe ansatz for the RTT algebra of sp(4) type

The vacuum vector ω for the RTT algebra A of sp(4) type is defined by the relations

T i
k(x)ω = 0 for i < k, T i

i (x)ω = λi(x)ω for i = ±1,±2.

From the RTT equation, we obtain the commutation relations

T i
k(x)T r

s (y) + g(x, y)T r
k (x)T i

s(y) + δi,−rh(x, y)
2∑

p=−2

εpεrT
p
k (x)T−p

s (y) =

= T r
s (y)T i

k(x) + g(x, y)T r
k (y)T i

s(x) + δk,−sh(x, y)
2∑

p=−2

εkεpT
r
p (y)T i

−p(x),

T i
k(x)T r

s (y) + g(y, x)T i
s(x)T r

k (y) + δk,−sh(y, x)
2∑

p=−2

εsεpT
i
p(x)T r

−p(y) =

= T r
s (y)T i

k(x) + g(y, x)T i
s(y)T r

k (x) + h(y, x)δi,−r
2∑

p=−2

εiεpT
p
s (y)T−p

k (x).

(5)

It follows from these formulas that T i
k(x)T i

k(y) = T i
k(y)T i

k(x) for any x and y and for all i and k.
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4.1. The RTT algebra Ã. There are two RTT subalgebras A(+) and A(−) in the RTT algebra A,
which are respectively generated by the elements T i

k(x) and T−i
−k(x), where i, k = 1, 2.

First, we consider the vector space

W0 = A(+)A(−)ω ⊂ W = Aω.

Using commutation relations (5), we can prove the following statements.

Lemma 2. We have T−i
k (x)w = 0 for all i, k = 1, 2 and any w ∈ W0.

We introduce the notation

T(+)(x) =
2∑

i,k=1

Ek
i ⊗ T i

k(x), T(−)(x) =
2∑

i,k=1

E−k
−i ⊗ T−i

−k(x),

R(+,+)(x, y) =
1

f(x, y)

(

I+ ⊗ I+ + g(x, y)
2∑

i,k=1

Ei
k ⊗ Ek

i

)

,

R(−,−)(x, y) =
1

f(x, y)

(

I− ⊗ I− + g(x, y)
2∑

i,k=1

E−i
−k ⊗ E−k

−i

)

,

R(+,−)(x, y) = I+ ⊗ I− − k(x, y)
2∑

i,k=1

Ei
k ⊗ E−i

−k,

R(−,+)(x, y) = I− ⊗ I+ − h(x, y)
2∑

i,k=1

E−i
−k ⊗ Ei

k,

where

I+ =
2∑

i=1

Ei
i, I− =

2∑

i=1

E−i
−i, k(x, y) =

1
x − y − 1

.

Lemma 3. On the vector space W0, the relations

R(ε1,ε2)
1,2 (x, y)T(ε1)

1 (x)T(ε2)
2 (y) = T(ε2)

2 (y)T(ε1)
1 (x)R(ε1,ε2)

1,2 (x, y)

hold for any ε1, ε2 = ±.

Proposition 3. If we set

R̃(x, y) = R(+,+)(x, y) + R(+,−)(x, y) + R(−,+)(x, y) + R(−,−)(x, y),

T̃(x) = T(+)(x) + T(−)(x),

then the RTT equation

R̃1,2(x, y)T̃1(x)T̃2(y) = T̃2(y)T̃1(x)R̃1,2(x, y)

is satisfied on the space W0. Moreover, the R-matrix R̃(x, y) is invertible and satisfies the Yang–Baxter

equation

R̃1,2(x, y)R̃1,3(x, z)R̃2,3(y, z) = R̃2,3(y, z)R̃1,3(x, z)R̃1,2(x, y).
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We let Ã denote the RTT algebra defined by the R-matrix R̃(x, y). For generators of the RTT algebra
Ã, we use T̃ i

k(x) and T̃−i
−k(x). If these operators act on the vector space W0, then we let T i

k(x) and T−i
−k(x)

denote them. Using the commutation relations in the RTT algebra Ã, we can easily prove the following
lemma.

Lemma 4. In the RTT algebra Ã, we have the following relations for any x and y:

1. For any i and k,

T̃ i
k(x)T̃ i

k(y) = T̃ i
k(y)T̃ i

k(x), T̃−i
−k(x)T̃−i

−k(y) = T̃−i
−k(y)T̃−i

−k(x).

2. For any i �= k,

T̃ i
k(x)T̃−k

−i (y) = T̃−k
−i (y)T̃ i

k(x).

3. For the operators H̃(+)(x) = T̃ 1
1 (x) + T̃ 2

2 (x) and H̃(−)(x) = T̃−1
−1 (x) + T̃−2

−2 (x), we have

H̃(+)(x)H̃(+)(y) = H̃(+)(y)H̃(+)(x), H̃(−)(x)H̃(−)(y) = H̃(−)(y)H̃(−)(x),

H̃(+)(x)H̃(−)(y) = H̃(−)(y)H̃(+)(x).

4.2. General form of eigenvectors. We let �u = (u1, u2, . . . , uN) denote an ordered set of pairwise
distinct numbers. We seek the transfer matrix eigenvectors for the RTT algebra A in the form

2∑

i1,i2,...,iN =1,
k1,k2,...,kN =1

T i1
−k1

(u1)T i2
−k2

(u2) · · ·T iN

−kN
(uN )Φ−k1,−k2,...,−kN

i1,i2,...,iN
, Φ−k1,−k2,...,−kN

i1,i2,...,iN
∈ W0.

Let e1 and e2 be the basis of the two-dimensional space V+ ∼ C
2 and f1 and f2 be its dual basis in

V∗
+. Similarly, let e−1 and e−2 be the basis of the vector space V− ∼ C

2 and f−1 and f−2 be its dual basis
in V∗

−. We set

B1(u) =
2∑

i,k=1

ei ⊗ f−k ⊗ T i
−k(u) ∈ V1+ ⊗ V∗

1− ⊗A

and
B1,2,...,N (�u ) = B1(u1)B2(u2) · · ·BN (uN) ∈ V+ ⊗ V∗

− ⊗A,

where V+ = V1+ ⊗ V2+ ⊗ · · · ⊗ VN+ and V∗
− = V∗

1− ⊗ V∗
2− ⊗ · · · ⊗ V∗

N−
. Specifically,

B1,2,...,N (�u ) =
∑

�i,�k

e�i ⊗ f−�k ⊗ T
�i
−�k

(�u ),

where

e�i = ei1 ⊗ ei2 ⊗ · · · ⊗ eiN ∈ V1+ ⊗ V2+ ⊗ · · · ⊗ VN+ = V+,

f−
�k = f−k1 ⊗ f−k2 ⊗ · · · ⊗ f−kN ∈ V∗

1− ⊗ V∗
2− ⊗ · · · ⊗ V∗

N− = V∗
−,

T
�i
−�k

(�u ) = T i1
−k1

(u1)T i2
−k2

(u2) · · ·T iN

−kN
(uN ) ∈ A.

We can write the general form of the eigenvector as 〈B1,2,...,N (�u ),Φ〉, where

Φ = f (�s ) ⊗ e−�r ⊗ Φ−�r
�s ∈ V∗

+ ⊗ V− ⊗W0 = Ŵ0, Φ−�r
�s = Φ−r1,r2,...,−rN

s1,s2,...,sN
∈ W0,

f (�s ) = fs1 ⊗ fs2 ⊗ · · · ⊗ fsN ∈ V∗
1+

⊗ V∗
2+

⊗ · · · ⊗ V∗
N+

= V∗
+,

e−�r = e−r1 ⊗ e−r2 ⊗ · · · ⊗ e−rN ∈ V1− ⊗ V2− ⊗ · · · ⊗ VN− = V−.

9



4.3. Some commutation relations and their consequences. We now find the operator action
of T(+)(x) and T(−)(x) on the assumed eigenvector 〈B1,2,...,N (�u ),Φ〉.

Lemma 5. In the RTT algebra of sp(4) type, we have the relations

T(+)
0 (x)〈B1(u), fr ⊗ e−s〉 = f(u, x)〈B1(u), T̂(+)

0,1 (x; u)(I ⊗ fr ⊗ e−s)〉 −

− g(u, x)〈B1(x), T̂(+)
0,1 (u)(I ⊗ fr ⊗ e−s)〉,

T(−)
0 (x)〈B1(u), fr ⊗ e−s〉 = f(x, u)〈B1(u), T̂(−)

0,1 (x; u)(I ⊗ fr ⊗ e−s)〉 −

− g(x, u)〈B1(x), T̂(−)
0,1 (u)(I ⊗ fr ⊗ e−s)〉,

where

T̂(ε)
0,1(x; u) = R̂(ε,+)

0,1∗
+

(x, u)T(ε)
0 (x)R(ε,−)

0,1−
(x, u),

R̂(+,+)
0,1∗

+
(x, u) =

1
f(u, x)

(

I0+
⊗ I∗1+

+ g(u, x)
2∑

r,s=1

Er
s ⊗ Fs

r

)

,

R̂(−,+)
0,1∗

+
(x, u) = I0− ⊗ I∗1+

− k(u, x)
2∑

r,s=1

E−r
−s ⊗ Fr

s,

T̂
(ε)
0,1(u) = R̂

(ε,+)
0,1∗

+
T(ε)

0 (u)R(ε,−)
0,1−

,

R̂
(+,+)
0,1∗

+
= R̂(+,+)

0,1∗
+

(u, u) =
2∑

r,s=1

Er
s ⊗ Fs

r,

R̂
(−,+)
0,1∗

+
= R̂(−,+)

0,1∗
+

(u, u) = I0− ⊗ I∗1+
+

2∑

r,s=1

E−r
−s ⊗ Fr

s,

R
(+,−)
0,1−

= R(+,−)
0,1−

(u, u) = I0+
⊗ I1− +

2∑

r,s=1

Er
s ⊗ E−r

−s,

R
(−,−)
0,1−

= R(−,−)
0,1−

(u, u) =
2∑

r,s=1

E−r
−s ⊗ E−s

−r.

To formulate and prove the following lemma, it is convenient to define a linear map (R∗)(+,+)(x, y) by
the relation

〈R(+,+)(x, y)(es1 ⊗ es2), f
r1 ⊗ fr2〉 = 〈es1 ⊗ es2 , (R

∗)(+,+)(x, y)(fr1 ⊗ fr2)〉,

i.e.,

(R∗)(+,+)(x, y) =
1

f(x, y)

(

I∗+ ⊗ I∗+ + g(x, y)
2∑

i,k=1

Fi
k ⊗ Fk

i

)

.

We let ū denote the set of elements �u, i.e., ū = {u1, u2, . . . , uN}, and recall that ūk = ū \ {uk}.
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Lemma 6. We have the relations

T(+)
0 (x)〈B1,2,...,N (�u ), f�r ⊗ e−�s〉 =

= F (ū, x)〈B1,2,...,N(�u ), T̂(+)
0,1,...,,N(x; �u )(I ⊗ f�r ⊗ e−�s)〉 −

∑

uk∈ū

g(uk, x)F (ūk, uk) ×

× 〈Bk;1,2,...,N (x, �uk), (R∗)(+,+)
1,2,...,k(�u )R(−,−)

1,2,...,k(�u )T̂(+)
k;0,1,...,N (�u )(I ⊗ f�r ⊗ e−�s)〉,

T(−)
0 (x)〈B1,2,...,N (�u ), f�r ⊗ e−�s〉 =

= F (x, ū)〈B1,2,...,N(�u ), T̂(−)
0,1,...,,N(x; �u )(I ⊗ f�r ⊗ e−�s)〉 −

∑

uk∈ū

g(x, uk)F (uk, ūk) ×

× 〈Bk;1,2,...,N (x, �uk), (R∗)(+,+)
1,2,...,k(�u )R(−,−)

1,2,...,k(�u )T̂(−)
k;0,1,...,N (�u )(I ⊗ f�r ⊗ e−�s)〉,

where

T̂(ε)
0,1,...,,N (x; �u ) = R̂(ε,+)

0;1∗
+,...,N∗

+
(x; �u )T(ε)

0 (x)R(ε,−)
0;1−,...,N−

(x; �u ),

R̂(ε,+)
0;1∗

+,...,N∗
+
(x; �u ) = R̂(ε,+)

0,1∗
+

(x, u1)R̂
(ε,+)
0,2∗

+
(x, u2) · · · R̂(ε,+)

0,N∗
+
(x, uN ),

R(ε,−)
0;1−,...,N−

(x; �u ) = R(ε,−)
0,N−

(x, uN ) · · ·R(ε,−)
0,2−

(x, u2)R
(ε,−)
0,1−

(x, u1),

(R∗)(+,+)
1,2,...,k(�u ) = (R∗)(+,+)

k∗
+,1∗

+
(uk, u1)(R∗)(+,+)

k∗
+,2∗

+
(uk, u2) · · · (R∗)(+,+)

k∗
+,(k−1)∗+

(uk, uk−1),

R(−,−)
1,2,...,k(�u ) = R(−,−)

1−,k−
(u1, uk)R(−,−)

2−,k−
(u2, uk) · · ·R(−,−)

(k−1)−,k−
(uk−1, uk),

Bk;1,2,...,N (x, �uk) = Bk(x)B1(u1) · · ·Bk−1(uk−1)Bk+1(uk+1) · · ·BN (uN),

T̂
(ε)
k;0,1,...,N(�u ) = T̂(ε)

0,1,...,,N (uk; �u ) = R̂(ε,+)
0;1∗

+,...,N∗
+
(uk; �u )T(ε)

0 (uk)R(ε,−)
0;1−,...,N−

(uk; �u ),

and the products over the empty sets (R∗)(+,+)
1,...,1 (�u ) and R(−,−)

1,...,1 (�u ) are understood as identity maps.

The following proposition follows directly from Lemma 6.

Proposition 4. Let Φ ∈ Ŵ0 be the eigenvectors of the operators

Ĥ
(+)
1,2,...,N (x; �u ) = (T̂(+)

0,1,...,N (x; �u ))11 + (T̂(+)
0,1,...,N(x; �u ))22,

Ĥ
(−)
1,2,...,N (x; �u ) = (T̂(−)

0,1,...,N (x; �u ))−1
−1 + (T̂(−)

0,1,...,N(x; �u ))−2
−2

with the eigenvalues E(+)(x; �u ) and E(−)(x; �u ). If

F (ūk, uk)E(+)(uk; �u ) = F (uk, ūk)E(−)(uk; �u )

for any uk ∈ ū, then 〈B1,2,...,N (�u ),Φ〉 are the eigenvectors of the operator H(x) with the eigenvalue

E(x; �u ) = F (ū, x)E(+)(x; �u ) + F (x, ū)E(−)(x; �u ).
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4.4. Operators T̂(±)
1,2,...,N(x;�v) and the RTT algebra Ã. Proposition 4 transforms the original

problem into the problem of finding eigenvectors of Ĥ(±)(x; �u ) = Ĥ
(±)
1,2,...,N (x; �u ) on the vector space Ŵ0.

We show that the operators T̂ i
k(x; �u ) and T̂−i

−k(x, �u ), where i, k = 1, 2, and

T̂(+)
0,1,...,,N (x; �u ) =

2∑

i,k=1

Ek
i ⊗ T̂ i

k(x; �u ),

T̂(−)
0,1,...,,N (x; �u ) =

2∑

i,k=1

E−k
−i ⊗ T̂−i

−k(x; �u ),

restricted to the space Ŵ0 are generators of the RTT algebra Ã and that the representation contains a
vacuum vector.

Lemma 7. For any Φ ∈ Ŵ0, we have the RTT relation

R(ε0,ε0′)
0,0′ (x, y)T̂(ε0)

0,1,...,N (x, �u )T̂(ε0′ )
0′,1,...,N (y; �u )Φ =

= T̂(ε0′)
0′,1,...,N(y; �u )T̂(ε0)

0,1,...,N (x, �u )R(ε0,ε0′)
0,0′ (x, y)Φ, ε0, ε0′ = ±.

Lemma 8. Let a vector Ω̂ have the form

Ω̂ = f1 ⊗ · · · ⊗ f1

︸ ︷︷ ︸
N times

⊗ e−1 ⊗ · · · ⊗ e−1
︸ ︷︷ ︸

N times

⊗ ω ∈ Ŵ0.

Then

T̂ 1
2 (x; �u )Ω̂ = 0, T̂−2

−1 (x; �u )Ω̂ = 0, T̂ i
i (x; �u )Ω̂ = μi(x, ū)Ω̂,

where

μ1(x; ū) = λ1(x)F (ū, x − 1), μ2(x; ū) =
λ2(x)

F (ū, x)
,

μ−1(x; ū) = λ−1(x)F (x + 1, ū), μ−2(x; ū) =
λ−2(x)
F (x, ū)

.

4.5. Nested Bethe ansatz for the RTT algebra Ã. In the space Ŵ0, we seek common eigenvec-
tors of the operators

Ĥ
(+)
1,2,...,N (x; �u ) = T̂ 1

1 (x; �u ) + T̂ 2
2 (x; �u ),

Ĥ
(−)
1,2,...,N (x; �u ) = T̂−1

−1 (x; �u ) + T̂−2
−2 (x; �u )

for any �u.
We study the representation of the RTT algebra Ã with the generators T̃ i

k(x) and T̃−i
−k(x) on W̃0 = Ãω̃,

where ω̃ is the vacuum vector for which we have the relations

T̃ 1
2 (x)ω̃ = T̃−2

−1 (x)ω̃ = 0, T̃ i
i (x)ω̃ = μi(x)ω̃, T̃−i

−i (x)ω̃ = μ−i(x)ω̃.

We seek the common eigenvectors of

H̃(+)(x) = T̃ 1
1 (x) + T̃ 2

2 (x), H̃(−)(x) = T̃−1
−1 (x) + T̃−2

−2 (x)
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in the form

|v̄, w̄〉 = T̃ 2
1 (v̄)T̃−1

−2 (w̄)ω̃ = T̃ 2
1 (w1)T̃ 2

1 (w2) · · · T̃ 2
1 (vP )T̃−1

−2 (w1)T̃−1
−2 (w2) · · · T̃−1

−2 (wQ)ω̃,

where v̄ = {v1, v2, . . . , wP } and w̄ = {w1, w2, . . . , wQ}.

Lemma 9. In the RTT algebra Ã, we have the relations

T̃ 1
1 (x)T̃ 2

1 (v̄) = F (x, v̄)T̃ 2
1 (v̄)T̃ 1

1 (x) −
∑

vr∈v̄

g(x, vr)F (vr, v̄r)T̃ 2
1 (v̄r, x)T̃ 1

1 (vr),

T̃ 2
2 (x)T̃ 2

1 (v̄) = F (v̄, x)T̃ 2
1 (v̄)T̃ 2

2 (x) −
∑

vr∈v̄

g(vr, x)F (v̄r , vr)T̃ 2
1 (v̄r, x)T̃ 2

2 (vr),

T̃−1
−1 (x)T̃−1

−2 (w̄) = F (w̄, x)T̃−1
−2 (w̄)T̃−1

−1 (x) −
∑

ws∈w̄

g(ws, x)F (w̄s, ws)T̃−1
−2 (w̄s, x)T̃−1

−1 (ws),

T̃−2
−2 (x)T̃−1

−2 (w̄) = F (x, w̄)T̃−1
−2 (w̄)T̃−2

−2 (x) −
∑

ws∈w̄

g(x, ws)F (ws, w̄s)T̃−1
−2 (w̄s, x)T̃−2

−2 (ws),

T̃ 1
1 (x)T̃−1

−2 (w̄) = F (x − 2, w̄)T̃−1
−2 (w̄)T̃ 1

1 (x) +

+
∑

ws∈w̄

g(x − 2, ws)F (ws, w̄s)T̃ 2
1 (x)T̃−1

−2 (w̄s)T̃−2
−2 (ws),

T̃ 2
2 (x)T̃−1

−2 (w̄) = F (w̄, x − 2)T̃−1
−2 (w̄)T̃ 2

2 (x) +

+
∑

ws∈w̄

g(ws, x − 2)F (w̄s, ws)T̃ 2
1 (x)T̃−1

−2 (w̄s)T̃−1
−1 (ws),

T̃−1
−1 (x)T̃ 2

1 (v̄) = F (v̄, x + 2)T̃ 2
1 (v̄)T̃−1

−1 (x) +

+
∑

vr∈v̄

g(vr, x + 2)F (v̄r, vr)T̃ 2
1 (v̄r)T̃−1

−2 (x)T̃ 2
2 (vr),

T̃−2
−2 (x)T̃ 2

1 (v̄) = F (x + 2, v̄)T̃ 2
1 (v̄)T̃−2

−2 (x) +

+
∑

vr∈v̄

g(x + 2, vr)F (vr , v̄r)T̃ 2
1 (v̄r)T̃−1

−2 (x)T̃ 1
1 (vr).

Applying the equations of Lemma 9 to the assumed form of the eigenvector, we obtain the following
statement.

Lemma 10. For a representation of the RTT algebra Ã with the highest weight μi(x), we obtain

T̃ 1
1 (x)|v̄; w̄〉 = μ1(x)F (x, v̄)F (x − 2, w̄)|v̄; w̄〉 −

−
∑

vr∈v̄

μ1(vr)g(x, vr)F (vr, v̄r)F (vr − 2, w̄)|{v̄r, x}; w̄〉 +

+
∑

ws∈w̄

μ−2(ws)g(x − 2, ws)F (ws + 2, v̄)F (ws, w̄s)|{v̄, x}; w̄s〉,
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T̃ 2
2 (x)|v̄; w̄〉 = μ2(x)F (v̄, x)F (w̄, x − 2)|v̄; w̄〉 −

−
∑

vr∈v̄

μ2(vr)g(vr, x)F (v̄r , vr)F (w̄, vr − 2)|{v̄r, x}; w̄〉 +

+
∑

ws∈w̄

μ−1(ws)g(ws, x − 2)F (v̄, ws + 2)F (w̄s, ws)|{v̄, x}; w̄s〉,

T̃−1
−1 (x)|v̄; w̄〉 = μ−1(x)F (v̄, x + 2)F (w̄, x)|v̄; w̄〉 +

+
∑

vr∈v̄

μ2(vr)g(vr, x + 2)F (v̄r, vr)F (w̄, vr − 2)|v̄r; {w̄, x}〉 −

−
∑

ws∈w̄

μ−1(ws)g(ws, x)F (v̄, ws + 2)F (w̄s, ws)|v̄; {w̄s, x}〉,

T̃−2
−2 (x)|v̄; w̄〉 = μ−2(x)F (x + 2, v̄)F (x, w̄)|v̄; w̄〉 +

+
∑

vr∈v̄

μ1(vr)g(x + 2, vr)F (vr, v̄r)F (vr − 2, w̄)|v̄r ; {w̄, x}〉 −

−
∑

ws∈w̄

μ−2(ws)g(x, ws)F (ws + 2, v̄)F (ws, w̄s)|v̄; {w̄s, x}〉.

From Lemma 10, we almost immediately obtain the following theorem, which gives Bethe conditions
for the eigenvectors in the RTT algebra Ã.

Theorem 3. If the conditions

μ1(vr)F (vr, v̄r)F (vr − 2, w̄) = μ2(vr)F (v̄r, vr)F (w̄, vr − 2),

μ−1(ws)F (v̄, ws + 2)F (w̄s, ws) = μ−2(ws)F (ws + 2, v̄)F (ws, w̄s)
(6)

are satisfied for any vr ∈ v̄ and ws ∈ w̄, then the vector |v̄; w̄〉 = T̃ 2
1 (v̄)T̃−1

−2 (w̄)ω is the eigenvector H̃(+)(x)
and H̃(−)(x) with the eigenvalues

μ(+)(x; v̄, w̄) = μ1(x)F (x, v̄)F (x − 2, w̄) + μ2(x)F (v̄, x)F (w̄, x − 2),

μ(−)(x; v̄, w̄) = μ−1(x)F (v̄, x + 2)F (w̄, x) + μ−2(x)F (x + 2, v̄)F (x, w̄).

4.6. Eigenvectors for the RTT algebra of sp(4) type. The following statement is a corollary of
Theorem 3.

Proposition 5. If the conditions

λ1(vr)F (ū, vr)F (ū, vr − 1)F (vr, v̄r)F (vr − 2, w̄) = λ2(vr)F (v̄r, vr)F (w̄, vr − 2),

λ−1(ws)F (ws, ū)F (ws + 1, ū)F (v̄, ws + 2)F (w̄s, ws) = λ−2(ws)F (ws + 2, v̄)F (ws, w̄s)

are satisfied for any vr ∈ v̄ and ws ∈ w̄, then the vectors Φ(�u; v̄; w̄) = T̂ 2
1 (v̄; �u )T̂−1

−2 (w̄; �u )Ω̂ ∈ Ŵ0 are
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common eigenvectors of the operators Ĥ
(+)
1,2,...,N (x; �u ) and Ĥ

(−)
1,2,...,N (x; �u ) with the eigenvalues

E(+)(x; �u, v̄, w̄) = λ1(x)F (ū, x − 1)F (x, v̄)F (x − 2, w̄) + λ2(x)
F (v̄, x)F (w̄, x − 2)

F (ū, x)
,

E(−)(x; �u, v̄, w̄) = λ−1(x)F (x + 1, ū)F (v̄, x + 2)F (w̄, x) + λ−2(x)
F (x + 2, v̄)F (x, w̄)

F (x, ū)
.

Because of the identity
F (ūk, uk)
F (ū, uk)

=
F (uk, ūk)
F (uk, ū)

=
1

f(uk, uk)
= 0,

from Propositions 4 and 5, we immediately derive our main result giving the Bethe vectors and Bethe
conditions for the RTT algebra of sp(4) type.

Theorem 4. Let the conditions

λ1(uk)F (ūk, uk − 1)F (ūk, uk)F (uk, v̄)F (uk − 2, w̄) =

= λ−1(uk)F (uk + 1, ūk)F (uk, ūk)F (v̄, uk + 2)F (w̄, uk),

λ1(vr)F (ū, vr − 1)F (ū, vr)F (vr, v̄r)F (vr − 2, w̄) = λ2(vr)F (v̄r, vr)F (w̄, vr − 2),

λ−1(ws)F (ws + 1, ū)F (ws, ū)F (v̄, ws + 2)F (w̄s, ws) = λ−2(ws)F (ws + 2, v̄)F (ws, w̄s)

be satisfied for any uk ∈ ū, vr ∈ v̄, and ws ∈ w̄. Then the vector |�u; v̄; w̄〉 = 〈B1,2,...,N (�u ),Φ(�u; v̄; w̄)〉 is the

eigenvector of H(x) with the eigenvalue

E(x; �u, v̄, w̄) = λ1(x)F (ū, x)F (ū, x − 1)F (x, v̄)F (x − 2, w̄) +

+ λ−1(x)F (x, ū)F (x + 1, ū)F (v̄, x + 2)F (w̄, x) +

+ λ2(x)F (v̄, x)F (w̄, x − 2) + λ−2(x)F (x + 2, v̄)F (x, w̄).

5. Conclusion

We have formulated the nested Bethe ansatz for the RTT algebra of sp(4) type. We showed that the
auxiliary RTT algebra Ã, which is not an RTT subalgebra of the RTT algebra of sp(4) type, can be used
to construct the Bethe vectors and the Bethe conditions. The first outline of this idea can be found in [4].

We note that we here assumed that a highest-weight representation of the RTT algebra of sp(4) type
is known. This representation must be given to obtain concrete physical models. At present, we explicitly
know only two nontrivial representations. One of these representations was used in [4]. In that case, the
representation of the RTT algebra Ã is one-dimensional. The second representation is constructed using
the R-matrix. The construction of the Bethe vectors and the Bethe conditions for this representation can
be found in [6]. This construction does not use the auxiliary RTT algebra Ã, and we are convinced that
this is possible only because the representation is relatively simple.
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