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Abstract. The formalism describing fractal self-similar structures has been shown in recent
works to be isomorphic to the one of a system of damped/amplified oscillators, which is a
prototype of a dissipative system and of the environment in which it is embedded, and to
squeezed coherent states. Fractal-like structures appear to be generated by coherent quantum
condensation processes, and thus they appear as macroscopic quantum systems, as it happens
with crystals, ferromagnets, superconductors and like systems characterized by ordered patterns.
In this report, by resorting to such results it is shown that in space-time regions where the
magnetic field may be approximated to be constant and the electric field is derivable from
a harmonic potential, the isomorphism also exists between electrodynamics and fractal-like
structures. A link is thus established between self-similarity, dissipation, coherent states and
electrodynamics. The relation between quantum dissipation and non-commutative geometry in
the plane is also commented upon. The macroscopic appearances (forms) of the fractals seem
to emerge out of a process of morphogenesis as the macroscopic manifestation of the underlying
dissipative, coherent quantum dynamics.

1. Introduction

In recent works [1]-[5] it has been shown that an isomorphism exists between the formalism
describing fractal self-similar structures and squeezed generalized SU(1,1) coherent states in
quantum field theory (QFT). This result can be framed in the research line which has led
to recognize that systems characterized by observable ordered patterns, such as crystals,
superconductors, ferromagnets, provide examples of “macroscopic quantum systems” arising as
the effect of homogeneous, coherent boson condensation in the system ground state [6, 7]. These
systems are quantum systems not in the trivial sense that they are made of atoms, molecules and
other quantum components, as every system is made of, but in the sense that their observable
physical properties, such as electrical conductivity, magnetization, crystal structure, critical
temperature behavior, etc. cannot be explained without recourse to the study of the dynamics of
their quantum components. Similarly, the appearance in these systems, especially in the course
of phase transitions, of topologically non trivial ‘extended objects’, such as crystal dislocations,
vortices, domain wall, kinks and other kind of ‘defects’, is found to be the manifestation of non-
homogeneous boson condensation at quantum dynamical level [6, 7]. These results, which rest
on a mathematically sound formulation and wide experimental confirmation, have suggested the
possibility that also the self-similarity properties of fractal-like structures might arise from the



Figure 1. The first five stages of the Koch curve

underlying dynamics of their quantum components involving as well the mechanism of coherent
boson condensation in the system ground state. Recent observations seem to confirm such a
view since they show that when a crystal is submitted to deforming stress actions the induced
deformations in the lattice structure form, at low temperature, self-similar fractal patterns
and provide an example of “emergence of fractal dislocation structures” [8] in dissipative,
non-equilibrium systems, thus appearing as the result of non-homogeneous coherent phonon
condensation. A first conjecture of the relation between fractal self-similarity and coherent states
was proposed in [9] and then the study of fractals in the frame of the entire analytical functions
was presented in [1] - [5], also with application to the observed brain functional activity [1], [10]
- [13], to water molecular structure in the presence of nafion and filtering [14] and in a numerical
simulation of pancreatic beta cell clusters (Lagerhans islets) [15]. More recently, it has been
shown [16] that the isomorphism between the logarithmic spiral and other fractal structures
and the squeezed coherent states representing the system of damped/amplified oscillators, a
prototype of a dissipative system and the environment in which it is embedded, may be extended
to electrodynamics in space-time regions where the magnetic field may be approximated to be
constant and the electric field is derivable from a harmonic potential. The plan of the report is
the following. In Section 2 a summary is presented of the isomorphism between the Koch curve,
the logarithmic spiral and squeezed coherent states. Section 3 summarizes the isomorphism with
electrodynamics. Section 5 is devoted to the conclusions.

2. Geometric structures emerging from coherent dynamics

In order to show how the dynamical description of the geometrical feature of fractal self-similarity
is obtained, in this Section I briefly summarize the examples of the Koch curve (Figure 1) and
of the logarithmic spiral (Figure 2) [17, 18]. The results can be extended to fractals which
are generated iteratively according to a prescribed recipe (deterministic fractals), such as the
Sierpinski gasket and carpet, the Cantor set, etc. [17, 19]. The results also extend to the golden
spiral and its relation with Fibonacci progression [4].

Denote by u0 = 1 the starting stage and by un,q(α) the n-th stage of the Koch curve
construction, with α = 4 and q = 1/3d. One has [1, 2]

un,q(α) = (q α)n = 1, for any n. (1)

The fractal or self-similarity dimension [17] d = ln 4/ ln 3 ≈ 1.2619, is thus obtained. Notice
that self-similarity is properly defined only in the n → ∞ limit.

In full generality one may consider the complex α-plane. Then the study of the fractal
properties is carried on in the space F of the entire analytic functions. One restricts at the end
the conclusions to real q α, q α → Re(q α). Putting q = e−d θ, Eq. (1) is written as d θ = ln α
and the functions un,q(α) are, apart the normalization factor 1/

√
n!, nothing but the restriction



Figure 2. The anti-clockwise and the clockwise logarithmic spiral.

to real q α of the functions which form indeed a basis in the space F of the entire analytic
functions:

un,q(α) =
(q α)n√

n!
, n ∈ N+ , q α ∈ C , (2)

One then realizes that F is the so-called Fock-Bargmann representation of the Weyl–Heisenberg
algebra [20] where the (Glauber) coherent states are described. The fractal self-similarity
properties and coherent states are thus readily recognized to be related. One introduces then
the finite difference operator Dq, called the q-derivative operator [21, 22, 23] and the q-deformed
algebraic structure, with q = eζ , ζ ∈ C, is obtained. Denote the coherent state by |α〉, with
a|α〉 = α|α〉, and a the annihilator operator. Application of qN to |α〉, N ≡ αd/dα, gives the
q-deformed coherent state

qN |α〉 = |qα〉 = exp

(

−|qα|2
2

) ∞
∑

n=0

(qα)n√
n!

|n〉 . (3)

|qα〉 is a squeezed coherent state [21], with ζ = ln q the squeezing parameter and qN acts in F
as the squeezing operator. By applying (a)n to |qα〉 and restricting to real qα, the n-th iteration
stage of the fractal is obtained

〈qα|(a)n|qα〉 = (qα)n = un,q(α), qα → Re(qα). (4)

Thus, the n-th term, n = 0, 1, 2, ..,∞, in the coherent state series Eq. (3) represents, in
a one-to-one correspondence, the fractal n-th stage of iteration. (a)n acts as a “magnifying”
lens [1, 2, 19]. qN is called the fractal operator [1, 2].

The self-similarity properties of the Koch curve can be thus described in terms of the coherent
state squeezing transformation.

I consider now the logarithmic spiral. It is represented in polar coordinates (r, θ) by

r = r0 e
d θ, (5)

with r0 and d arbitrary real constants and r0 > 0. Eq. (5) is represented by the straight line of
slope d in a log-log plot with abscissa θ = ln eθ: d θ = ln(r/r0).

The self-similarity property consists in the constancy of the angular coefficient tan−1 d and
the rescaling θ → n θ affects r/r0 by the power (r/r0)

n.
The associated parametric equations are:

ξ = r(θ) cos θ = r0 e
d θ cos θ (6)

η = r(θ) sin θ = r0 e
d θ sin θ (7)



The point z = ξ+i η = r0 e
d θ ei θ on the spiral is fully specified in the complex z-plane by the sign

of d θ. Due to the completeness of the (hyperbolic) basis {e− d θ, e+ d θ} one needs to consider
both the points z1 = r0 e

− d θ e− i θ and z2 = r0 e
+ d θ e+ i θ. Opposite signs for the imaginary

exponent ±i θ are also considered for convenience. z1 and z2 solve the equations

m z̈1 + γ ż1 + κ z1 = 0 (8)

m z̈2 − γ ż2 + κ z2 = 0 (9)

respectively, where the parameter t has been introduced, θ = θ(t); “dot” denotes derivative with
respect to t, and, up to an arbitrary additive constant, it is put θ(t) = Γt, with Γ ≡ γ/2m. m,
γ and κ are positive real constants. Thus, z1(t) = r0 e− iΩ t e−Γt and z2(t) = r0 e+ iΩ t e+Γ t

solutions of Eqs. (8) and (9) describe the logarithmic spirals and the parameter t can be
interpreted as the time parameter.

| d θ/dt | = |Γ/d | denotes the spiral “angular velocity”. The notation
Ω2 = (1/m)(κ − γ2/4m) = Γ2/d2, with κ > γ2/4m, is used. Note that the time-reversed,
but distinct, image of the right-handed chirality spiral (indirect spiral, q ≡ e−dθ < 1) is the
left-handed chirality spiral (direct spiral, q > 1).

By putting [z1(t)+ z∗2(−t)]/2 = x(t) and [z∗1(−t)+ z2(t)]/2 = y(t), Eqs. (8) and (9) reduce to

mẍ+ γẋ+ kx = 0, (10)

mÿ − γẏ + ky = 0. (11)

which by using [16, 24] x1 ≡ (x+ y)/
√
2 and x2 ≡ (x− y)/

√
2 become

mẍ1 + γẋ2 + kx1 = 0, (12)

mẍ2 + γẋ1 + kx2 = 0. (13)

In passing, I observe that such a system of damped/amplified oscillators belongs to the class of
deterministic systems à la ’t Hooft [25]-[29], which remain deterministic even when described by
means of Hilbert space techniques. These oscillators have a quantum representation in terms
of squeezed SU(1, 1) coherent states. The QFT quantization procedure can be summarized as
follows.

One assumes, as customary, the commutators [x, px ] = i h̄ = [ y, py ] , [x, y ] = 0 = [ px, py ]
and the annihilation and creation operators are introduced:

a ≡
(

1

2h̄Ω

)
1

2

(

px√
m

− i
√
mΩx

)

; a† ≡
(

1

2h̄Ω

)
1

2

(

px√
m

+ i
√
mΩx

)

(14)

b ≡
(

1

2h̄Ω

)
1

2

(

py√
m

− i
√
mΩy

)

; b† ≡
(

1

2h̄Ω

)
1

2

(

py√
m

+ i
√
mΩy

)

(15)

satisfying the commutation relations [ a, a† ] = 1 = [ b, b† ], [ a, b ] = 0 = [ a, b† ]. Then
the Hamiltonian H for the quantum damped/amplified oscillator system is obtained [30] (see
also [7, 31, 32])

H = H0 +HI (16)

H0 = h̄Ω(A†A−B†B), HI = ih̄Γ(A†B† −AB) (17)

where A ≡ (1/
√
2)(a+ b), B ≡ (1/

√
2)(a− b).

The vacuum state is |0〉 ≡ |nA = 0, nB = 0〉 = |0〉⊗ |0〉, where nA and nB denote the number
of A’s and B’s and (A⊗ 1)|0〉⊗ |0〉 ≡ A|0〉 = 0; (1⊗ B)|0〉⊗ |0〉 ≡ B|0〉 = 0. The vacuum time



evolution is controlled by HI : |0(t)〉 = e−itH
h̄ |0〉 = e−it

HI

h̄ |0〉, with 〈0(t)|0(t)〉 = 1, ∀t. |0(t)〉 is
explicitly given by

|0(t)〉 =
∏

κ

1

cosh (Γκt)
exp

(

tanh (Γκt)A
†
κB

†
κ

)

|0〉 (18)

We have limt→∞〈0(t)|0〉 ∝ limt→∞ exp (−tΓ) = 0. In the infinite volume limit, for
∫

d3κ Γκ finite
and positive,

〈0(t)|0〉 → 0 as V → ∞ ∀ t (19)

and 〈0(t)|0(t′)〉 → 0 as V → ∞ ∀ t and t′, t′ 6= t. The meaning of these relations is that a
representation {|0(t)〉} of the canonical commutation relations (CCR) is defined at each time
t and is unitarily inequivalent to any other representation {|0(t′)〉, ∀t′ 6= t} in the infinite
volume limit. The system thus evolves in time through unitarily inequivalent representations of
CCR [30]. The number of modes Aκ (or Bκ) condensed in |0(t)〉 is given by

NAκ
(t) = 〈0(t)|A†

κAκ|0(t)〉 = sinh2 Γκt (20)

The states generated by B† represent the sink where the energy dissipated by the quantum
damped oscillator flows, or, in other words, the B-oscillator represents the reservoir coupled to
the A-oscillator [30].

The two mode realization of the algebra su(1, 1) is obtained by defining J+ ≡ A†B†,

J− ≡ J†
+ ≡ AB, J3 ≡ (1/2)(A†A + B†B + 1), then [J+, J− ] = −2J3, [J3, J± ] = ±J±,

with the SU(1, 1) Casimir operator C given by C2 = (1/4)(A†A − B†B)2. The commutation
relation [H0,HI ] = 0 guarantees that the initial condition of positiveness for the eigenvalues of
H0 is protected against transitions to negative energy states.

As said, |0(t)〉 is thus a two-mode time dependent generalized SU(1, 1) coherent state [7,
20, 30, 33]. |0(t)〉 is also recognized to be a squeezed coherent state characterized by the q-
deformation of Lie-Hopf algebra [7, 21, 22, 23]. I also remark that A and B are entangled
modes. This entanglement cannot be destroyed by the action of any unitary operator, a feature
absent in quantum mechanics.

Finally, I observe that the variations in time of the number of particles condensed in
the vacuum gives heat dissipation dQ = 1

β
dS and time evolution is controlled by entropy

variations [30, 34], which is consistent with the fact that dissipation implies breaking of time-
reversal invariance (the arrow of time). The Hamiltonian H turns out to be actually the
fractal free energy for the coherent boson condensation process out of which the fractal is
formed. The system temperature T = h̄Γ is proportional to the background zero point energy:
h̄Γ ∝ h̄Ω/2 [7, 27, 28, 29].

It can be shown [4] that also in the case of the Koch curve and other fractals the isomorphism
with the system of damped/amplified oscillators and squeezed SU(1,1) coherent states can be
established. For brevity, here I do not report the derivation of these results.

In closing this Section, I observe that letting pz± denote the momenta and v± = ż± the
forward in time and backward in time velocities, with the notation + ≡ 1 and − ≡ 2, it is:

v± = ± 1

m
(pz± ∓ (1/2)γz∓) , with [v+, v−] = i

γ

m2
(21)

Conjugate position coordinates (ξ+, ξ−) can be defined by putting ξ± = ∓(m/γ)v∓, with

[ξ+, ξ−] = i
1

γ
. (22)

This suggests that the relation between dissipation and noncommutative geometry in the plane
can be shown to exist. For brevity I will not discuss further such an issue and the role of the
deformed Hopf algebra [16, 35, 36, 37].



A final remark is that the continuous time evolution includes the discrete group of
transformations z1(m) = r0(e

−2 π d)m → z1(m + 1) = r0(e
−2 π d)(m+1) = z1(m)(e−2 π d), with

integer m = 1, 2, 3..., due to the T integer multiplicity, θ(T ) = 2π at T = 2π d/Γ and, at
t = mT , z1 = r0 (e

− 2π d)m, z2 = r0 (e
2 π d)m. The isomorphism seems thus to appear as a

homomorphism.

3. Self-similarity and electrodynamics

In the previous Section we have established the isomorphism between (fractal) self-similarity
and the squeezed SU(1,1) coherent states associated to the damped/amplified oscillator system
Eqs. (8) and (9) (or, equivalently Eqs. (10) and (11) or Eqs. (12) and (13)). We now discuss

the relation with electrodynamics. Consider the vector potential given by ~A = (1/2) ~B × ~r,

~r = (x1, x2, x3). It is ~B = ~∇× ~A, ~∇ · ~A = 0. Choose the reference frame so that the magnetic

field ~B be a constant vector, ~B = ~∇× ~A = −B3̂ . Then, A3 = 0 and

Ai =
B

2
ǫijxj , i, j = 1, 2. (23)

where ǫ12 = −ǫ21 = 1; ǫii = 0. Let B ≡ γ/e. The third component, i = 3, of (~v × ~B),

vi = ẋi, vanishes. Moreover, assume that ~E is given by the gradient of the harmonic potential
Φ ≡ k

2e(x1
2 − x2

2) ≡ Φ1 −Φ2 , ~E = −~∇Φ; and E3 = 0. Eqs. (12) and (13) are now rewritten as

F i
e = eEi + e (~v × ~B)i (24)

F i
−e = −eEi − e (~v × ~B)i (25)

namely, the Lorentz forces ~Fe and ~F−e, acting on two opposite charges with same velocity ~v in

the same electric and magnetic fields, ~E and ~B. Use of i = 1 in Eq. (24) and i = 2 in Eq. (25)
gives indeed Eqs. (12) and (13). Considering i = 2 in Eq. (24) and i = 1 in Eq. (25) leads to
similar result.

One can show [24] that by using Eqs. (23), Eqs. (12) and (13) can be derived from the
Lagrangian

L =
1

2m
(mẋ1 + e1A1)

2 − 1

2m
(mẋ2 + e2A2)

2 − e2

2m
(A1

2 −A2
2)− eΦ, (26)

and the Hamiltonian is

H = H1 −H2 =
1

2m
(p1 − e1A1)

2 + e1Φ1 −
1

2m
(p2 + e2A2)

2 + e2Φ2 (27)

In the least energy state (where H = 0, H1 = H2) the respective contributions to the energy
compensate each other. One of the charged particles (one of the oscillators) may be considered
to represent the em field in which the other one is embedded and vice-versa.

I remark that Eqs. (24) and (25) (i.e. Eqs. (12) and (13)) are derived [16] by usual integration
over the volume of the equations for the matter part T µν

m and the em part T µν
γ of the total energy-

momentum tensor T µν in electrodynamics

∂µT
µν
m = eFανJα (28)

∂µT
µν
γ = −eFανJα (29)

where Jα denotes the current and as usual Fαβ = ∂βAα − ∂αAβ (gµν = (1,−1,−1,−1),
µ = 0, 1, 2, 3 ; h̄ = 1 = c). We see that the non-vanishing divergences of T µν

m and T µν
γ



compensate each other, ∂µT
µν
m = −∂µT

µν
γ , so that the conservation of the total T µν holds:

∂µT
µν = ∂µ(T

µν
m + T µν

γ ) = 0.
For ν = 0, volume integration of Eqs. (28) and (29) gives the rate of changes in time of the

energy of the matter field and em field, Em and Eγ , respectively:

∂0Em = e ~E · ~v = −∂0Eγ (30)

For ν = i = 1, 2, 3, integration of Eqs. (28) and (29) over the volume gives, as said, Eqs. (24)
and (25).

A representation of the content of Maxwell equations and the associated conservation
laws is thus provided, under the conditions specified above, by the considered system of
damped/amplified oscillators. As seen, their realization in terms of squeezed coherent states
turns out to be isomorphic to fractal self-similarity properties. This establishes the link between
electrodynamics and fractal self-similarity.

4. Conclusions

In this paper I have summarized results showing that an isomorphism exists between the
formalism describing fractal self-similarity properties and squeezed coherent states in QFT
representing a system of damped/amplified oscillators. I have also shown that the isomorphism
extends to electrodynamics involving the basic conservation laws implied by Maxwell equation.
These conclusions may turn out to be of interest in view of the widely diffused presence in Nature
of fractal-like structures and of the ubiquitous occurrence of power laws in physics, in biology
and neuroscience. Fractals appear to be macroscopic quantum systems, in the sense specified in
the Introduction, arising from a process of morphogenesis as the manifestation of deformations
(squeezing) of coherent dissipative quantum dynamics. Such results lead to an integrated vision
of Nature resting on the paradigm of coherence and dissipation. Nature appears to be modulated
by coherence, rather than being hierarchically layered in isolated compartments, in collections
of isolated systems and phenomena.
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