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Abstract. In this paper we proposed a new symbolic, non-standard
recursive and fast orthonormalization procedure of linearly independent
vectors but as in other approaches not orthonormal based on the Gram-
Schmidt orthonormalization algorithm. Our adaptation of the Gram-
Schmidt orthonormalization procedure provide simple analytic formulas
for the SU(3) Bargmann-Moshinsky basis orthonormalization coefficients
and do not involve any square root operation on the expressions com-
ing from the previous iterative computation steps. This distinct features
of the proposed orthonormalization algorithm may make the large scale
symbolic calculations feasible. We demonstrate efficiency of our proce-
dure by benchmark large-scale calculations of the non-canonical BM
basis with the highest weight vectors of SO(3) irreducible representa-
tions.

1 Introduction

Despite the significant number of works on the development of algorithms and
construction programs in both analytical and numerical form of the ortho-
normalized Bargman-Moshinsky basis, there are still no efficient and cost-
effective algorithms and programs for its construction and calculation with its
help, tensor operators necessary for constructing Hamiltonians by a collective of
a model of a nucleus with tetrahedral symmetry under study by modern experi-
ments [1]. Creation of such algorithms and programs is an actual problem in the
field of Computer Algebra in Scientific Computing.

In our previous papers [2,3] noted below as I and II, we started to study
optimal ways of building up fast versions of Gram-Schmidt orthonormalization
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procedure of the non-canonical BM basis in computer algebra systems and its
application to scientific computing of a spectrum of the SU(3) collective nuclei
models [4].

In this paper we developed the new symbolic, non-standard recursive and fast
orthonormalization procedure of linearly independent vectors but as in other
approaches not orthonormal, based on the Gram-Schmidt orthonormalization
algorithm. Our adaptation of Gram-Schmidt orthonormalization procedure pro-
vide simple analytic formulas for BM basis orthonormalization coefficients and
do not involve any square root operation on expressions coming from the previous
iterative computation steps. This distinct features of the proposed orthonormal-
ization algorithm may make the large scale symbolic calculations feasible. We
demonstrate efficiency of our procedure by benchmark large-scale calculations
of the non-canonical SU(3) BM basis [5–7] with the highest weight vectors of
SO(3) irreducible representations(irreps). Note, the SU(3) irreps. presented in
the form of expansions over the BM basis [6] have a wide range of applications
in nuclei physics and quantum optics.

The structure of the paper is following. In the first section we present new
symbolic-numerical algorithm of the Gram-Schmidt orthonormalization realized
on example of non-canonical BM basis in a form of the program implemented in
the computer algebra system Wolfram Mathematica 10.1. In the second section
we present the best economical algorithm for generation of matrix of tensor
operators and algebraic eigenvalue problem using calculated orthonormal BM
basis as input and show final results of calculation of a spectrum of the SU(3)
collective nuclear models. In conclusion we give a resume and point out some
important problems for further applications of proposed algorithms.

2 Symbolic-Numerical Orthonormalization Algorithm

We start from the BM states constructed in the papers I and II:

|uα〉 ≡
∣
∣
∣
∣

(λ, μ)B

α,L,L

〉

, (1)

which are linearly independent but as in other approaches not orthonormal.
The quantum numbers λ, μ = 0, 1, 2, . . . label irreducible representations of
the SU(3) group. We assume that λ ≥ μ. The labels L,M are the quantum
numbers of angular momentum and its projection (in our case M = L); α is the
additional index required to distinguish equivalent irreducible representations of
SO(3) appearing in a given irreducible representation of SU(3), the problem is
not multiplicity free.

The orthogonalized BM states |ψα〉 may be expressed in terms of the
orthonormalized BM states |φα〉 as [7]:

|ψα〉 = −|uα〉 +
αmax∑

α′=α+1

cαα′ |φα′〉, when 0 ≤ α < αmax, (2)
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here αmax is a number of linearly independent BM states |uα〉, and cαα′ are linear
coefficients. The orthonormalization process (2) starts (somewhat deliberately)
by taking |ψαmax〉 = |uαmax〉.

The goal of this paper is to perform orthonormalization of the BM states
|uα〉:

|φi〉 =
αmax∑

α=0

Ai,α|uα〉. (3)

Here multiplicity index i is introduced to differentiate the orthonormalized BM
states and takes the same range of values as α. The symbols Ai,α denotes matrix
elements of the upper triangular matrix of the BM basis orthonormalization
coefficients. These coefficients fulfill the following condition

Ai,α = 0, if i > α. (4)

In this paper we developed an analytical orthonormalization procedure based on
the Gram-Schmidt orthonormalization algorithm (GSOA). For explicit construc-
tion of the orthonormalized BM basis let us consider step by step the symbolic
algorithm.

Step 1. First step needs to perform initial setup and check the consistency of
the input. The maximum possible value of α for a given μ is αmax. It is given by

αmax =
{ μ

2 , μ even,
μ−1
2 , μ odd.

(5)

The maximum value of L of the BM state is defined by the expression

Lmax = μ − 2α + λ − β, (6)

where

β =
{

0, λ + μ − L even,
1, λ + μ − L odd.

(7)

To have a consistent input L ≤ Lmax. From the expressions (6) and (7) it follows,
that for some L values sufficiently close to the Lmax, the α values may be less
than αmax or even not exist. So, for every particular L value the expressions (6)
and (7) allows to find the maximum value of α for which there exist the BM
state i.e. αmaxK .

At the same time there exists the lower boundary condition Lmin ≤ L that
should be evaluated for every particular value of α. If α = 0 and μ = 0 the Lmin

is defined by

Lmin =
{

0, λ even,
1, λ odd.

(8)

In case of α = 0 and μ �= 0 the minimum value of L will be Lmin = μ. When
0 < α < αmax then Lmin = μ − 2α. If α = αmax and μ is even then Lmin = 1.
Finally, when α = αmax and μ is odd the Lmin takes value given by expression
(8). There may exist only the BM states for which the condition Lmin ≤ L is
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satisfied. So, the presented Lmin calculation procedure allows to find for every
particular L the minimum value of α for which there exists the BM state i.e.
αminK . So, for actual calculations of the BM basis orthonormalization coefficients
α = αminK , αminK + 1, . . . , αmaxK . An illustrative example for calculation of
αminK and αmaxK for μ = 4 when λ = 0, . . . , 6 is presented in Table 1.

Table 1. The values of αminK and αmaxK for μ = 4 when λ = 0, . . . , 6.

L

λ α 0 1 2 3 4 5 6 7 8 9 10

0 αminK 2 1 0

αmaxK 2 1 0

1 αminK 2 1 1 0 0

αmaxK 2 1 1 0 0

2 αminK 2 0 1 1 0 0 0

αmaxK 2 1 2 1 1 0 0

3 αminK 2 1 1 0 0 0 0

αmaxK 2 1 2 1 1 0 0

4 αminK 2 1 1 0 0 0 0 0

αmaxK 2 2 1 2 1 1 0 0

5 αminK 2 1 1 0 0 0 0 0 0

αmaxK 2 1 2 1 2 1 1 0 0

6 αminK 2 0 1 1 0 0 0 0 0 0 0

αmaxK 2 1 2 1 2 1 2 1 1 0 0

For practical calculation there may be useful the condition that allows to find
such minimal value of L (Ltotal

min ) for which all the BM basis orthonormalization
coefficients that forms the matrix A and as consequence the matrix A itself do
not exist. For definition of this condition one should start with calculation of the
quantity K = μ − 2αmaxK . If K = 0 then

Ltotal
min =

{
0, λ even,
1, λ odd.

(9)

If K �= 0 then Ltotal
min = K.

Step 2. Second step needs to introduce and iteratively calculate the convenient
intermediate quantities f

(n)
α,α′ , here n = 0, 1, . . . , αmaxK − 1 indicates a number

of iteration. The iteration starts at n = 0 by calculation of all f
(0)
α,α′ that are

defined by the overlap integrals 〈uα|uα′〉 given in the paper I:

f
(0)
α,α′ = 〈uα|uα′〉, (10)

where α = αminK , αminK + 1, . . . , αmaxK − 1 and α < α′ ≤ αmaxK .



Symbolic-Numerical Algorithm 95

The above overlap was applied in symbolic calculations to test our procedure
in paper I with analytical results of [7].

At the next iteration step n = 1 the calculation of f
(1)
α,α′ is defined by the

formula

f
(1)
α,α′ = −f

(0)
α,α′ +

f
(0)
α,αmaxKf

(0)
α′,αmaxK

〈uαmaxK |uαmaxK 〉 , (11)

where α = αminK , αminK + 1, . . . , αmaxK − 2 and α < α′ ≤ αmaxK − 1. For all
next iteration steps n > 1, the f

(n)
α,α′ are defined by the formula

f
(n)
α,α′ = f

(n−1)
α,α′ +

f
(n−1)
α,αmaxK−n+1f

(n−1)
α′,αmaxK−n+1

〈ψαmaxK−n+1 |ψαmaxK−n+1〉
, (12)

where α = αminK , αminK + 1, . . . , αmaxK − n − 1 and α < α′ ≤ αmaxK − n. Here
the normalization integral is defined as

〈ψα|ψα〉 = 〈uα|uα〉 −
αmax∑

α′=α+1

(

f
(αmaxK−α′)
α,α′

)2

〈ψα′ |ψα′〉 . (13)

It should be noted, that all quantities f
(n)
α,α′ at iteration step n may be calculated

solely from the quantities f
(n−1)
α,α′ and normalization integrals 〈ψα|ψα〉 obtained

at the previous iteration step n − 1. So, at the every iteration step (except
the n = 0) the corresponding quantities: f

(n)
α,α′ and the normalization integrals

〈ψα|ψα〉, are calculated and put into the storage.
For the linear storage of the quantities f

(n)
α,α′ the corresponding sequence

number s may be introduced. It depends on the quantities n, α, α′, αmax by the
formula

s =
1
6

((

2 + 6αmax + 3α2
max

)

n − 3 (1 + αmax)n2 + n3
)

+ (αmax − n)α +
1
2

(1 − α) α − α + α′.

Step 3. Finally, having calculated the quantities f
(n)
α,α′ and the normalization

integrals 〈ψα|ψα〉, one may straightforwardly compute the required orthonormal-
ization coefficients Aα,α′ of the expansion (3). In the case when α = α′ = αmaxK

the formula for calculation of Aα,α′ is

AαmaxK ,αmaxK = 〈uαmaxK |uαmaxK 〉−1/2. (14)

In case when α = α′ and α = αminK , αminK + 1, . . . , αmaxK − 1 the formula for
calculation of Aα,α′ is

Aα,α = −〈ψα|ψα〉−1/2. (15)
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Fig. 1. The CPU time versus parameter μ (a) and MaxMemoryUsed versus parameter
μ (b): maximum number of Megabytes (Mb) used to store all data for the current
Wolfram System session during the calculations of the orthogonal BM basis (circles)
consisted of calculation of the overlap integrals (10) (squares) and execution of the
othonormalization Gram–Schmidt procedure (11)–(17) (triangles).

In the case when α < α′ < αmaxK the formula for calculation of Aα,α′ is

Aα,α′ =
1

〈ψα′ |ψα′〉
α′−1∑

α′′=α

Aα,α′′f
(αmaxK−α′)
α′′,α′ . (16)

In the case when α = αminK , αminK + 1, . . . , αmaxK − 1 and α′ = αmaxK the
formula for calculation of Aα,α′ is

Aα,αmaxK = − 1
〈ψαmaxK |ψαmaxK 〉

αmaxK−1∑

α′′=α

Aα,α′′f
(0)
α′′,αmaxK

. (17)

The above algorithm was realized in the form of the program implemented in
the computer algebra system Wolfram Mathematica 10.1.

Remark 1. The two advantages of the proposed algorithm. First of all its simplic-
ity: at any iterative step n the quantities f

(n)
α,α′ are composed of fragments that

are not more complicated than that defined in the right hand side of Eq. (12) and
the normalization integrals (13). Secondly, iterative calculation of the quantities
f
(n)
α,α′ (12) and the normalization integrals (13) do not involve any square root

operation in contradistinction to the conventional one [14]. This distinct features
of the proposed orthonormalization algorithm make the large scale symbolic cal-
culations in principle feasible.

In the case of the subset of three independent BM vectors (1) indicated
by the displayed values of labels, expansion (3) demonstrated execution of the
othonormalization Gram–Schmidt procedure (OGSP) (11)–(17) takes the form
(μ = 4, λ − L even))
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∣
∣
∣
∣

(λ, μ)
f2, L, L

〉

= A
(λ,μ)
2,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

∣
∣
∣
∣

(λ, μ)
f1, L, L

〉

= A
(λ,μ)
1,1 (L)

∣
∣
∣
∣

(λ, μ)B

1, L, L

〉

+ A
(λ,μ)
1,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

∣
∣
∣
∣

(λ, μ)
f0, L, L

〉

= A
(λ,μ)
0,0 (L)

∣
∣
∣
∣

(λ, μ)B

0, L, L

〉

+ A
(λ,μ)
0,1 (L)

∣
∣
∣
∣

(λ, μ)B

1, L, L

〉

+ A
(λ,μ)
0,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

A
(λ,4)
2,2 (L) = (〈u2|u2〉)−1/2

,

A
(λ,4)
1,1 (L) = −〈ψ1|ψ1〉−1/2, A

(λ,4)
1,2 (L) = 〈ψ1|ψ1〉−1/2 〈u2|u1〉

〈u2|u2〉 ,

A
(λ,4)
0,0 (L) = −〈ψ0|ψ0〉−1/2,

A
(λ,4)
0,1 (L) = −〈ψ0|ψ0〉−1/2

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
)

,

A
(λ,4)
0,2 (L) = 〈ψ0|ψ0〉−1/2

[ 〈u2|u0〉
〈u2|u2〉

+
1

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
) 〈u2|u1〉

〈u2|u2〉
]

,

〈ψ0|ψ0〉 = 〈u0|u0〉 − 〈u2|u0〉2
〈u2|u2〉 − 1

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
)2

,

〈ψ1|ψ1〉 = 〈u1|u1〉 − 〈u2|u1〉2
〈u2|u2〉 .

As an example, in Fig. 1 we show the CPU time and MaxMemoryUsed during
of calculations of overlap integrals (13) and execution of the othonormalization
Gram–Schmidt procedure (OGSP) (11)–(17) by the above symbolic algorithm
versus parameter μ using the PC Intel Pentium CPU 1.50 GHz 4 GB 64bit Win-
dows 8. One can see that the CPU time (in double logarithmic scale) of execu-
tion of the overlap integrals is linearly growing in contradistinction to the OGSP,
whose execution time is growing faster than linearly due to manipulations with
rational expressions.

3 Benchmark for Symbolic Numerical Algorithm

Because the BM vectors |uα〉 are linearly independent, one can require the
orthonormalization properties for the vectors |φi〉

〈φi|φj〉 = δij . (18)

From Eq. (18) there may be derived the orthonormalization property of the
orthonormalization coefficients Aα,α′ matrix A

A UÃ = I. (19)
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Fig. 2. The CPU time versus parameter μ for calculations of the A matrix with λ = 119
for L = 3, 35, 70, 107.

Here matrices A, U and I have dimension αmax+1. The matrix Ã is transposed
of A. In general case, when αmaxK < αmax and αminK > 0, these matrices have
the following block structure

A =

⎛

⎝

0 0 0
0 A 0
0 0 0

⎞

⎠ , U =

⎛

⎝

0 0 0
0 U 0
0 0 0

⎞

⎠ , I =

⎛

⎝

0 0 0
0 I 0
0 0 0

⎞

⎠ .

Here the matrices A, U and I have the dimension αmaxK − αminK + 1. The
zeroes represents the sub-blocks with the appropriate dimensions that are filled
with zeroes. The I is the unity matrix.

Let as display a structure of indices of the matrix A

A =

⎛

⎜
⎝

AαminK ,αminK
. . . AαminK ,αmaxK

...
. . .

...
AαmaxK ,αminK

. . . AαmaxK ,αmaxK

⎞

⎟
⎠ . (20)

Finally, the entries of the matrix U are the overlap integrals 〈uα|uα′〉

U =

⎛

⎜
⎝

〈uαminK
|uαminK

〉 . . . 〈uαminK
|uαmaxK 〉

...
. . .

...
〈uαmaxK |uαminK

〉 . . . 〈uαmaxK |uαmaxK 〉

⎞

⎟
⎠ . (21)

The Eq. (19) may be used for control of consistency and accuracy of calculations.
The efficiency of A matrix calculations for different values of the quantum

number L is illustrated in Fig. 2. The computations were evaluated numerically
to 150-digit precision. Such high precision was taken in order to compare these
calculations with fuhrer calculations of q

(λμ)
ijk (L) presented in Sect. 4.

Remark 2. From a conventional point of view the proposed symbolic orthonor-
malisation algorithm can be called as a non-standard recursive, or actually iter-
ative, since it traverses the computation graph not from top to bottom, but from
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bottom to top. It has been organized in such a way, to have one to one correspon-
dence of obtained results with definition of the orthonormalisation coefficients
A assumed in Ref. [7]. This algorithm allows one to find the analytical expres-
sions of the orthonormalized basis, if it is implemented in any computer algebra
system, in particular, Wolfram Mathematica 10.1. It is given in the present
paper and tested in the paper I with analytical results at small values λ and μ
obtained in [7]. However, to perform the really fast large scale calculations with
characteristics of computer time shown in Fig. 2, it has been implemented in the
multi-precision arithmetics as a symbolic-numerical algorithm.

Table 2. The values of (αminK , αmaxK)dim(A) and αmax for μ = 60, 85, 100, 115 and
λ = 120, 125 when L = 2, 31, 70, 120, 180.

L

μ λ αmax 2 31 70 120 180

60 120 30 (29,30)2 (15,29)15 (0,30)31 (0,30)31 (0,0)1

125 (29,29)1 (15,30)16 (0,29)30 (0,29)30 (0,2)3

85 120 42 (42,42)1 (27,42)16 (8,42)35 (0,42)43 (0,12)13

125 (42,42)1 (27,42)16 (8,42)35 (0,42)43 (0,15)16

100 120 50 (49,50)2 (35,49)15 (15,50)36 (0,50)51 (0,20)21

125 (49,49)1 (35,50)16 (15,49)35 (0,49)50 (0,22)23

115 120 57 (57,57)1 (42,57)16 (23,57)35 (0,57)58 (0,27)28

125 (57,57)1 (42,57)16 (23,57)35 (0,57)58 (0,30)31

In numerical benchmark calculations given below we will demonstrate also
the results of execution of the same OGSP (11)–(17) but with the normalized
nonorthogonal eigenvectors |ǔα〉 = N−1

αα |uα〉 and normalized overlap 〈ǔα|ǔα′〉 =
〈uα|N−1

αα N−1
α′α′ |uα′〉, Nαα = (〈uα|uα〉)1/2, respectively, i.e. 〈ǔα|ǔα〉 = 1.

The examples of the output (αminK, αmaxK, dim(A)) of the program
Abound.nb for some values of μ, λ, and L are presented in Table 2.

The orthonormalization of the BM basis, i.e. the calculation of the matrix
A for given values of μ, λ, L and precision is provided by the program
BMOrthonorm.nb. The calculation of the orthonormalized BM basis is based
on the overlap integrals 〈uα|uα′〉. In case if that quantities are needed one may
call the function overlapIntegral[μ, α, α′, L, λ]. As an example, we con-
sider a case with μ = 10, λ = 11 and L = 6 for α = 2 and α′ = 3. In
this case calling the function overlapIntegral produces the output 〈uα|uα′〉
= 59566465014885384192000000, i.e. the function overlapIntegral computes
the exact numerical value of the overlap integral 〈uα|uα′〉.

Let us consider an example of the orthonormalization of the BM basis and
take for it a case with μ = 10, λ = 11 and L = 6. In this case αmax = 5,
αminK = 2, αmaxK = 4, and precision was taken to be equal to prec= 15. For
calculation of A matrix one may call the function Amatrix[μ, L, λ, prec].



100 A. Deveikis et al.

In this case the matrix A acting on unnormalized vector u prints as

Aμλ(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −5.268 × 10−14 4.324 × 10−14 −5.671 × 10−15 0
0 0 0 −1.271 × 10−13 4.782 × 10−14 0
0 0 0 0 9.304 × 10−14 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while Ǎ = AN acting on normalized vector ǔ prints as

Ǎμλ
(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1.06241748771592 0.382535950822453 −0.060953283607289 0
0 0 0 −1.12436060747693 0.513991026814558 0
0 0 0 0 1.00000000000000 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The accuracy of calculations of the matrix A may be evaluated by the func-
tion TestOrthonormalization[μ, L, λ, base, prec] that use for this pur-
pose the orthonormalization property Eq. (19). At first, the function TestOrtho-
normalization[μ, L, λ, base, prec] calculates the left hand side of the
Eq. (19), i.e. the product of three matices A UÃ. The result may be printed
as the matrix test to ensure that its diagonal elements in the submatrix
αminK . . . αmaxK are actually equal to one and other elements are equal to zero.
Finally this submatrix is taken off (as matrix testK), printed and used to eval-
uate the accuracy of orthonormalization coefficients using the condition:

|10−prec − ‖testK − I‖| < base−prec, (22)

here the norm ‖...‖ is defined as giving the maximum singular value of a matrix,
and parameter base defines the accuracy of calculations of the matrix Aμλ(L)
- in this case base is taken equal to 9.5. In the case under consideration the
function TestOrthonormalization[μ, L, λ, base, prec] prints the follow-
ing matrix for unnormalized Uμλ(L):

Uμλ(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4.068 × 1026 5.957 × 1025 2.325 × 1025 0
0 0 5.957 × 1025 7.826 × 1025 4.347 × 1025 0
0 0 2.325 × 1025 4.347 × 1025 1.155 × 1026 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while for normalized Ǔμλ
(L)

Ǔμλ
(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.00000000000000 0.333834605013026 0.107226660720115 0
0 0 0.333834605013026 1.00000000000000 0.457140728158342 0
0 0 0.107226660720115 0.457140728158342 1.00000000000000 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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In this case the matrix product A UÃ will be printed as the matrix test:
for the unnormalized overlap U

(

A UÃ
)μλ

(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.0000000000 1. × 10−15 1. × 10−16 0
0 0 1. × 10−15 1.0000000000 1. × 10−15 0
0 0 1. × 10−15 1. × 10−15 1.0000000000 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the matrix product Ǎ Ǔ ˜̌A for the normalized overlap Ǔ

(

Ǎ Ǔ ˜̌A
)μλ

(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.0000000000 1. × 10−15 1. × 10−15 0
0 0 1. × 10−15 1.0000000000 1. × 10−15 0
0 0 1. × 10−15 1. × 10−15 1.0000000000 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

here for saving the space we do not present last 4 zeroes after the decimal point
for the diagonal matrix elements.

The efficiency of A matrix calculations for different values of parameter L
is illustrated in Fig. 2. The computations were evaluated numerically to 15-digit
precision. It should be pointed out that the CPU time for calculations of the A
matrix less depend on the values of λ, L and the taken precision but more on the
dimension of the matrix A. The apparent dependency of CPU time on the value
of L reflects actually the changing of dimension of the matrix A depending on
the value of L but not the change of the time for calculation of overlap integrals.

Remark 3. As shown by our benchmark calculation it would be appropriate in
the future numerical calculation to provide scaling: the use of non-orthogonal
normalized basis similar to Ref. [13] and the corresponding input matrix ele-
ments of scalar products – overlap integrals and intermediate output coefficients
of orthogonalization and intermediate input matrix elements of tensor operators.
Naturally, with such scaling, the result of calculating the orthonormal basis and
the final values of the matrix elements of the tensor operators do not change.
In this case, the desired numerical values coincide with the analytical values,
but the intermediate values will remain within 16 significant figures, which cor-
responds to the accepted accuracy of the final results of 2 · 10−16. Meanwhile,
the principal problem of calculation exact numerical value of overlap integral in
nonnormalized nonorthogonal BM basis at extremely large value of λ and μ will
be solved using Wolfram Mathematica. The corresponding study of an efficiency
of such adaptation of our code implemented in Wolfram Mathematica 10.1 and
comparison with code implemented in Fortran are subject of a separate paper
published elsewhere.
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Fig. 3. The CPU time versus parameter μ for calculations of the q
(λμ)
ijk (L) with λ = 119

and L = 107 for k = 0, 1, 2.

4 Generation and Solution of SU(3) algebraic problem

The Casimir operator of SO(3) irreducible representations corresponding to the
group chain SU(3) ⊃ O(3) ⊃ O(2) have the form:

C2(SU(3)) = Q · Q + 3L · L = 4(λ2 + μ2 + λμ + 3λ + 3μ). (23)

The dimension of the subspace for given λ, μ can be calculated by using the
following formula:

Dλμ =
1
2
(λ + 1)(μ + 1)(λ + μ + 2). (24)

As a benchmark example we consider a perturbation operator announced in
Ref. [4]

H ′′
4Q =

√

14
5

(Q̄ ⊗ Q̄)40 + (Q̄ ⊗ Q̄)4−4 + (Q̄ ⊗ Q̄)44, (25)

where (Tλ′ ⊗ Tλ)L
M denotes the tensor product of two spherical tensors [8]. The

matrix elements of the Hamiltonian (25) can be calculated by using the following
formula:

(H ′′
4Q)(λμ)

αLM,α′L′M ′ =
1

√

(2L + 1)

L′+2∑

L′′=|L′−2|

1
√

(2L′′ + 1)

αmax∑

α′′=0

L′′
∑

M ′′=−L′′

(

H ′′(1)
LL′L′′M ′′ + H ′′(2)

LL′L′′M ′′

)

R
(λμ)
αL,α′′L′′R

(λμ)
α′′L′′,α′L′ . (26)

Matrix elements H ′′(1)
LL′L′′M ′′ and H ′′(2)

LL′L′′M ′′ read as

H ′′(1)
LL′L′′M ′′ =

√

14
5

2∑

η=−2

[
2 2 4
η −η 0

] [
L′′ 2 L
M ′′ η M

] [
L′ 2 L′′

M ′ −η M ′′

]

, (27)
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Table 3. The example of spectrum E of Hamiltonian (32) for γ = 1.5 and h4Q =
10. The pair (λ, μ) labels the irreducible representations of the group SU(3) and the
label ν denote degeneration of eigenvalues due to the intrinsic tetrahedral/octahedral
symmetry.

(λ, μ) Dλμ γC2(SU(3)) E ν CPU time, s.

(0, 0) 1 0 0 1 0.016

(1, 0) 3 24 24 3 0.656

(2, 0) 6 60 61.44 2 3.547

60 1

59.04 3

(2, 1) 15 96 98.5042 3 28.531

97.6949 3

96.96 1

95.52 2

93.9758 3

93.8251 3

H ′′(2)
LL′L′′M ′′ =

[
L′′ 2 L
M ′′ −2 M

] [
L′ 2 L′′

M ′ −2 M ′′

]

+
[

L′′ 2 L
M ′′ 2 M

] [
L′ 2 L′′

M ′ 2 M ′′

]

. (28)

Here the notation of the Clebsh-Gordan coefficients [8] by the square brackets is
introduced. The reduced matrix elements of the quadrupole operator have the
form

R
(λμ)
αL,α′L′ =

√
2L′ + 1

[
L 2 L′

−L′ 0 −L′

](−1)

q
(λμ)
αα′(L−L′)(L). (29)

If L < L′ then primed parameters should be interchanged with not primed
parameters on the right hand side of the formula (29) and the overall sign should
be changed as well if the L − L′ is the odd number. Matrix elements q

(λμ)
ijk (L)

read as
q
(λμ)
ijk (L) =

∑

α=0,...,αmax
s=0,±1

A
(λμ)
i,α (L)a(k)

s Ã
(λμ)
j,(α+s)(L + k), (30)

where coefficients a
(k)
s are given in II: and Ã

(λ,μ)
i,α (L) are elements of the inverse

and the transpose of the matrix A

Ã
(λ,μ)
i,α (L) = (A−1)

(λ,μ)

α,i (L). (31)

The above formula was applied in symbolic calculations to test our procedure in
paper II with analytical results of [9]. In present paper the efficiency of q

(λμ)
ijk (L)

calculations for different values of parameter k is illustrated in Fig. 3. The com-
putations were evaluated numerically to 150-digit precision. Such high precision
is necessary for accurate calculation of inverse matrix A−1.
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Remark 4. If we wish to calculate q
(λμ)
ijk (L) with help of the normalized matrix

Ǎ then we will scale matrix a by such a way ǎ = N−1aN which corresponds to
action of ǎ on normalized vector ǔ.

Let us calculate for example the low lying energy levels En ≡ Eλ,μ,ν of the
Hamiltonian:

H ≡ H/h4Q = γC2(SU(3)) + H ′′
4Q/h4Q, H|λ, μ, ν >= En|λ, μ, ν > . (32)

The computational results for an example of spectrum of the Hamiltonian (32)
are presented in Table 3. The columns of the table are: (λ, μ) labels the irre-
ducible representations of the group SU(3); Dλμ is the dimension of the (λ, μ)
irrep from Eq. (24) determining a complexity of the above algorithm; C2(SU(3))
marks the eigenvalues of the second order Casimir operator (23); E presents the
energy levels that results after diagonalization of the Hamiltonian (32); ν is the
degeneration of the corresponding energy spectrum E; CPU time is the H4Q

matrix calculation time in seconds. The computations were evaluated numeri-
cally to 10-digit precision.

The computations was performed on Intel i7-3630QM 2.40 GHz CPU with
8 GB RAM running 64-bit Windows 8.

5 Conclusion

We present the effective and fast symbolic algorithm for constructing of the
non-canonical Bargmann–Moshinsky (BM) basis with the highest weight vec-
tors of SO(3) irreps which can be implemented in any computer algebra sys-
tem. This kind of basis is widely used for calculating spectra and electromag-
netic transitions in molecular and nuclear physics. The new symbolic algorithm
for orthonormalisation of the obtained BM basis based on the Gram-Schmidt
orthonormalisation procedure is developed.

To avoid misunderstanding we recall that from a conventional view point the
proposed symbolic orthonormalisation algorithm can be called as a non-standard
recursive, or ’actually iterative’, since it traverses the computation graph not
from top to bottom, but from bottom to top. It has been organized in such a
way, to have one to one correspondence of obtained results with definition of the
orthonormalisation coefficients of matrix A from Eqs. (3) and (20) assumed in
Ref. [7].

This algorithm allows one to find the analytical expressions of the orthonor-
malized basis, if it is implemented in any computer algebra system, in particular,
Wolfram Mathematica 10.1. It has been given in the present paper and tested
explicitly on analytical results at small values λ and μ Refs. [7,9] in our previous
papers I and II. However, to realized the really fast large scale calculations with
characteristics of computer time shown in Figs. 2 and 3, it has been implemented
in the multi-precision arithmetics as a symbolic-numerical algorithm. It can be
also implemented in Fortran to apply in the fast large scale calculations like in
Ref. [10].
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The distinct advantage of this method is that it does not involve any square
root operation on the expressions coming from the previous steps for compu-
tation of the orthonormalisation coefficients for this basis. This makes the pro-
posed method very suitable for calculations on computer algebra systems. The
symbolic nature of the developed algorithms allows one to avoid the numeri-
cal round-off errors in calculation of spectral characteristics (especially close to
resonances) of quantum systems under consideration and to study their ana-
lytical properties for understanding the dominant symmetries [4]. The program
in the Mathematica language for orthonormalisation of the non-canonical BM
basis using the overlap integrals in Eq. (21) given by the analytical formula [2,7]
is now prepared and will be published as an open code elsewhere. The great
advantage of the program is the possibility to specify an arbitrary precision of
calculations which is especially important for large scale calculations of physical
quantities that involve procedures of matrices inversion. The high efficiency of
the developed program was illustrated by orthonormalisation of BM basis up to
extremely high quantum numbers (λ, μ), which is not given by other symbolic
algorithms known in the literature [11,12].
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