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Abstract. The entanglement thermal (equilibrium) properties in spin-1/2 Ising-Heisenberg
model on an ideal diamond chain is analyzed. Due to the classical character of Ising-
type exchange interactions between two neighboring antiferromagnetic Heisenberg dimers, the
calculation of quantum entanglement (by tracing out Ising spins) can be performed for each
of the dimers separately. The concurrence, as a measure of entanglement is obtained and
different regimes depending on the values of exchange interactions are revealed. The effects of
the magnetic field are incorporated and critical temperatures corresponding to the vanishing or
arising of entanglement are considered.

1. Introduction
During the last two decades low-dimensional magnetic materials with competing interactions or
geometrical frustration have become an intriguing research object due to a rich variety of unusual
ground states and thermal properties as a result of zero and finite temperature phase transitions
driven by quantum and thermal fluctuations respectively [1–5]. As fascinating models among
these systems exhibiting interesting quantum phenomena, one should mention the ones having a
diamond-chain structure consisting of diamond-shaped topological units along the chain (figure
1). The recent experimental results on the natural mineral azurite (Cu3(CO3)2(OH)2) [6] showed
that Cu2+ ions of this material form a spin-1/2 diamond chain. Furthermore, the discovery
of a plateau at 1/3 of the saturation value in the low-temperature magnetization curve [6]
has triggered an intensive interest in the magnetic properties of azurite, both from theoretical
and experimental points of view [7–10]. With all exchange constants being antiferromagnetic,
azurite would fall into the class of geometrically frustrated magnets. However, despite the
long-standing interest towards this natural mineral, there is still an open question concerning
the strength and the type of exchange interactions in the compound. The first diamond spin
chain was explored under a symmetrical condition J1 = J3 [11] that predicted magnetization
plateaus both at 1/3 and 1/6 of saturation [12, 13]. Moreover, the frustrated diamond chain
with ferromagnetic interactions J1, J3 < 0 and antiferromagnetic interaction J2 > 0 was also
investigated theoretically [14]. Namely, the controversy on these values seem to be cleared up
only recently (the latest comparison of experimental and theoretical results can be found in
Ref. [15]).

Motivated by the controversies presented above and the fact that different compounds can be
described by means of a diamond chain , by a change in the values of coupling constants [16–18],
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we shall explore the symmetrical spin-1/2 diamond chain with competing interactions J1 and
J3 in a magnetic field. But, unfortunately, the rigorous theoretical treatment of geometrically
frustrated quantum Heisenberg models is difficult to fulfil due to a non-commutability of spin
operators involved in the Heisenberg Hamiltonian, which is also a primary cause of a presence
of quantum fluctuations. Owing to this fact, we will use the recently proposed geometrically
frustrated Ising-Heisenberg diamond chain model, depicted in figure 1 [19,20].

In the present paper we will be mainly interested in the quantum entanglement properties
of the spin-1/2 Ising-Heisenberg model on a generalized symmetrical diamond chain. It is well-
known, that the entanglement is a generic feature of quantum correlations in systems that
cannot be quantified classically [21, 22]. It provides a new perspective for understanding the
quantum phase transitions (QPTs) and collective phenomena in many-body and condensed
matter physics. This problem, which has been under scrutiny for nearly two decades, has
recently attracted much attention [23–27]. A new line research points to a connection between
the entanglement of a many-particle system and the existence of the QPTs and scaling [28,29].
And afterwards a few experimental evidences have been reported for low-dimensional spin
systems [30,31], confirming the presence of entanglement in solid state materials.

If we return to the spin-1/2 Ising-Heisenberg model on a diamond chain and consider, that the
nodal Ising spins represent a barrier for quantum fluctuations that are consequently restricted
to elementary diamond-shaped units, then taking into account that each Heisenberg dimer
interacts with its neighboring dimer through the Ising-type exchange, i.e. classical interaction,
one finds the states of two adjacent dimers become separable (disentangled) [21, 22]. Thus, we
can calculate concurrence (as a measure of pairwise entanglement [32, 33]), which characterizes
quantum features of the system, for each dimer separately.

The rest of the paper is organized as follows: in section 2 we give a brief description of the
spin-1/2 Ising-Heisenberg model on a generalized distorted diamond chain. The basic principles
for calculation of concurrence as a measure of entanglement and phase structure of the ideal
diamond chain (J1 = J3, Jm = 0) for both cases of a zero and non-zero magnetic field are
discussed in section 3. Some comments and concluding remarks are drawn in section 4.

2. Spin-1/2 Ising-Heisenberg model on a generalized distorted diamond
We consider the general spin-1

2 Ising-Heisenberg model on a generalized distorted diamond chain
(figure 1), which consists of monomeric and dimeric sites (empty and full circles in figure 1,
respectively). Within the proposed Ising-Heisenberg model, the monomeric (nodal) sites are
occupied by Ising spins, while the dimeric sites by Heisenberg-type spins. The Hamiltonian can
be written as follows:

H =
N∑

k=1

Hk =
N∑

k=1

[
J2Sk1Sk2 + µz

k1
(J3S

z
k1

+ J1S
z
k2

)+ µz
k2

(J1S
z
k1

+ J3S
z
k2

) + Jmµz
k1

µz
k2
−(1)

H

(
Sz

k1
+ Sz

k2
+

µz
k1

+ µz
k2

2

)]
,

where the summations run over clusters (figure 1), Hk represents the Hamiltonian of the
k − th cluster, Sk = {Sx

k , Sy
k , Sz

k} denotes the Heisenberg spin-1
2 operator, µk is the Ising spin.

Considering, that each Ising spin belongs simultaneously to two clusters, we have taken a 1/2
factor for Ising spins in the last term of (1), which incorporates the effects of external magnetic
field. Ji > 0 (i = 1, 2, 3,m) corresponds to the antiferromagnetic couplings. The system will
be strongly frustrated due to the chain’s geometry and existence of competing interactions J ′is
(i = 1, 2, 3,m). The symmetrical diamond chain is obtained in the limit J1 = J3. When J1 = J3

and Jm = 0 we deal with the so called ideal diamond chain [19, 20]. In general case, when
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J1 6= J3 the symmetry of the chain is broken and one obtains the distorted diamond chain [15].
Before introducing the calculations and discussion we would like to emphasize the fact which was
already discussed in section 1: the states of two neighboring Heisenberg dimers (with interaction
J2) are separable (disentangled), because of a classical character of the coupling between them
(by means of the Ising spin). Hence we can calculate the entanglement for each of the dimers
individually.

Figure 1. A cross-section of a generalized distorted diamond chain (k labels the number of the cluster).
The empty (monomeric units) and full circles (dimeric units) denote lattice positions of the Heisenberg
and Ising spins (within the proposed Ising-Heisenberg model), respectively. Solid lines schematically
reproduce the Heisenberg J2 interactions between dimeric units, while the broken ones label the Ising-
type (nearest-neighbor J1, J3 and next-nearest neighbor Jm) interactions.

3. Concurrence and thermal entanglement of the ideal diamond chain
In this section we will investigate concurrence (as measure of bipartite entanglement [32, 33])
of the Heisenberg dimers by tracing out the Ising spins in each cluster. We will examine the
case of an ideal diamond chain (J1 = J3 ≡ J , Jm = 0). For the construction of eigenvectors
of each cluster we will take into account that Hk possesses a symmetry corresponding to the
permutations µk1 ↔ µk2 and {µk2 ↔ µk2 ;Sk1 ↔ Sk2}. Besides, the Hilbert space of the cluster
Hcluster can be presented as Hcluster = Hk1 ⊗ Hdimer ⊗ Hk2 , where Hk1 , Hdimer, Hk2 denotes
the Hilbert spaces of µk1 , Heisneberg dimer and µk2 respectively. We obtain the following
eigenvectors (second and fourth spins are the Heisenberg ones), due to the symmetries and
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Hilbert space structure:

|ψ1〉 =
1√
2
(| ↑↑↑↓〉+ | ↑↓↑↑〉);

|ψ2〉 =
1
2
(| ↑↑↓↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↓↑↑〉);

|ψ3〉 =
1
2
(| ↑↑↓↓〉+ | ↑↓↓↑〉 − | ↓↑↑↓〉 − | ↓↓↑↑〉);

|ψ4〉 =
1√
2
(| ↓↑↓↓〉+ | ↓↓↓↑〉);

|ψ5〉 =
1√
2
(| ↑↑↑↓〉 − | ↑↓↑↑〉);

|ψ6〉 =
1
2
(| ↑↑↓↓〉 − | ↑↓↓↑〉+ | ↓↑↑↓〉 − | ↓↓↑↑〉);

|ψ7〉 =
1
2
(| ↑↑↓↓〉 − | ↑↓↓↑〉 − | ↓↑↑↓〉+ | ↓↓↑↑〉);

|ψ8〉 =
1√
2
(| ↓↑↓↓〉 − | ↓↓↓↑〉);

|ψ9〉 = | ↑↑↑↑〉;
|ψ10〉 =

1√
2
(| ↑↑↓↑〉+ | ↓↑↑↑〉);

|ψ11〉 =
1√
2
(| ↑↑↓↑〉 − | ↓↑↑↑〉);

|ψ12〉 = | ↓↑↓↑〉;
|ψ13〉 = | ↑↓↑↓〉;
|ψ14〉 =

1√
2
(| ↑↓↓↓〉+ | ↓↓↑↓〉);

|ψ15〉 =
1√
2
(| ↑↓↓↓〉 − | ↓↓↑↓〉);

|ψ16〉 = | ↓↓↓↓〉;

(2)

and the corresponding eigenvalues:

E1 =
1
4

(−2H + J2) ; E2 = E3 =
J2

4
; E4 =

1
4
(J2 + 2H);

E5 =
1
4
(−2H − 3J2);E6 = E7 = −3J2

4
; E8 =

1
4
(2H − 3J2);

E9 = −3H

2
+

J2

4
+ J ; E10 = E11 = −H +

J2

4
; E12 = −H

2
+

1
4

(J2 − 4J) ;

E13 =
H

2
+

1
4

(J2 − 4J) ; E14 = E15 =
1
4
(J2 + 4H);E16 =

3H

2
+

J2

4
+ J.

(3)

We study concurrence C(ρ), to quantify pairwise entanglement [32,33], defined as

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0}, (4)

where λi’s are the square roots of the eigenvalues of the corresponding operator for the density
matrix

ρ̃ = ρ12(σ
y
1 ⊗ σy

2)ρ∗12(σ
y
1 ⊗ σy

2) (5)
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in descending order. Since we consider pairwise entanglement, we should use the reduced density
matrix ρ12, by tracing out two Ising spins of the cluster. It is obvious that the only entangled
pair is formed by the Heisenberg spins. Other pairs are disentangled (separable) because of
the classical (diagonal) character of the Ising-type interaction between them. Hence we will be
interested in the reduced density matrix, constructed by tracing out two Ising-type spins µk1

and µk2 , i.e. ρ12 = Tr{µk1
,µk2

}ρ and the full density matrix ρ is defined as (here and further
Boltzmann constant is set to be kB = 1)

ρ =
1
Z

16∑

k=1

exp(−Ek/T )|ψk〉〈ψk|, (6)

where Z is the partition function (Z = Trρ), |ψk〉 and Ek should be taken from equations (2) and
(3) respectively. Here we skip the specific details and provide the result of the final calculations of
the concurrence for a reduced density matrix ρ12, taking into account that the HamiltonianHk is
translationary invariant with a symmetry [Sz,Hk] = 0 (Sz = 1/2(µz

k1
+µz

k2
)+Sz

k1
+Sz

k2
) [34–36]:

C(ρ) =
2
Z

max(|y| − √uv, 0), (7)

where

u = e−
−2H+4J+J2

4T

(
e

H
2T + eJ/T

)2
,

v = e−
6H+4J+J2

4T

(
e

H+2J
2T + 1

)2
,

w =
1
2

(
e

H
2T + 1

)2 (
e

J2
T + 1

)
e−

2H+J2
4T ,

y =
1
2

(
e

H
2T + 1

)2 (
e

J2
T − 1

)
e−

2H+J2
4T , (8)

Z = e−
6H+4J+J2

4T

(
e

H+J
T + e

2(H+J)
T + e

2H+J
T + 2e

H+2J
2T +

e
H+2J

T + 2e
3H+2J

2T + 2e
5H+2J

2T + e
H+J+J2

T + e
2H+J+J2

T +

2e
3H+2J+2J2

2T + e
3H
T + 1

)
.

In equation (2), one finds a set of states with maximum value of entanglement, for which the
Heisenberg dimer is in singlet or triplet state (|ψi〉’s with i = 1, ..., 8). As for the rest of the
states (|ψi〉’s with i = 9, ..., 16) the Heisenberg dimer is in separable state and therefore these
|ψi〉’s are non-entangled ones.

3.1. Zero field effects
We start with the investigation of the behavior of C(ρ) at zero magnetic field (H = 0). We will
discuss here three regimes, depending on the value of J−J2: J−J2 > 0, J−J2 < 0 and J−J2 = 0.
In the first case, as one finds from (3), that the ground state contains two-fold degenerate states
|ψ12〉 and |ψ13〉. Since these states are factorable, the corresponding dependency curve of C(ρ)
from temperature T starts from C(ρ) = 0 (figure 2). Furthermore, the entanglement can be
invoked by increasing the temperature (for values of J − J2 close to 0). This happens since the
contribution of entangled states in the mixture ρ increases with growth of temperature T . The
local maximum, appearing here arises due to the optimal thermal mixing of all eigenstates in
the system. This maximum becomes narrower and smaller and gradually vanishes by increasing
J −J2. But the value of J −J2 corresponding to disappearing of C(ρ) also depends on the value
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of J2 (e.g. for J2 = 1, J − J2 ≈ 0.2). The latter becomes obvious, if one takes into account
that J2, being the coupling constant of the Heisenberg type interaction between dimeric units,
is responsible for the strength of quantum correlations between Heisenberg spins. We would like
to emphasize here that in the case J − J2 > 0 the system exhibits weak (0 < J2 < J) or no
frustration (J2 < 0).

J=2.1

J=  .2 2

J=2

J=1

Figure 2. Concurrence C(ρ) versus temperature T for J2 = 2, Jm = 0, H = 0, and different values of
J1 = J3 ≡ J .

In the second case, when J −J2 < 0, the system will obviously manifest more of its quantum
nature. Firstly, the dependency curve of C(ρ) on temperature starts from C(ρ) = 1 at T = 0
(figure 2), which is the consequence of the fact that at zero temperature the maximum entangled
states |ψ5〉, |ψ6〉, |ψ7〉 and |ψ8〉 form four-fold degenerate ground state with the value of C(ρ) = 1
for the corresponding reduced density matrix ρ12. When the temperature is increased, the
concurrence gradually disappears because of the thermal mixing with other states of the system
(including the factorable ones). The critical temperature Tc, corresponding to the dying out
of quantum correlations in the system can be found form the equation C(ρ) = 0. It has the
following form:

x−J
(
xJ + 1

)2
= 2

∣∣xJ2 − 1
∣∣ , (9)

where x = e1/T . The solution can be presented in the form Tc = J/ log a (when J − J2 < 0),
where a depends on the ratio parameter J2/J . Increasing this ratio, a decreases, but the linear
dependence on J remains (e.g. when J2/J = 2, a = 1

4(3 +
√

17)).
Finally, the case J − J2 = 0 can be regarded as a boundary case in the following sense. Here

the ground state is six-fold degenerate, containing additionally |ψ12〉 and |ψ13〉, besides |ψ5〉,
|ψ6〉, |ψ7〉 and |ψ8〉 (in other words all the states as in previous two cases). Since the |ψ12〉 and
|ψ13〉 are factorable, this leads to lower entanglement of the ground state’s reduced matrix, that
is C(ρ) = 1/3 (figure 2). Moreover, the discussed above critical temperature Tc is lower, than
in the case J − J2 < 0 (although again Tc = J/ log a with a = 2 +

√
5).

On the other hand, as it can be seen from figure 2, there are two critical temperatures in the
case J − J2 > 0 (corresponding to arising and vanishing of entanglement) [37]. The dependence
of Tc on the ratio parameter J2/J is shown in figure 3. In the area 0 < J2/J < 1, there are two
critical temperatures (as mentioned above), while for the values J2/J ≥ 1, the dependence is a
linear one.
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J=1

J=  .1.5

J=3

J=2

Figure 3. Critical temperature Tc corresponding to the vanishing or arising of entanglement at zero
magnetic H versus ration parameter J2/J for different values of J1 = J3 ≡ J .

(a) (b)

J =2 1.4

J2=1.3

J2=1.5

J2=1.2

Figure 4. (a) Critical temperature Tc corresponding to the vanishing or arising of entanglement versus
magnetic field H for J1 = J3 ≡ J = 2 and different values of J2; (b) Concurrence C(ρ) versus temperature
T for J1 = J3 ≡ J = 2 and different values of J2.

3.2. Incorporation of magnetic field
In this subsection we concentrate on the effects driven by magnetic field. Firstly we will
discuss how the magnetic field affects the introduced above critical temperature Tc. While
increasing H, Tc increases too, but it always remains lower than J2/ log 3 (in other words
limH→∞Tc = J2/ log 3). However, when T → 0, C(ρ) remains finite and becomes zero only at
absolute zero temperature T = 0. In other words in the area of low temperatures the behavior
of concurrence is smooth, in contrast with the case when magnetic field is absent.

Now, we concentrate on the dependence of C(ρ) on magnetic field. Because of the above
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introduced ground state structure of the system the dependency curve of C(ρ) from magnetic
field at zero temperature has a dip at H = 0, corresponding to C(ρ) = 1/3, when J − J2 = 0
and has no dip, when J − J2 < 0 (figure 5). When Ising-type interaction is stronger than
the Heisenberg one (J − J2 > 0), there is no magnetic entanglement [23] in the system (at
zero temperature). Furthermore, magnetic entanglement is of a higher value than that at zero
magnetic field in the case J−J2 = 0, due to the fact that ground state here is two-fold degenerate
and contains |ψ5〉 and |ψ12〉 with the value C(ρ) = 1/2 for the corresponding reduced density
matrix. C(ρ) becomes zero for the case J−J2 ≤ 0 at the values of H, corresponding to saturation
field, that is when the non-entangled state | ↑↑↑↑〉 (in the area H > 0) or | ↓↓↓↓〉 (in the area
H < 0) becomes a ground state. One can find the described values of H from the conditions
E9 = E5 and E16 = E8, giving H+

s = J + J2 and H−
s = −J − J2, respectively. Thermal effects

smoothes the step-like behavior of concurrence in the case when J−J2 ≥ 0 and induces thermal
entanglement when J − J2 > 0 (see figure 2). The further increasing of the temperature causes
the quantum correlations’ eventually dying out for both cases.

J=1, J2=2, T=0

J=1, J2=1, T=0

J=1, J2=1, T=0.1

J=1, J2=2, T=0.1

Figure 5. Concurrence C(ρ) versus magnetic field H for different values of temperature, J2 and
J1 = J3 ≡ J .

Summarizing, in figure 6 we also plot three-dimensional dependencies of the concurrence C(ρ)
versus temperature T and magnetic field H.

(a) (b)

Figure 6. Concurrence C(ρ) versus magnetic field H and temperature T for (a) J2 = 1.7 and
J1 = J3 ≡ J = 2; (b) J2 = 2 and J1 = J3 ≡ J = 2.

4. Conclusion
In this paper we have studied the thermal entanglement of spin-1/2 Ising-Heisenberg model
on an ideal diamond chain, which has been proposed to understand a frustrated magnetism
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of the series of compounds, like A3Cu3(PO4)4 with A=Ca, Sr, Bi4Cu3V2O14, Cu3(TeO3)2Br2
and Cu3(CO3)2(OH)2. Considering that diamond chain structure describes a broad class of
materials (within different values of exchange interaction parameters) and that the exact value
of coupling constants for azurite (Cu3(CO3)2(OH)2) is still under scrutinizing question, we have
studied the phase structure and entanglement properties of the system in a wide range of Ising-
type interaction constants J1 = J3 ≡ J and Heisenberg-type J2. Taking into account the classical
and hence separable character of Ising-type interactions which are coupling adjacent Heisenberg
dimers, we have calculated the entanglement of each of these dimers separately. We have used
the concurrence for quantifying the amount of entanglement between two Heisenberg-type spins,
by tracing out Ising-type ones from the density matrix of the diamond-shaped cluster (the only
entangled pair here is the Heisenberg dimer). The incorporation of external magnetic field has
been also invoked.

We have revealed a number of regimes with distinct ground state structure and qualitatively
different thermodynamic behavior, depending on the relations between J and J2 and values
of magnetic field H. We found that in general for a dominant Heisenberg-type interaction
(J2 > J) the system’s ground state is maximally entangled, but increasing the temperature,
pure quantum correlations eventually disappear. On the other hand, for a dominant Ising-type
interaction (J > J2) the ground-state is non-entangled, whether the temperature gives rise to
thermal entanglement. In other words the presence of competing interactions in the system
and geometrical structure of the chain, each leading to a frustration, makes the phase structure
of the system rich and gives rise to an interesting physical behavior. Finally, the adopted
model guaranties experimental realization for suitable theoretical treatment and our results will
be useful for further experimental detection of entanglement in the diamond chain structured
macroscopic samples by means of entanglement witnesses (e.g. built from measurements of
magnetic susceptibility [38]).
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