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Abstract. We have developed a symbolic-numeric algorithm implemen-
ted in Wolfram Mathematica to compute the orthonormal non-canonical
bases of symmetric irreducible representations of the O(5)×SU(1,1) and
O(5) × SU(1,1) partner groups in the laboratory and intrinsic frames,
respectively. The required orthonormal bases are labelled by the set
of the number of bosons N , seniority λ, missing label μ denoting the
maximal number of boson triplets coupled to the angular momentum
L = 0, and the angular momentum (L, M) quantum numbers using the
conventional representations of a five-dimensional harmonic oscillator in
the laboratory and intrinsic frames. The proposed method uses a new
symbolic-numeric orthonormalization procedure based on the Gram–
Schmidt orthonormalization algorithm. Efficiency of the elaborated pro-
cedures and the code is shown by benchmark calculations of orthogonal-
ization matrix O(5) and O(5) bases, and direct product with irreducible
representations of SU(1,1) and SU(1,1) groups.

Keywords: Orthonormal non-canonical basis · Irreducible
representations · Group O(5) × SU(1, 1) · Gram–Schmidt
orthonormalization · Wolfram Mathematica

1 Introduction

The Bohr–Mottelson collective model [1,2] has gained widespread acceptance in
calculations of vibrational-rotational spectra and electromagnetic transitions in
atomic nuclei [3–5]. For construction of basis functions of this model, different
approaches were proposed, for example, [6–9], that lead only to nonorthogonal
set of eigenfunctions needed in further orthonormalization, considered only in
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intrinsic frame [10–15]. However, until now, there are no sufficiently universal
algorithms for evaluation of the required orthonormal bases needed for large-
scale applied calculations in both intrinsic and laboratory frames used in mod-
ern models to revival point symmetries in specified degeneracy spectra [16,17].
Creation of such symbolic-numeric algorithm is a goal of the present paper.

In the present paper, we elaborate an universal effective symbolic-numeric
algorithm implemented as the first version of O5SU11 code in Wolfram Mathe-
matica for computing the orthonormal bases of the Bohr–Mottelson(BM) col-
lective model in both intrinsic and laboratory frames. It is done on the base of
theoretical investigations for constructing the non-canonical bases for irreducible
representations (IRs) of direct product groups G = O(5) × SU(1,1) in the labo-
ratory frame [8] and Ḡ = O(5) × SU(1,1) in the intrinsic frame [7]. We pay our
attention to computing bases in both laboratory and intrinsic frames needed for
construction of the algebraic models accounting symmetry group [18,19] based
on anti-isomorphism between G and Ḡ partner groups [16,17], and point sym-
metries in modern calculations, for example, [20–23]. The required orthonormal
bases are labelled by the set of the number of bosons N , seniority λ, missing
label μ, denoting the maximal number of boson triplets coupled to the angu-
lar momentum L = 0, and the angular momentum (L,M) quantum numbers
using the conventional representations of a five-dimensional harmonic oscillator
in the laboratory and intrinsic frames. In the proposed method, the authors use a
symbolic-numeric non-standard recursive and fast orthonormalization procedure
based on the Gram–Schmidt (G–S) orthonormalization algorithm. Efficiency of
the elaborated procedures and the code is shown by benchmark calculations of
orthogonalization matrix O(5) and O(5) bases, and IRs of SU(1,1) group.

The structure of the paper is as follows. In the second section, we present
characterization of group G = O(5) × SU(1,1) and characterization of states.
In Subsects. 2.5 and 2.6, we give the explicit formulas needed for the construction
of symmetric nonorthogonal bases for IRs of the O(5) and G = O(5) ⊗ SU(1,1)
groups. In the third section, we present the construction of the orthonormal
basis of the collective nuclear model in intrinsic frame corresponding IRs of the
Ḡ = O(5) × SU(1,1) group. In the fourth section, we present the algorithm
and benchmark calculations of overlaps and orthogonalization upper triangular
matrices applied for constructing the orthonormal basis vectors in the labora-
tory and intrinsic frames. In conclusion, we give a resumé and point out some
important problems for further applications of proposed algorithms.

2 Characterization of Group O(5) × SU(1,1) and
Characterization Of States in the Laboratory Frame

Quantum description of collective motions by using the deformation vari-
ables α̂

(l)
m needs the Hilbert space L2(α̂(l)), which is the state space of (2l + 1)-

dimensional harmonic oscillator. The Hamiltonian of this harmonic oscillator
has the form

Hl =
1
2

∑

μ

(
π̂(l)

μ π̂(l)μ + α̂(l)μα̂(l)
μ

)
, (1)
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where
α̂(l)

m =
∑

μ

gmμα̂(l)μ = (−1)mα̂(l)−m (2)

denotes the multiplication operator by the variable α̂
(l)
m and

π̂(l)
m =

∑

m

gmμπ̂(l)μ = −i
∂

∂α̂(l)m
(3)

denotes the conjugate momentum to the coordinate α̂
(l)
μ .

The covariant metric tensor gmm′ in the corresponding manifold has the form

gmm′ = gmm′
= (−1)l

√
2l + 1(lmlm′|00) = (−1)mδ−m′

m . (4)

The operators α̂
(l)
m , π̂

(l)
m fulfil the standard commutation relations

[
α̂(l)

m , π̂(l)m′]
= iδm′

m ,
[
α̂(l)

m , α̂
(l)
m′

]
= 0,

[
π̂(l)m, π̂(l)m′]

= 0. (5)

By using these operators one can build the creation and annihilation spinless
boson operators η

(l)
m and ξ

(l)
m with the angular momentum l

η(l)
m =

1√
2

(
α̂(l)

m − iπ̂(l)
m

)
, ξ(l)m =

1√
2

(
α̂(l)

m + iπ̂(l)
m

)
. (6)

Contravariant operators can be built in standard way

ηm =
∑

μ

gmμημ, ξm =
∑

μ

gmμξμ. (7)

They satisfy the following commutation relations

[ξm, ηm′ ] = δm
m′ ,

[
ξm, ξm′]

= [ηm, ηm′ ] = 0, (ηm)† = ξm (ξm)† = ηm. (8)

2.1 Characterization of U(2l+1)

It can be shown that the bilinear forms

(η ⊗ η)(L)
M ,

(
ξ̃ ⊗ ξ̃

)(L)

M
,

(
η ⊗ ξ̃

)(L)

M
,

where L = 0, 1 . . . 2l, ξ̃m = (−1)mξ−m (9)

generate the non-compact symplectic group Sp(2(2l+1),R).
Group theory analysis leads to two classifications of boson states:

Sp(2(2l+1),R) ⊃ U(2l+1),
Sp(2(2l+1),R) ⊃ O(2l+1) × SU(1,1). (10)
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The orthonormal group O(2l+1) and the non-compact unitary group SU(1,1)
are complementary in two physical IRs of the symplectic group Sp(2(2l+1),R)
(for odd and even number of bosons).

The unitary group U(2l+1) has (2l+1)2 generators Emm′ or bosons operators

(η ⊗ ξ̃)(L)
M =

1
2
(−1)l

∑

mm′
(lmlm′|LM)Emm′ , where L = 0, 1, . . . 2l, (11)

Emm′=
1
2
(Nmm′+Λmm′), Nmm′=α̂mα̂m′+π̂mπ̂m′ , Λmm′=i(α̂mπ̂m′−π̂mα̂m′).

The operators (η ⊗ ξ̃)(L)
M fulfil the following commutation relations

[
(η ⊗ ξ̃)(L1)

M1
, (η ⊗ ξ̃)(L2)

M2

]
=

√
(2L1 + 1)(2L2 + 1)

∑

LM

[(−1)L − (−1)L1+L2 ]

×(L1M1L2M2|LM)
{

L1 L2 L
l l l

}
(η ⊗ ξ̃)(L)

M .

The second order Casimir invariant of the group U(2l+1) is given by

C2 =
2l∑

L=0

AL, AL = (−1)L
√

2L + 1
[
(η ⊗ η)(L) ⊗ (ξ̃ ⊗ ξ̃)(L)

](0)
0

. (12)

It can be shown that

C2 = N̂(N̂ − 1), where N̂ =
∑

μ

ημξμ =
√

2l + 1(η ⊗ ξ̃)(0)0 , (13)

the operator N̂ is the boson number operator.
The eigenvalues of C2 depend only on the number of bosons in a given state.

In the state which contains N bosons, the expectation value of C2 is

〈C2〉N = N(N − 1). (14)

At the same time, N uniquely labels symmetric IRs of U(2l + 1).
Arbitrary state of N bosons can be constructed by using the vectors:

|n−l, n−l+1 . . . nl〉 =
1√

(n−l)! (n−l+1)! . . . (nl)!
(η−l)n−l . . . (ηl)nl |0〉. (15)

According to this, to define uniquely the state of bosons, located on a level with
angular momentum equal to l, one needs to have a set of 2l+1 quantum numbers.

2.2 Characteristic of O(2l+1)

The orthogonal group O(2l+1) contains one-to-one transformations of linear
spaces spanned by the tensors α(l) = (α(l)

−l, . . . , α
(l)
l ) which do not change the

quadratic form
β2 =

∑

μ

α(l)
μ α(l)μ. (16)
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Generators of this group are l(2l+1) independent operators Λmm′ for m > m′.
The commutation relation for these generators are

[Λm1m2 , Λm3m4 ]=δm2m3Λm1m4+δm1m4Λm2m3−δm1m3Λm3m4−δm2m4Λm1m3 ,

where δmm′ =
∑

μ

gmμδμ
m′ = (−1)mδ−m

m′ . (17)

It is possible to get a more useful form of these generators

Λmm′ = ηmξm′ − ηm′ξm = (−1)l
∑

LM

[1 − (−1)L](lmlm′|LM)(η ⊗ ξ̃)(L)
M . (18)

This implies that the operators (η ⊗ ξ̃)(L=1, 3, 5,..., 2l+1)
M are the generators of the

group O(2l+1).
The second-order Casimir invariant of the orthogonal group O(2l+1) is

Λ2 =
2l∑

L=0

[1 − (−1)L]AL. (19)

For unique labelling of totally symmetric IRs of O(2l+1), one needs only one
quantum number λ. Eigenvalues of operators Λ2 are the numbers

〈
Λ2

〉
λ

= λ(λ + 2l − 1). (20)

The quantum number λ is called seniority and denotes the number of bosons
which are not coupled to pairs with zero angular momentum.

2.3 Characteristic of SU(1,1)

The non-compact unitary group SU(1, 1) is the complementary group to the
orthogonal group O(2l+1).

The group SU(1,1) has three generators:

S+=
√

2l + 1
2

(η ⊗ η)(0)0 , S−=
√

2l + 1
2

(ξ̃ ⊗ ξ̃)(0)0 , S0=
1
2

(
N̂+

2l + 1
2

)
. (21)

The above generators satisfy the following commutation relations:

[S+, S−] = −2S0, [S0, S+] = S+, [S0, S−] = −S−, (22)

and the conjugation relation
(S+)† = S−. (23)

The second-order Casimir invariant of the group SU(1,1) is the following operator

S2 = S2
0 − S0 − S+S−. (24)

One can show that the following relation is satisfied

Λ2 = 4S2 − 1
4
(2l − 3)(2l + 1). (25)

So, the eigenvalues of S2 are given by
〈
S2

〉
= S(S − 1), where S =

1
2

(
λ +

2l + 1
2

)
. (26)
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2.4 Construction of States with N > λ

Let the state
|λ,N = λ, χ〉 = |λλχ〉 (27)

denote the state having the seniority number λ which is equal to the number of
particles N in the system. Then it satisfies the conditions

S−|λλχ〉 = 0, S0|λλχ〉 =
1
2
(λ +

2l + 1
2

)|λλχ〉. (28)

In the above equations, χ denotes the set of quantum numbers which are needed
for labelling the states of the boson system. One can construct the states hav-
ing the number of bosons N greater than the seniority number λ (N > λ) by
using the action of creation operators of boson pairs coupled to zero angular
momentum S+:

|λNχ〉 =

√
Γ

[
λ + 1

2 (2l + 1)
]

[12 (N − λ)]! Γ
[
1
2 (N + λ + 2l + 1)

] (S+)
1
2 (N−λ)|λλχ〉. (29)

Angular momentum is a good quantum number characterizing nuclear states.
It implies that the rotation group O(3) generated by the operators

L(1)
m =

√
1
3
l(l + 1)(2l + 1) (η ⊗ ξ̃)(1)m (30)

should be contained in the group chain which classifies these states.
The operator L̂2 of the squared angular momentum (the Casimir operator

for SO(3)) can be constructed as follows:

L̂2 =
1∑

m=−1

(−1)mL(1)
m L

(1)
−m = l(l + 1)(2l + 1)

2l∑

L=0

{
l l 1
l l L

}
AL + l(l + 1)N̂ .

In conclusion, the quantum boson states for l = 0, 1, 2, . . . can be classified
according to two group chains

U(2l+1) ⊃ O(2l+1) ⊃ · · · ⊃ O(3) ⊃ O(2), (31)
O(2l+1) ⊗ SU(1,1) ⊃ · · · ⊃,O(3) ⊗ U(1) ⊃ O(2). (32)

Unitary subgroup SU(1,1) ⊃ U(1) is generated by the operator S0, and the
generator of rotation about the z-axis generating the subgroup O(3) ⊃ O(2) is
the operator L

(1)
0 .

The states constructed according to the first group chain (31) will be
denoted by

|NλξLM〉, (33)

and the states constructed according to the second group chain (32) will be
denoted by replacing letters N and λ

|λNξLM〉. (34)
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The vectors (33) and (34) though constructed in different way can be identified
as the same vectors. In the following, we will treat them as identical.

But one has to stress that vectors (33) and (34) span IRs of different groups.
The vectors (33) form a basis of IRs of the group U(2l+1), for given N . The
vectors (34) span the basis of IRs of the group O(2l+1) ⊗ SU(1,1), for given λ.
According to the above property, we can construct the states of N bosons by
using the easier scheme (32).

Table 1. The set of values of dimensions of IRs O(5) group De
λ at even L and Do

λ at
odd L and their sum Dλ = De

λ + Do
λ vs λ

λ 10 20 30 40 50 60 70 80 90 100

De
λ 322 1892 5711 12782 24102 40671 63492 93562 131881 179452

Do
λ 184 1419 4705 11039 21424 36860 58344 86879 123465 169099

Dλ 506 3311 10416 23821 45526 77531 121836 180441 255346 348551

2.5 Construction of the Nonorthogonal Basis for Symmetric IRs of
the Group O(5)

As the first step, we start with the construction of a basis for the group O(5)
from Subsect. 2.2 at l = 2. We start the construction with the state of maximal
seniority λ and maximal angular momentum L0 = 2λ:

|λ〉 = (η(2)
2 )λ|0〉 (35)

generated by the action of the creation spinless boson operator η
(2)
2 ≡ η2 from (6)

on the vacuum vector |0〉 in representation (15) of elementary boson basis of
symmetric IR group U(5) from Subsect. 2.1 at l = 2. Next, we construct the
operators Ô(λ, μ, L,M) commuting with the Casimir operator Λ̂2 from (19) of
group O(5) and with lowering the angular momentum to the required L

Ô(λ, μ, L,M) =
∑

L≤m≤2λ

βm(λ,L)(L−)m−M (L+)m+λ−3μ
[
(η ⊗ ξ̃)(3)−3

]λ−μ

, (36)

where

βm(λ,L) =
(−1)m

(m − L)!(m + L + 1)!
, L+ = − 1√

2
L
(1)
+1, L− =

1√
2
L
(1)
−1, (37)

i.e., with commutator [L̂i, L̂j ] = +ıεijkL̂k, where εijk is the totally antisymmet-
ric symbol, ε123 = +1. The quantum number μ denotes the maximal number of
boson triplets coupled to the angular momentum L = 0. It can be shown that if

(λ−3μ) ≤ L ≤ 2(λ−3μ)(even L), (λ−3μ) ≤ (L+3) ≤ 2(λ−3μ)L(odd L), (38)
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where 0 ≤ μ ≤ [λ/3], and [λ
3 ] denotes the integer part of λ

3 , then the vectors
Ô(λ, μ, L,M)|λ〉 are linearly independent and they form a basis for IRs of the
group O(5), for given λ.

The dimension Dλ of this space is Dλ = 1
6 (λ + 1)(λ + 2)(2λ + 3) at fixed λ

is determined by following [6]:

Dλ=De
λ + Do

λ=
[λ/3]∑

μ=0

[2λ−6μ]′∑

L=2[(λ+1−3μ)/2]

(2L + 1) +
[(λ−3)/3]∑

μ=0

[2λ−6μ−3]′∑

L=2[(λ−3μ)/2]+1

(2L + 1), (39)

where the prime means summation by step 2 and [μ] = Floor(μ) is the largest
integer not greater that μ. For example, see Table 1.

Table 2. The set of accessible values μ of the states |λμLL〉 for L = 0, . . . , 17 and
λ = 0, . . . , 17 in non empty square depending on accessible values of momentum L and
seniority λ. Degeneracy dλL is given by formula dλL = μmax − μmin + 1.

L, λ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 1 2 3 4 5

1

2 0 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 3 4

4 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5

5 0 0 1 1 2 2 3 3 4 4

6 0 0 0 0,1 1 1 1,2 2 2 2,3 3 3 3,4 4 4

7 0 0 0 1 1 1 2 2 2 3 3 3 4

8 0 0 0 0,1 0,1 1 1,2 1,2 2 2,3 2,3 3 3,4 3,4

9 0 0 0 0,1 1 1 1,2 2 2 2,3 3 3

10 0 0 0 0,1 0,1 0,1 1,2 1,2 1,2 2,3 2,3 2,3 3,4

11 0 0 0 0,1 0,1 1 1,2 1,2 2 2,3 2,3

12 0 0 0 0,1 0,1 0,1 0,1,2 1,2 1,2 1,2,3 2,3 2,3

13 0 0 0 0,1 0,1 0,1 1,2 1,2 1,2 2,3

14 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2 1,2 1,2,3 1,2,3

15 0 0 0 0,1 0,1 0,1 0,1,2 1,2 1,2

16 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2 0,1,2 1,2,3

17 0 0 0 0,1 0,1 0,1 0,1,2 0,1,2

The range of accessible values of μ at given accessible λ and L is determined
by inequalities:

μmin= max(0, Ceiling

(
λ−L

3

)
, μmax=Floor

(
λ−(L+3(Lmod2))/2

3

)
, (40)

where Ceiling(μ) is the lowest integer not lower that μ and Floor(μ) is the
largest integer not greater that μ. The multiplicity dλL is given by the value
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of dλL = μmax − μmin + 1. For example, the set of accessible values μ at the
given accessible λ and L of states |λμLL〉 is given in Tables 2 and 3. One
can see that there is no degeneracy dvL = 1 for the first few angular momenta
L=0, 2, 3, 4, 5, 7, but not for L=6: dλL = 2. The range of angular moment L that
corresponds to a given maximum dmax

vL of μ-degeneracy dvL is [10]

6(dmax
λL − 1) ≤ L ≤ 6(dmax

λL − 1) + 5, dmax
λL = 1, 2, . . . .

For example, see Tables 2 and 3: 0 ≤ L ≤ 5, dmax
λL = 1, 6 ≤ L ≤ 11, dmax

λL = 2,
12 ≤ L ≤ 17, dmax

λL = 3.

Table 3. Continuation of Table 2 for L = 0, . . . , 17 and λ = 18, . . . , 34

L, λ 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0 6 7 8 9 10 11

1

2 6 6 7 7 8 8 9 9 10 10 11

3 5 6 7 8 9 10

4 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10

5 5 5 6 6 7 7 8 8 9 9 10

6 4,5 5 5 5,6 6 6 6,7 7 7 7,8 8 8 8,9 9 9 9,10 10

7 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

8 4 4,5 4,5 5 5,6 5,6 6 6,7 6,7 7 7,8 7,8 8 8,9 8,9 9 9,10

9 3,4 4 4 4,5 5 5 5,6 6 6 6,7 7 7 7,8 8 8 8,9 9

10 3,4 3,4 4,5 4,5 4,5 5,6 5,6 5,6 6,7 6,7 6,7 7,8 7,8 7,8 8,9 8 9 8,9

11 3 3,4 3,4 4 4,5 4,5 5 5,6 5,6 6 6,7 6,7 7 7,8 7,8 8 8,9

12 2,3,4 3,4 3,4 3,4,5 4,5 4,5 4,5,6 5,6 5,6 5,6,7 6,7 6,7 6,7,8 7,8 7,8 7,8,9 8,9

13 2,3 2,3 3,4 3,4 3,4 4,5 4,5 4,5 5,6 5,6 5,6 6,7 6,7 6,7 7,8 7,8 7,8

14 2,3 2,3,4 2,3,4 3,4 3,4,5 3,4,5 4,5 4,5,6 4,5,6 5,6 5,6,7 5,6,7 6,7 6,7,8 6,7,8 7,8 7,8,9

15 1,2,3 2,3 2,3 2,3,4 3,4 3,4 3,4,5 4,5 4,5 4,5,6 5,6 5,6 5,6,7 6,7 6,7 6,7,8 7,8

16 1,2,3 1,2,3 2,3,4 2,3,4 2,3,4 3,4,5 3,4,5 3,4,5 4,5,6 4,5,6 4,5,6 5,6,7 5,6,7 5,6,7 6,7,8 6,7,8 6,7,8

17 1,2 1,2,3 1,2,3 2,3 2,3,4 2,3,4 3,4 3,4,5 3,4,5 4,5 4,5,6 4,5,6 5,6 5,6,7 5,6,7 6,7 6,7,8

As conclusion of this analysis, we get the non-orthogonal basis for the totally
symmetric IRs of the group O(5) which is denoted by four quantum numbers
λ, μ, L, M

|λμLM〉no =
∑

L≤m≤2λ

βm(λ,L)(L−)m−M (L+)m+λ−3μ(η−1)λ−μ(η2)μ|0〉, (41)

where λ denotes the seniority number, μ can be interpreted as the maximal
number of boson triplets coupled to the angular momentum L = 0.

These results can be rewritten in representation (15) of elementary boson
basis of symmetric IRs group U(5) from Subsect. 2.1 at l = 2. For this purpose, let
us assume that the third component of the angular momentum has its maximal
value M = L

|λμL M = L〉 =
∑

n−2...n2

〈n−2 n−1 . . . n2|λμL M = L〉no|n−2 . . . n2〉. (42)
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Here the vectors 〈n′
−2 . . . n′

2|λμ′LM = L〉no in the representation of the five-
dimensional harmonic oscillator 〈n′

−2 . . . n′
2| have the form

〈n−2 . . . n2|λμLM = L〉=(2L + 1)

√
6n0 (n−2)! (n−1)! . . . (n2)! (2L)!

(L + λ − 3μ)! (L−λ+3μ)!
(43)

×
∑

p1...p8 q1...q5

(−1)p1+p3+p5+p7+q2+q4 2p1+2p3+2p6+p8+q2+q4

× (λ−μ)! μ! (p2+p3+2p5+2p6+2p7+3p8)! (p2+p6+p8+q2+2q3+3q4+4q5)!
(p1)! (p2)! . . . (p8)! (q1)! (q2)! . . . (q5)! (L + 2λ − p4 − p5 + 1)!

,

where the following conditions are satisfied
∑

i

ni = λ,
∑

i

ini = L,
∑

i

pi = λ − μ,
∑

i

qi = μ, (44)

p1+q1=n−2, p3+p4+q2=n−1, p2+p7+q3=n0, p5+p6+q4=n1, p8+q5=n2.

Vectors 〈n−2 . . . n2|λμLM〉 at −L≤M<L are calculated from recurrence
relations

〈n−2 . . . n2|λμLM − 1〉 = ((L−M+1)(L+M))−1/2〈n−2 . . . n2|L̂−|λμLM〉 =

((L−M+1)(L+M))−1/2
[
2
√

n−2(n−1+1)〈n−2−1, n−1+1, n0, n1, n2|λμLM〉
+

√
6n−1(n0+1)〈n−2, n−1−1, n0+1, n1, n2|λμLM〉

+
√

6n0(n1+1)〈n−2, n−1, n0−1, n1+1, n2|λμLM〉
+2

√
n1(n2+1)〈n−2, n−1, n0, n1−1, n2+1|λμLM〉

]
, (45)

where summation is performed over ni ≥ 0 subjected to the following conditions:∑
i ni = λ,

∑
i ini = M .

Calculating the above coefficients one gets the vectors of the non-orthogonal
basis for the totally symmetric IRs of the group O(5) which is denoted by four
quantum numbers λ, μ, L, M for given λ:

|λλμLM〉 =
∑

n−2...n2

〈n−2 . . . n2|λλμLM〉|n−2 . . . n2〉. (46)

2.6 Basis of IRs for Groups O(5) ⊗ SU(1,1)

In this part, we construct the states with an arbitrary number of bosons equal to
N , greater than seniority number N > λ. At this point, we use the construction
described in Sect. 2.4. By using Eq. (29) for l = 2 one gets

|λNμLM〉 =

√
2

N−λ
2 (2λ + 3)!!(

N−λ
2

)
! (N + λ + 3)!!

(S+)
N−λ

2 |λμLM〉, (47)
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where (N −λ)/2 = 1, 2, . . . is integer. Next we can rewrite operator (S+)
N−λ

2 in
a polynomial form:

(S+)
N−λ

2 =
(

η−2η2 − η−1η1 +
1
2
η0η0

)N−λ
2

=
∑

k1k2k3

(−1)k2

(
1
2

)k3
(

N−λ
2

k1k2k3

)
(η−2η2)k1(η−1η1)k2(η0)2k3 ,

(
k

k1 . . . kN

)
= δk∑N

i=1 ki

k!
k1! . . . kN !

.

After easy transformations one gets

〈n−2 . . . n2|λNμLM〉 =

√
2

N−λ
2 (2λ + 3)!!(

N−λ
2

)
! (N + λ + 3)!!

×
∑

k1k2k3

(−1)k2

2k3

(
N−λ

2
k1k2k3

)√
n−2!n−1!n0!n1!n2!

(n−2−k1)!(n−1−k2)!(n0−2k3)!(n1−k2)!(n2−k1)!

×〈n−2 − k1, n−1 − k2, n0 − 2k3, n1 − k2, n2 − k1|λμLM〉. (48)

Calculating the above coefficients one gets the vectors of the non-orthogonal
symmetric basis of IRs of the group O(5) ⊗ SU(1,1) which is denoted by five
quantum numbers λ, N, μ, L, and M for given λ and N :

|λNμLM〉 =
∑

n−2...n2

〈n−2 . . . n2|λNμLM〉|n−2 . . . n2〉, (49)

Ψ lab
λNμLM (αm)=

∑

n−2...n2

〈αm|n−2 . . . n2〉〈n−2 . . . n2|λNμLM〉, (50)

where 〈αm|n−2 . . . n2〉 is the orthonormal basis from (15) 〈n−2 . . . n2|n′
−2 . . . n′

2〉
=δn−2n′

−2
. . . δn2n′

2
, the following conditions are fulfilled:

∑
i ni=N ,

∑
i ini=M .

The effective algorithm for calculation of the required orthonormal basis is given
in Sect. 4.

3 Nonorthogonal Basis of the IRs O(5) × SU(1,1) Group
in the Intrinsic Frame

The collective variables αm at m= − 2,−1, 0, 1, 2 in the laboratory frame are
expressed through variables am′=am′(β, γ) in the intrinsic frame by the relations

αm=
∑

m′
D2∗

mm′(Ω)am′ , a−2=a2=β sin γ/
√

2, a−1=a1=0, a0 = β cos γ, (51)

where D2∗
mm′(Ω) is the Wigner function of IRs of O(3) group in the intrinsic

frame [24] (marker ∗ is complex conjugate). The five-dimensional equation of the
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B-M collective model in the intrinsic frame β ∈ R1
+ and γ,Ω ∈ S4 with respect

to Ψ int
λNμLM ∈ L2(R1

+

⊗
S4) with measure dτ=β4 sin(3γ)dβdγdΩ reads as

{H(BM)−EBM
n }ΨλNμLM=0, H(BM)=

1
2

(
− 1

β4

∂

∂β
β4 ∂

∂β
+

Λ̂2

β2
+β2

)
. (52)

Here EBM
N = (N + 5

2 ) are eigenvalues, Λ̂2 is the quadratic Casimir operator of
O(5) in L2(S4(γ,Ω)) at nonnegative integers N = 2nβ + λ, i.e., at even and
nonnegative integers N − λ determined as

(Λ̂2−λ(λ+3))ΨλNμLM=0, Λ̂2=− 1
sin(3γ)

∂

∂γ
sin(3γ)

∂

∂γ
+

3∑

k=1

( ˆ̄Lk)2

4 sin2(γ− 2
3kπ)

,(53)

where the nonnegative integer λ is the so-called seniority and ( ˆ̄Lk)2 are the
angular momentum operators of O(3) along the principal axes in intrinsic frame,
i.e., with commutator [ ˆ̄Li,

ˆ̄Lj ] = −ıεijk
ˆ̄Lk.

Eigenfunctions Ψ int
λNμLM of the five-dimensional oscillator have the form

Ψ int
λNμLM (β, γ,Ω)=

∑

Keven

Φint
λNμLK(β, γ)D(L)∗

MK (Ω), (54)

where Φint
λNμLK(β, γ)=FNλ(β)Cλμ

L φ̂λμL
K (γ) are the components in the intrinsic

frame, D(L)∗
MK (Ω) =

√
2L+1
8π2

D
(L)∗
MK (Ω)+(−1)LD

(L)∗
M,−K(Ω)

1+δK0
are the orthonormal Wigner

functions with measure dΩ, summation over K runs even values K in range:

K = 0, 2, . . . , L for even integer L : 0 ≤ L ≤ Lmax, (55)
K = 2, . . . , L − 1 for odd integer L : 3 ≤ L ≤ Lmax.

The orthonormal components FNλ(β) ∈ L2(R1
+) corresponding to reduced func-

tions β−2FNλ(β) with measure dβ of IRs of SU(1,1) group [25] are as follows:

FNλ(β)=

√
2( 12 (N−λ))!

Γ ( 12 (N+λ+5))
βλL

λ+ 3
2

(N−λ)/2(β
2) exp

(
−1

2
β2

)
, (56)

where L
λ+ 3

2
(N−λ)/2(β

2) is the associated Laguerre polynomial with the number of
nodes nβ = (N −λ)/2 [26]. The overlap of the eigenfunctions (54) characterized
their nonorthogonality with respect to the missing label μ reads as

〈Ψ int
λNμLM |Ψ int

λ′N ′μ′L′M ′〉 =
∫

dτΨ int∗
λNμLM (β, γ,Ω)Ψ int

λNμLM (β, γ,Ω) (57)

=δN,N ′δλ,λ′δL,L′δM,M ′〈φλμL|φλμ′L〉,
where 〈φλμL|φλμ′L〉 is the reduced overlap: scalar product with integration by γ

〈φλμL|φλμ′L〉 = Cλμ
L Cλμ′

L

∫ π

0
dγ sin(3γ)

∑
Keven

2(φ̂λμL
K (γ)φ̂λμ′L

K (γ))

1+δK0
, (58)
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and Cλμ
L is the corresponding normalization factor of φλμL

K (γ) = Cλμ
L φ̂λμL

K (γ)

(Cλμ
L )−2=

∫ π

0

dγ sin(3γ)
∑

Keven

2(φ̂λμL
K (γ))2

1 + δK0
. (59)

The reduced Wigner coefficients in the chain O(5) ⊃ O(3) read as [13]

(λμL, λ′μ′L′, λμL′′)=
∫ π

0

dγ sin(3γ)
∑

KK′K′′
(−1)L−L′

(L,L′,K,K ′|L′′,−K ′′)

×φλμL
K (γ)φλ′μ′L′

K′ (γ)φλ′μ′L′
K′ (γ), (60)

where φλμL
K (γ) are the orthonormalized eigenfunctions calculated in the section 4

with respect to the overlap (58)corresponds to the orthonormalized eigenfunc-
tions (54) with respect to the overlap (57) with the set of quantum numbers
λ, μ, L, and M .

The components φ̂λμL
K (γ)=(−1)Lφ̂λμL

−K (γ) for even K and φ̂λμL
K (γ) = 0 for

odd L and K = 0 as well as for odd K are determined below according to
[5–7,12]. It should be noted that for these components, L �= 1, |K| ≤ L for
L = even and |K| ≤ L − 1 for L = odd:

φ̂λμL
K (γ)=

nmax∑

n=0

F στμ
nλL(γ)

[
GnL

|K|(γ)δL,even + ḠnL
|K|(γ)δL,odd

]
; (61)

K = Kmin,Kmin + 2, . . . , Kmax;

Kmin =
{

0 , L = even,
2 , L = odd; Kmax =

{
L , L = even,
L − 1 , L = odd;

nmax =
{

L/2 , L = even,
(L − 3)/2 , L = odd;

δL,even =
{

1 , L = even,
0 , L = odd; δL,odd =

{
0 , L = even,
1 , L = odd;

where L/2 ≤ λ−3μ ≤ L for L = even, and (L+3)/2 ≤ λ−3μ ≤ L for L = odd;

ḠnL
K (γ)=

L−3∑

k=3−L,2

〈L−3, 3, k, K−k|LK〉GnL−3
|k| (γ) sin 3γ(δK−k,2−δK−k,−2); (62)

GnL
K (γ)=(−

√
2)n

L−2n∑

k=2n−L,2

〈L−2n, 2n, k, K−k|LK〉S(L−2n)/2

|k| (γ)Sn
|K−k|(−2γ); (63)

Sr
K(γ) =

[
(2r+K)!(2r−K)!

(4r)!

]1/2

(
√

6)rr!

[r/2+K/4]∑

q=K/2

(
1

2
√

3

)2q−K/2

× 1

(r − 2q + K/2)!(q − K/2)!q!
(cos γ)r+K/2−2q(sin γ)2q−K/2;
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F στμ
nλL(γ) = (−1)μ+τ−n2−n/2

[(μ+τ−n)/2]∑

r=0

Cστμ
rnλL2−r(cos 3γ)μ+τ−n−2r; (64)

τ =
{

λ − 3μ − L/2 , L = even,
λ − 3 − 3μ − (L − 3)/2 , L = odd.

σ = L − λ + 3μ;

Cστμ
rnλL =

3nσ!λ!(−1)r2r(2μ + 2τ − 2r + δL,odd)!(3r)!
2μ+nn!(2λ + 1)!r!(μ + τ − r)!(μ + τ − n − 2r)!

(65)

×
min(σ,λ,3r−τ+n)∑

s=max(n−τ,0)

(−1)s4s(τ + s)!(2λ + 1 − 2s)!
s!(σ − s)!(τ − n + s)!(3r − τ + n − s)!(λ − s)!

;

where Sr
K(γ) is taken to be equal 0, if sin 3γ=0 or cos 3γ=0, F στμ

nλL(γ) is taken
to be equal 0, if cos 3γ=0, Cστμ

rnλL is taken to be equal 0, if μ+τ−n−2r<0.
For example, at λ = 3μ and L = 0,M = 0, and λ = 3μ+3 and L = 3,M = 3,

the eigenfunctions are known:

ΨλNμLM (β, γ,Ω) = C0
μβ3μ exp(−β2/2)Pμ(cos(3γ)), (66)

ΨλNμLM (β, γ,Ω)=C3
μβ3μ+3 exp(−β2/2)P 1

μ+1(cos(3γ))(D(3)∗
32 (Ω)−D

(3)∗
3,−2(Ω)),

where P 1
μ+1(cos(3γ)) are associated Legendre polynomials [26].

The eigenfunctions ΨλNμLM (β, γ,Ω) at L≤6 were calculated in [27,28]. How-
ever, for calculation of the required orthogonal basis including large values of λ
and L for large-scale calculations of eigenvalue BM problem (52) for Hamil-
tonian H=HBM (β, γ,Ω)+V (β, γ)+K(β, γ) with potential function V (β, γ) and
additional kinetic function K(β, γ) determined in [5,7,10,11], one needs to have
a fast algorithm for calculation and orthonormalization of nonorthogonal eigen-
functions ΨλNμLM (β, γ,Ω) from (54) at accessible degeneracy characterized by
the missing label μmin ≤ μ ≤ μmax from (40) and also Tables 2 and 3. The
effective algorithm for calculation of the required orthonormal basis is given in
the Sect. 4.

4 Algorithm and Benchmark Calculations of Overlaps
and Orthogonalization Matrices

In the laboratory frame, the overlaps 〈ûμ|ûμ′〉≡〈λNμLM |λNμ′LM〉 are calcu-
lated by the formula

〈ûμ|ûμ′〉=
∑

n′
−2...n′

2

〈λNμLM |n′
−2 . . . n′

2〉〈n′
−2 . . . n′

2|λNμ′LM〉. (67)

Here vectors 〈αm|ûμ′〉=〈αm|λNμ′LM〉 in the representation of the orthonormal
basis 〈n′

−2 . . . n′
2| of the five-dimensional harmonic oscillator (15) are determined
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by Eqs. (49) and (50) through the unnormalized and non-orthogonal μ′ compo-
nents 〈n′

−2 . . . n′
2|λNμ′LM〉 of the reduced vectors |û′

μ〉 from Eqs. (43, 45, 48).
In the intrinsic frame, the overlap 〈ûμ|ûμ′〉≡〈λNμLM |λNμ′LM〉 reads as:

〈ûμ|ûμ′〉=
∫ π

0

sin(3γ)dγ
∑

K≥0,even

2φ̂λμL
K (γ)φ̂λμ′L

K (γ)
1 + δK0

. (68)

Here vectors 〈β, γ,Ω|ûμ′〉 = 〈β, γ,Ω|λNμ′LM〉 in the representation of the
orthonormal Wigner functions D(L)∗

MK (Ω) and components FNλ(β) are deter-
mined by Eqs. (54)-(59) through the unnormalized and non-orthogonal by μ′

components φ̂λμ′L
K (γ) of the reduced vectors |ûμ′〉 = 〈γ|φ̂λμ′L〉 from (61)–(65).

The numerical calculations performed in the program SO5U11 use the floating-
point arithmetics. In this case, we use instead of the unnormalized nonorthogo-
nal |ûμ〉 the normalized but nonorthogonal eigenvectors |uμ〉:

|uμ〉 = N̂−1
μμ |ûμ〉, N̂μμ = (〈ûμ|ûμ〉)1/2 , (69)

where the normalization matrix is equal to N̂μμ′ = N̂μμδμμ′ , and the normalized
overlaps are

〈uμ|uμ′〉 = 〈ûμ|N̂−1
μμ N̂−1

μ′μ′ |ûμ′〉, 〈uμ|uμ〉 = 1. (70)

We orthonormalize these normalized nonorthogonal BM states |uμ〉:

|φμ〉 =
μmax∑

μ′=μmin

|uμ′〉Aμ′,μ=
μmax∑

μ′=μmin

|ûμ′〉Âμ′,μ, A = N̂Â. (71)

Below the hat symbol over some vectors and matrices is used to label calculations
with unnormalized BM vectors. The symbols Aμ′,μ denote the matrix elements
of the upper triangular matrix of the BM basis orthonormalization coefficients.
These coefficients satisfy the following condition

Aμ′,μ = 0, if μ′ > μ, μ, μ′ = μmin, . . . , μmax. (72)

The matrix A is constructed to satisfy the orthonormalization conditions

〈φμ|φμ′〉=δμμ′ ,

dλL∑

i′,k′=1

Ai′,i〈ui′ |uk′〉Ak′,k=δi,k, 〈ui|uk′〉=
dλL∑

k′=1

A−1
k′,iA

−1
k′,k. (73)

Here the multiplicity index i or internal index k, k′ = 1, . . . , dλL is recalculated
by formula dλL = μmax − μmin + 1 to external index μ, μ′ = μmin, . . . , μmax and
vice versa was introduced to distinguish the orthonormalized BM states at given
values of quantum numbers λ,N,L,M and takes the same number of values as
μ. Note the last relation in (73) is a decomposition of the overlap matrix to
a product of the low and upper triangular inverse matrices (A−1)TA−1.
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Table 4. Algorithm for calculation of elements of the upper triangular matrix Aμ,μ′

which is used for the generation of an orthonormal basis |φμ〉= ∑μmax
μ′=μmin

|uμ′〉Aμ′,μ

starting from |uμmin〉 till |uμmax〉, where the external index μ, μ′ = μmin, . . . , μmax

is recalculated by formula k = μ − μmin + 1 to internal index k, k′ = 1, . . . , dλL,
dλL = μmax − μmin + 1 and vice versa

Input: Overlap matrix 〈uk|uk′ 〉 ;

Output: Orthogonalization of the upper triangular matrix Ak′,k ;

1.1 Ak′,k = δk′k, k = 1, . . . , dλL, k′ = k, . . . , dλL ;

1.2 fk,k′ = 〈uk|uk′ 〉, k = 1, . . . , dλL, k′ = k, . . . , dλL;

for n = 1 to dλL do

2.1 uk = −fk,n/fk,k, k = 1, . . . , n − 1; uk ≡ uk,n;

2.2 fn,n = fn,n +
∑n−1

k=1 u2
kfk,k + 2

∑n−1
k=1 ukfk,n;

2.3 fn,k = fn,k +
∑n−1

k′=1
uk′ fk′,k, k = n + 1, . . . , dvL;

2.4 Ak,n =
∑n−1

k′=k
Ak,k′ uk′ , k = 1, . . . , n − 1;

end for

3.1 Ak′,k = Ak′,k/
√

fkk, k = 1, . . . , n, k′ = 1, . . . , k;

test:
∑dλL

n′,k′=1
An′,n〈un′ |uk′ 〉Ak′,k = δn,k

Below we present the analytical orthonormalization algorithm (see Table 4)
based on the G-S orthonormalization procedure of a set of non-orthogonal linear
independent vectors: û1, . . ., ûimax

unnormalized or u1, . . ., uimax
normalized [29]

φ̂i = ui − 〈φ̂1|ui〉
〈u1|u1〉 − · · · − 〈φ̂i−1|ui〉

〈ui−1|ui−1〉 , i = 1, . . . , imax. (74)

Here for the intrinsic frame, the scalar product 〈φ̂i|φ̂i〉 is determined by (68)
while for laboratory frame 〈φ̂i|φ̂i〉 = φ̂T

i φ̂i. After calculation of a set of orthog-
onal but as yet unnormalized vectors φ̂i starting from i = 1 till imax, one cal-

culates the set of orthogonal and normalized vectors φi: φi = φ̂i/

√
〈φ̂i|φ̂i〉 at

i = 1, . . . , imax. It is important that here the normalization of calculated orthog-
onal unnormalized vectors φ̂i is realized after orthogonalization with respect to
conventional realization G-S procedure [30]. It gives important possibility to
avoid the source of numerical round-off errors in floating-point calculations or if
necessary to use the integer arithmetic or symbolic calculations of the recursive
algorithm given below. The essential part of the proposed algorithm consists in
factorization of the recursive relations (74) by extracting the required orthogonal-
ization upper triangular matrix Aμ′μ acting on the initial set of non-orthogonal
vectors |uμ′〉: |φμ〉= ∑μmax

μ′=μmin
|uμ′〉Aμ′,μ. It means that the calculated matrix

Aμ′μ ≡ Alab
μ′,μ(N,M) in the laboratory frame is the same on all components

|uμ〉 = 〈n−2, n−1, n0, n1, n2|uμ〉 of the initial set of the non-orthogonal reduced
vectors |uμ′〉; action of calculated matrix Aμ′μ≡Aint

μ′,μ(λ,N,L,M) in the intrin-

sic frame is the same on all components φλμ′L
K (γ)=Cλμ′

L φ̂λμ′L
K (γ) of the initial

set of the non-orthogonal reduced vectors |uμ′〉 = 〈γ|φλμ′L〉. The accuracy of
its calculation is automatically checked by means of orthogonality relations (73)
without preliminary calculation of required orthogonal normalized vectors φi.
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Remark. A direct calculation of the overlap of the orthogonal bases Ψ lab
λNμLM (αm)

in the laboratory frame (50) and Φint
λNμLK(β, γ) in the intrinsic frame (54) is

the tutorial task. Using Eq. (1.16) of Ref. [7] one can check that the following
relations hold:

Ψ lab
λNμLM (αm) =

L∑

K=0,even

Φint
λNμLK(β, γ)DL∗

MK(Ω), (75)

Φint
λNμLK(β, γ) =

L∑

M=0

Ψ lab
λNμLM (αm)DL

MK(Ω), (76)

where the variables αm in the laboratory frame are expressed through the ones
am = am(β, γ) in the intrinsic frame by relations (51).

The presented Algorithm (see Table 4) can be realized in any Computer
Algebra System. It has been realized here as the function NormOverlapa of the
first version of O5SU11 code implemented in Mathematica 11.1 [31].

NormOverlapa[Overlap_] :=Module[{},
For[x = 1, x <= Length[Overlap], x++,

A[x, x]=1;
For[xx = x, xx <= Length[Overlap], xx++,

fover[x, xx] = Part[Overlap, x, xx];
]

];
For[n = 1, n <= Length[Overlap], n++,

For[k = 1, k <= n-1, k++,
ui[k]=-fover[k, n]/fover[k, k];

]
fover[n, n]=fover[n, n]+Sum[ui[k]*ui[k]*fover[k, k],{k,1,n-1}]

+Sum[2*ui[k]*fover[k, n],{k,1,n-1}];
For[k = n+1, k <= Length[Overlap], k++,
fover[n, k]=fover[n, k]+Sum[ui[kk]*fover[kk, k],{kk,1,n-1}];

];
For[k = 1, k <= n-1, k++,
A[k, n]=Sum[A[k,kk]*ui[kk],{kk,k,n-1}];

]
];
Return[
Table[
If[x > xx, 0, A[x, xx]/Sqrt[fover[xx, xx]] ]
, {x, 1, Length[Overlap]}, {xx, 1, Length[Overlap]}]]

];
(*test: *)

A=NormOverlapa[Overlap]
Transpose[A]*Overlap*A (*gives identity matrix*)
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Below we present benchmark calculations of the overlap matrices 〈ûμ|ûμ′〉 or
〈uμ|uμ′〉 and orthogonalization matrices Âμ′μ or Aμ′μ executed with help of the
O5SU11 code.

In the laboratory frame, the unnormalized overlap 〈ûμ|ûμ′〉 from
(67) and orthogonalization matrix Âμ′μ from (71) at λ=12, N =
12, μ=0, 1, 2, L=12,M=12 are as follows:

〈ûμ|ûμ′ 〉=
⎛

⎝
159549545.26713809 213803.08882591313 57637.968478797638
213803.08882591313 4988824.1342315109 −422776.94375296634
57637.968478797638 −422776.94375296634 744945.4277113013

⎞

⎠ ,

Âμ′μ=

⎛

⎝
0.0000791684632054189660 −5.999558704952660 ∗ 10−7 −5.501511852913287 ∗ 10−7

0 0.000447714234829464325 0.000098204232353384462
0 0 0.00115861132845170549

⎞

⎠ .

The normalized overlap 〈uμ|uμ′〉no from (67) and orthogonalization matrix Aμ′μ
from (71) at λ=12, N = 12, μ=0, 1, 2, L=12,M=12:

〈uμ|uμ′ 〉=
⎛

⎝
1.0000000000000000000 0.00757821796968012826 0.00528687022845146168
0.00757821796968012826 1.0000000000000000000 −0.2193057245440392052
0.00528687022845146168 −0.2193057245440392052 1.0000000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.0000000000000000000 −0.00757821796968012826 −0.00694912043276433934
0 1.0000000000000000000 0.2193457895990078230
0 0 1.0000000000000000000

⎞

⎠ .

The unnormalized overlap 〈ûμ|ûμ′〉 from (67) and orthogonalization matrix Âμ′μ
from (71) at λ=12, N=14, μ=0, 1, 2, L=12,M=12:

〈ûμ|ûμ′ 〉=
⎛

⎝
4.62693681274700 ∗ 109 6.200289575951 ∗ 106 1.671501085885 ∗ 106

6.200289575951 ∗ 106 1.44675899892714 ∗ 108 −1.22605313688360 ∗ 107

1.671501085885 ∗ 106 −1.22605313688360 ∗ 107 2.16034174036277 ∗ 107

⎞

⎠ ,

Âμ′μ=

⎛

⎝
0.00001470121454788776 −1.1140900826293 ∗ 10−7 −1.021605104012 ∗ 10−7

0 0.0000831384462433374 0.0000182360681372795
0 0 0.0002151487224526028

⎞

⎠ .

The normalized overlap 〈uμ|uμ′〉no from (67) and orthogonalization matrix Aμ′μ
from (71) at λ=12, N=14, μ=0, 1, 2, L=12, M=12:

〈uμ|uμ′ 〉=
⎛

⎝
1.0000000000000000000 0.00757821796968012826 0.00528687022845146168
0.00757821796968012826 1.0000000000000000000 −0.2193057245440392052
0.00528687022845146168 −0.2193057245440392052 1.0000000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.0000000000000000000 −0.00757821796968012826 −0.00694912043276433934
0 1.0000000000000000000 0.2193457895990078230
0 0 1.0000000000000000000

⎞

⎠ .

Note that the overlaps 〈ûμ|ûμ′〉 calculated in the laboratory frame and defined
by Eqs. (43), (45) at fixed values of λ and L are independent of M, i.e., they are
equal for different values of the quantum number M . This is due to the Wigner–
Eckart theorem for spherical tensors in respect to SO(3) group. It means that
the corresponding orthogonalization matrices Aμ′,μ defined by Eq. (73) at fixed
values of λ and L with different values of quantum number M are equal too.
These facts give essential optimization of the computer resources in the large-
scale calculations with increasing seniority number λ determined by eigenvalues
of the Casimir operator of the group O(5), see Table 1 and Eq. (39).
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One can see also that the overlaps of orthogonalization matrices at fixed L
for the case of N > λ differ only by an integer multiplier from the case N = λ,
for example, in the above cases, this multiplier is equal to 29.

In intrinsic frame, the unnormalized overlap 〈ûμ|ûμ′〉 is determined by (68)
and orthogonalization matrix Âμ′μ from (71) at λ=6, N=6, μ=0, 1, L=6, with
summation over K=0, 2, 4, 6:

〈ûμ|ûμ′ 〉=
(

7572204π/385 −301113π/40040
−301113π/40040 1699π/65065

)

=

(
61789.0401503461 −23.6257339835260
−23.6257339835260 0.0820343643809891

)

,

Âμ′μ=

(
0.004022946671779255 0.001334983666487966
0 3.491419967151016

)

.

The following normalized overlap 〈uμ|uμ′〉 and matrix Aμ′μ are

〈uμ|uμ′〉=
(

1.000000000000000 −0.3318422478360953
−0.3318422478360953, 1.000000000000000

)
,

Aμ′μ=
(

1.000000000000000 0.3318422478360953
0 1.000000000000000

)
.

The unnormalized overlap 〈ûμ|ûμ′〉 from (68) and the orthogonalization matrix
Âμ′μ from (71) at λ=12, N=12, μ=0, 1, 2, L=12, with summation over
K=0, 2, . . ., 12:

〈ûμ|ûμ′ 〉=
⎛

⎝
1116847934437.424 −48516553.06697824 7016.562464786226
−48516553.06697824 5966.500516763265 −0.9790521939740782
7016.562464786226 −0.9790521939740782 0.0008802758859593768

⎞

⎠ ,

Âμ′μ=

⎛

⎝
9.462436483745545e − 7 5.623880080711865e − 7 −4.629117698040114e − 8
0 0.01294613581264879 0.003808823740956861
0 0 33.70471020973709

⎞

⎠ .

The following normalized overlap 〈uμ|uμ′〉 and matrix Aμ′μ are

〈uμ|uμ′〉=
⎛

⎝
1.000000000000000 −0.5943374193710569 0.2237783001963385
−0.5943374193710569 1.000000000000000 −0.4272052696463735
0.2237783001963385 −0.4272052696463735 1.000000000000000

⎞

⎠ ,

Aμ′μ=

⎛

⎝
1.000000000000000 0.5943374193710569 −0.04892099097301160
0 1.000000000000000 0.2942054521964399
0 0 1.000000000000000

⎞

⎠ .

As an example, in Fig. 1 we show the CPU time and MaxMemoryUsed dur-
ing of calculations of overlap integrals (67) and (68) and execution of the G-S
orthonormalization procedure (71)-(72) in the laboratory and intrinsic frames
by the above symbolic algorithm versus parameter λ with help of the O5SU11
code using the PC Intel Celeron CPU 2.16 GHz 4GB 64bit Windows 8.1. The
computations were evaluated numerically to 20-digit precision that have been
confirmed by the calculated values of the diagonal matrices from the last arrow
test of Algorithm in Table 4 to 20-digit precision. One can see that the CPU
time (in logarithmic scale) of execution of the overlap integrals is linearly grow-
ing. However, the G–S orthonormalization procedure in the intrinsic frame has
reduced the computer resources in comparison with one in the laboratory frame.
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Fig. 1. The CPU time in s. (on the left) and the maximum memory in Mb used to store
intermediate data for the current Mathematica session in computation of the overlap
integrals and orthogonalization matrices (on the right). Both values are given versus
the parameter λ at L = λ in the laboratory (marked by squares) and intrinsic (marked
by cycles) frames.

5 Conclusion

In present paper, we have elaborated a new universal effective symbolic-numeric
algorithm implemented as the first version of O5SU11 code in the Wolfram Math-
ematica for computing the orthonormal basis of the Bohr–Mottelson(BM) collec-
tive model in the both intrinsic and laboratory frames, which can be implemented
in any computer algebra system. This kind of basis is widely used for calculat-
ing the spectra and electromagnetic transitions in solid, molecular, and nuclear
physics. The new symbolic algorithm for orthonormalization of the obtained
BM basis based on the Gram–Schmidt orthonormalization procedure has been
developed.

The distinct advantage of this method is that it does not involve any square
root operation on the expressions coming from the previous steps for compu-
tation of the orthonormalization coefficients for this basis. This makes the pro-
posed method very suitable for calculations using computer algebra systems. The
symbolic nature of the developed algorithms allows one to avoid the numerical
round-off errors in calculation of spectral characteristics (especially close to res-
onances) of quantum systems under consideration and to study their analytical
properties for understanding the dominant symmetries [19].

The program SO5U11 in the Mathematica language for the orthonormaliza-
tion of the non-canonical basis using the overlap integrals in the laboratory
and intrinsic frames (Eqs. (67) and (68)) given by the analytical formula is now
prepared and will be published as an open code elsewhere. The great advantage
of the program SO5U11 is the possibility to specify an arbitrary precision of cal-
culations which is especially important for large-scale calculations of physical
quantities that involve procedures of matrices inversion in eigenvalue problems
with degenerated spectra or similar one [32].
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