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Abstract.
Octonionic representation of O(9, 1) with special emphasis placed on the analytic properties of

octonionic functions is investigated.

1. Introduction
There exist four normed division algebras, which are the real numbers (R), the complex numbers (C),
the quaternions (H), and the octonions (O). Octonions provide a tenable path to a grand unified field
theory. An octonion is a linear combination of eight basis vectors, or, unit octonions. It is well
known that the exceptional groups of E6 and E8 are part and parcel to unification. Exceptional groups
consist of associated Lie algebras, which are intimately connected to Jordan algebras of 3× 3 Hermitian
matrices consisting of octonionic entries. In prior work, we detailed crucial properties of octonions, unit
octonions, the construction of split octonions and a relevant algebra, as well as the construction of an
octonionic Hilbert space from which we were able to represent elements of E8 [1,2]. All the exceptional
groups, G2, F4, E6, E7, E8, have octonions as their building blocks. Of these groups, E6 internally
contains SO(10) or SU(5) as subgroups, which facilitate the existence of grand unified field theories [3],
[4].

The Standard Model provides a gauge field theory of electromagnetic, weak and strong interactions.
These forces are conjoined in grand unified theories (GUTs). Supersymmetry (SUSY) is required to
stabilize GUTs, and we thereby obtain supersymmetric GUTs. Unification with gravitation is achieved
via supergravity (SUGRA). Supersymmetric GUTs and SUGRA must themselves be combined so as to
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reach an ultimate, final theory of everything (TOE). There are two leading candidates for a TOE. One
is a 10 - dimensional extended supergravity theory incorporating super Yang-Mills matter, and the other
is superstring theory. These theories possess Yang-Mills and gravitational anomalies. However, these
anomalies cancel if the Yang-Mills theory is based on E8 × E8 or the SO(32) group. It is also well
understood that E8 × E8 Yang-Mills theory gives rise to E6 × E8 theory in d = 4. E6, as a GUT, is
known to be broken into SO(10) or SU(5) GUTs. In addition, heterotic superstring theory is known to
give in d = 10, SUGRA coupled to E8 × E8 Yang-Mills theory.

These observations demonstrate that unification of fields is possible only if the Yang-Mills sector
is one of the aforementioned groups, and the Einstein sector is the theory of gravitation in (9 + 1)
dimensions. Underlying both sectors is an octonionic structure. The gravitational part involves local
Lorentz invariance in (9 + 1) dimensions. For example, O(9 + 1) has non-linear representations for
massless particles, which can be expressed in terms of fractional linear transformations of octonions.
Moreover, the internal charge space, that is, E8×E8 or O(32), corresponds to the dimensions of spinors
in d = 10. In fact, requiring both Weyl and Majorana conditions be satisfied on d = 10 spinors leads
to a chiral Majorana spinor with 16 components. Such a spinor can be suitably represented by a pair
of octonions. Each octonion separately represents the root space of E8 as shown by Coxeter [5]. A
vector and a spinor together represent a point in a superspace of dimension 26. As a consequence, the
chargeless superstring and the internal charge space of a charged superstring separately exhibit octonionic
structures. As such, there is motivation into reformulating string and superstring theories, as well as their
local supergravity limits, in terms of the octonion algebra.

The group O(8), being the helicity group of the Poincare group in d = 10 for a massless particle, serves
a very important role. Its irreducible representations are imperative for classifying massless particle
excitations in d = 10. We also note that if the octonions are replaced by quaternions, the relevant Lorentz
group becomes O(5, 1) which operates in d = 6 Minkowski space. Spinors in such a space have dimension
8, and so the superspace has dimension 14. Replacing quaternions by complex numbers generates O(3,
1), the Lorentz group in which spinors have dimension 4. Therefore the superspace has dimension 8. In
the case of real numbers, the corresponding Lorentz group is O(2, 1), and spinors have dimension 2 so
that the superspace has dimension 5. We remark that d = 3, 4, 6 and 10 are the only dimensions in which
one can write classical supersymmetric Yang-Mills theories. Quantized superstrings only exist for d =
10, hence in the octonionic case.

2. Octonionic Analyticity
Since octonions are neither commutative nor associative it was thought that a viable theory of functions of
an octonionic variable may differ vastly from that of a complex and that of quaternionic variable. Theory
of functions of a quaternionic variable was developed by Fueter [7], and later by Dentori and Sce [8], and
it was shown that Fueter’s analysis can be extended to the theory of functions of an octonionic variable.
First, let us review complex analyticity before placing it into a form in which a natural generalization to
octonions can be made.

Let z = x+ iy be a complex variable and ω(z) = u(x, y) + iv(x, y) be a complex-valued function of
z. Then, ω is analytic at z0 iff ux−vy = 0, uy+vx = 0 at the point z0 provided partial derivatives exist.
These are known as the Cauchy-Riemann equations. Defining the differential operator D = ∂x + i∂y,
we have

Dω = (∂x + i∂y)ω = (∂xu− ∂yv) + i(∂yu+ ∂xv) (1)

Thus ω(z) is analytic at z0 iff Dω = 0 at z0.
Now, similar to the complex case we define an octonionic differential operator D by D = en

∂
∂xn

=
en∂n. Then the functions `(x) = `n(x)en, r(x) = rn(x)en, and g(x) = gn(x)en are said to be
left-analytic, right-analytic and left-right-analytic respectively if they satisfy D`(x) = 0, r(x)D←− = 0,
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Dg(x) = g(x)D←− = 0. Note, D←− operates to the left only. Now we have

D`(x) = (∂0 + eµ∂µ)(`0 + `νeν)

= (∂0`0 − ∂µ∂µ) + eα(∂0`α + ∂α`0 + φαµν∂µ`ν) = 0 (2)

r(x)D←− = (r0 + rνeν)(∂0 + eµ∂µ)

= (∂0r0 − ∂µrµ) + eα(∂0rα + ∂αr0 − φαµν∂µrν) = 0 (3)

Dg(x) = (∂0g0 − ∂µgµ) + eα(∂0gα + ∂αg0 + φαµν∂µgnu) = 0 (4)

g(x)D←− = (∂0g0 − ∂µgµ) + eα(∂0gα + ∂αg0 − φαµν∂µgν) = 0 (5)

Therefore we have for the left analyticity ∂ν`0 − ∂µ`µ = 0 and ∂0`α + ∂α`0 + φαµν∂µ`nu = 0; and for
the right analyticity ∂0r0−∂µrµ = 0 and ∂0rα+∂αr0−φαµν∂µrν = 0; and for the left-right analyticity
three equations: ∂0g0 − ∂µgµ = 0, ∂0gα + ∂αg0 = 0, and φαµν∂µgν = 0.

We can now produce octonionic Gauss’ theorem as follows: Let Ω be an 8-dimensional volume with
∂Ω. Then Gauss’ theorem states ∫

Ω
(∂n`m)d8x =

∫
∂Ω
`m∂Σn (6)

where ∂Σn is a component of the surface element dΣ = dΣnen. Then the expression (dΣ)` reads

(dΣ)` = (dΣ0 + dΣµeµ)(`0 + `νeν)

= (dΣ0)`0 − (dΣµ)`µ + eα((dΣ0)`α + (dΣα)`0 + φαµν(dΣµ)`ν) (7)

Comparing the last expression with D` and applying the Gauss’ theorem on each component we arrive
at octonionic Gauss’ theorem ∫

Ω
(D`)d8x =

∫
∂Ω

(dΣ)` (8)

Similarly, we have ∫
Ω

(rD←−)d8x =

∫
∂Ω
rdΣ. (9)

Now if `(x) is left analytic in Ω and on ∂Ω, then D` = 0 and we get∫
∂Ω

(dΣ)` =

∫
Ω

(d`)d8x = 0 (10)

and if r(x) is right-analytic in Ω and on ∂Ω, the rD←− = 0 and we get∫
∂Ω
rdΣ =

∫
Ω

(rD←−)d8x = 0. (11)

Also, if g(x) is left-right analytic in Ω and ∂Ω, then∫
∂Ω

(dΣ)g =

∫
∂Ω
gdΣ = 0. (12)

These are the integral forms of analyticity condition for `(x), r(x) and g(x). If we assume that instead
of being analytic, `(x) satisfies D`(x) = δ8(x−A) where the point A is in Ω, then we have∫

∂Ω
(dΣ)` =

∫
Ω

(D`)d8x = 1. (13)
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A decomposition of a real octonion is useful in studying analytic functions. If we let r = xµxµ and
η = xµeµ/r ∈ S6, η2 = −1, then defining the projection operators E± as

E± =
1

2
(1± iη) (14)

which satisfy
E2

+ = E+, E2
− = E−, E+E− = E−E+ = 0, E+ + E− = 1 (15)

If now z be a complex variable defined as z = x0 + ir, z∗ = x0 − ir then one can write x as

x = zE− + z∗E+. (16)

We then get for any power of x
xn = znE− + (z∗)nE+. (17)

If now we let F (x) be expandable in a power series of x with real coefficients

F (x) =
∑
n

xncn, cn ∈ R (18)

then using the above decomposition we get

F (x) = (
∑
n

cnz
n)E− + (

∑
n

cnz
∗n)E+ = f(z)E− + f(z)∗E+, f(z) =

∑
n

cnz
N (19)

Since f(z) is expandable as a power series, it is complex analytic in the upper half plane:

f(z) = u(x0, r) + iv(x0, r) (20)

∂u

∂x0
=
∂v

∂r
,

∂u

∂r
= − ∂v

∂x0
(21)

We find for F (x):

F (x) = (u+ iv)
1

2
(1− iη) + (u− iv)

1

2
(1 + iη) = u+ ηv (22)

Thus F (z) can be obtained from a complex analytic function f(z) = u+iv by a mere replacement of the
complex unit i by an element of the six-sphere, η. For this reason, f(z) are called the ”stem functions”.

Although F (x) as obtained as shown above is not analytic itself, another function G(x) obtained
from F (x) as

G(x) = �3F (x) (23)

is left-right analytic, that is DG = GD = 0.
In 4-dimensional Euclidean space the conformal group is O(5, 1) or Spin(5, 1) ∼ SL(2,H)) with

the quaternionic representation
y = (ax+ b)(cx+ d)−1 (24)

which is also written as
y = M(

λ

x−A
+ C̄)−1N (25)

where M,N,A,C ∈ H, λ ∈ R, MM̄ = NN̄ = 1. This transformation has 3 + 3 + 1 + 4 + 4 = 15
parameters. The transformation y = Mx′N̄ is related to Spin4 ∼ SU(2) × SU(2) with 6 parameters
and

x′ = (
λ

x−A
+ C̄)−1 (26)

is related to Spin(5,1)
Spin4 with 9 parameters
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3. Conformal group SO(9, 1) in Euclidean 8-dimensions:
In Euclidean 8-dimensions, the 45 parameter conformal group is SO(9, 1), which is also the Lorentz
group in 9+1 dimensions. It is obtained by combining SL(2,O), the set of fractional linear
transformations with octonionic coefficients having 4×8-1=31 parameters, with the automorhism group
G2 having 14 parameters.

Let the octonion x be the spacetime position in R8, then an octonionic representation of a SO(9, 1)
transformation can be written as

y = TO(8)X(x)−1 = TO(8)x
′−1 (27)

where TO(8) is a 28 parameter SO(8) transformation and

x′ = X(x) =
λ

x−A
+ C̄ (28)

is a 17 parameter transformation related to SO(9,1)
SO(8) . O(8) is the helicity group for a state with lightlike

momentum. For such a state the little group leaves the norm of the transverse components invariant.
Its maximum compact group is O(8) which is the helicity group of m=0 states in d=10. Any Poincare’
covariant massless state in D=10 must be classified with the unitary representation of O(8), true for
SUGRA, Yang-Mills theories and superstring theories in 10 dimensions. We can now decompose To(8)

into G2, as
Spin(8)

G2
=
Spin(8)

Spin(7)
× Spin(7)

G2
. (29)

We have
Spin(7)

G2
: x′′ = Lx′L̄ with L ∈ Ω, |L| = 1 (30)

Spin(8)

Spin(7)
: x′′′ = Kx′′K̄ with K ∈ Ω, |K| = 1 (31)

G2 : y = (UV )−1[V (Ux′′′U−1)V −1](UV ) (32)

with U, V ∈ Ω and |U | = |V | = 1. Thus the conformal group in R8 admits the Mobius representation

y = (UV )−1{V (U [K(L[
λ

x−A
− C̄]−1L̄)K]U−1)V −1}(UV ) (33)

Using fundamental Moufang identities one can derive useful equations for X(x). Writing � =
DD̄ = D̄D the eight dimensional Laplace operator, where D = eµ

∂
∂xµ

and D̄ = ēµ
∂
∂xµ

, we have

DX = 6λ|x−A|−2 = ρ0, V ec ρ0 = 0 (34)

(x−A)−1 = −1

2
D̄(lnρ0) (35)

�3D(x−A)−1 = −1

2
�4ln ρ0 = 0 (36)

�X = D̄ρ0 = −2ρ0(x−A)−1 (37)

�2X =
16

3λ
ρ2

0(x−A)−1 (38)

�3X = − 32

3λ2

ρ3
0

x−A
(39)
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�3DX = 0 (40)

�4X = 0 (41)

We see that �3X is left-right analytic and X is quadri-harmonic.
We can also apply an inversion to y as

Y (y) = y−1 = TO(8)x
′−1 = TO(8)(

λ

x−A
+ C̄) (42)

hence the transformation X(x) represents the coset space Spin(9,1)
Spin(8) , having (45-28=17) parameters, and

consequently
�4To(8)X = �4Y = 0. (43)

Defining a function B(x) as the finite sum of the basic transformations Xi(x), namely

B(x) =
∑

(
λi

x− ci
+ µi) (44)

with DB =
∑
ρi = ρ, then by setting

ā = (�3B)(�2DB)−1 (45)

we obtain
ā = −6[

∑
ρ3
iλ

2
i (x− ci)−1](

∑
ρ3
iλ
−2
i )−1 = D̄ln(�2ρ) (46)

and verify

Dā = (�3DB)(�2ρ)−1 − (�3B)(�2ρ)−2(D�2ρ) = −(�2Dρ)(�2ρ)−1ā = −aā, (47)

or
Dā+ aā = 0. (48)

The scalar and vector parts of this equation give

∂nan + anan = 0, and e′nm∂nam = 0. (49)

As to the non-trivial topology of a, its explicit form yields

a ∼ x−1 ∼ ŪDU (50)

as |x| → ∞, U = x|x|−1 being the unit octonion parametrizing the seven-sphere. Thus this asymptotic
behavior identifies a as non-trivial S7 → S7 mappings at infinity in R8.

We now look into computing the associated winding number. We take an octonionic function r(x) of
an octonion x on S8 such that

Dr =
∑

Riδ
8(x− Ci). (51)

Then by Stokes’ formula ∫
Ω
DR d8x =

∮
∂Ω=S7

rdΣ =

n∑
i=0

Ri (52)

provided the poles Ci are located within a domain Ω of R8. Taking r = �3B and a given by
Dā+ aā = 0, near the poles ci,

ā(Ci + ε) = −6

ε
(53)
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so that
ā = − 6

x− Ci
+ a regular function in (x− Ci) (54)

and
D�3ā = −6V δ8(x− Ci), (55)

V being the S7 volume, since an application of �3D on a regular function gives zero. By surrounding
each pole x = Ci by a small 7-sphere S7

i , we see that Σ
∫
dΣ�3ā simply counts the number of poles in

a. As equation ∂nan + anan = 0 is clearly conformally invariant in the 8-space S8, one of the terms in
ā, for example

(x− C0)−1 (56)

can be transformed to the regular function x by the conformal transformation such as a coordinate
inversion.

Consequently out of (n+ 1) poles in a only n are significant. We then get the winding number

C4 =
1

48π4

∮
s7
dΣ�3ā = n. (57)

Again, by Stoke’s theorem it can be cast into a 8-dimensional integral

C4 = − 1

48π4

∫
S8

d8x�4ln(�2ρ). (58)

Just as in the complex d = 2 and quaternionic d = 4 analytic cases, octonion analyticity implies
an infinite number of continuity equations. Due to the ring structure of the left-right holomorphic B(x)
functions and power associativity of the octonions, not just B(x) but any of its powers

[B(x)]n, n = 2, 3, 4, ... (59)

also solves for the case of Cauchy-Riemann equations

DJ (n)(x) = D(�3[B(x)]n) = 0. (60)

This last expression implies an infinite number of octonionic continuity equations. Using arguments
paralleling the quaternionic case the octonionic Cauchy integral theorem for octonion analyticity tells us
that the Euclidean charges

qn(τ) = q(n)
µ eµ =

∮
S7

ξ
(n)
1 dΣ ξ

(n)
2 (61)

where
ξ

(n)
1 = �3B

(n)
1 and ξ

(n)
2 = �3B

(n)
2 (62)

are independent of τ , parametrizing the family of D = 7 hypersurfaces S7
τ in S8. The q(n) are therefore

conserved:
dqn

dτ
= 0. (63)

4. Conclusion
In conclusion, much work needs to be done in the theory of octonionic functions as well as in the topic of
exceptional non-associative geometries. A deeper understanding of eight dimensional space and octonion
analyticity might be useful, as in the spirit of Kaluza-Klein compactification, for the non-perturbative
string theories, and generalized electric/magnetic dualities for extended objects.
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