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Abstract. We describe a method for constructing Killing-Yano tensors on toric Sasaki-
Einstein manifolds using their geometrical properties. We take advantage of the fact that the
metric cones of these spaces are Calabi-Yau manifolds. The complete list of special Killing forms
can be extracted making use of the description of the Calabi-Yau manifolds in terms of toric
data. This general procedure for toric Sasaki-Einstein manifolds is exemplified in the case of
the 5-dimensional spaces Y p,q and T 1,1. Finally we discuss the integrability of geodesic motion
in these spaces.

1. Introduction
Higher order symmetries associated with Killing-Yano (KY) tensors (or Killing forms) and
Stäckel-Killing (SK) tensors play an important role in modern gravitational and mathematical
physics. Contrary to Killing vectors, these geometrical objects do not have clear meaning as they
do not describe continuous symmetries of the space. They are considered as symmetries of the
whole phase-space and consequently they are often called dynamical or hidden symmetries. Their
corresponding conserved quantities are polynomial in momenta and are involved in the study of
integrability properties of geodesic motions and separation of variables for the Hamilton-Jacobi
or quantum Klein-Gordon, Dirac equations.

The generalized Killing equations for SK and KY tensors are quite intricate and to get their
solutions by solving the corresponding differential equations is a very difficult task. From this
point of view it is of particular importance to find alternative ways for constructing the higher
order Killing tensors.

In this paper we investigate the KY and SK tensors on toric Sasaki-Einstein (SE) spaces
using their geometrical properties. Recently SE geometry has become of significant interest in
various developments in mathematics and theoretical physics [1]. These geometries are believed
to play a significant role in studies of consistent string theory compactification and in the context
of the AdS/CFT correspondence. CFT duals to the SE manifolds are N = 1 superconformal
quiver gauge theories in 3 + 1 dimensions. Both the geometry and the gauge theory can be
characterized by a common data, called a toric data. In the case of toric SE manifolds there
is an algorithm which constructs the gauge theory from the toric data of the Calabi-Yau (CY)
singularity.

The aim of this paper is to present a method to find the conserved quantities for geodesic
motions on toric SE spaces. For this purpose we construct all special KY forms on the SE spaces



using the fact that these forms are exactly those forms which translate into parallel forms on
the CY metric cone [2]. In turn the KY forms on the metric cone are obtained from the toric
data of the CY manifolds using the Delzant approach [3] to toric geometries.

The general procedure to get KY tensors on toric SE spaces is exemplified in the case of the
5-dimensional spaces Y p,q and T 1,1. Having the explicit SK tensors on these spaces we discuss
the integrability of geodesic motions in these spaces and show that the systems are completely
integrable.

The paper is organized as follows. In the next Section we review the basic definitions of SK
and KY tensors. In Section 3 we present some well-known results concerning the special KY
forms on SE manifolds and their relations with the parallel forms of the corresponding CY metric
cones. In Section 4 it is described the construction of KY parallel forms on CY spaces using
the toric data. In Section 5 we exemplify the general scheme in the case of the 5-dimensional
spaces Y p,q and T 1,1 and prove the complete integrability of geodesic motions. The paper ends
with conclusions in Section 6.

2. Killing tensors
Let (M, g) be an n-dimensional Riemannian manifold with the metric g and let ∇ be its Levi-
Civita connection. A natural generalization of Killing vectors is given by SK tensors of rank r > 1
defined as totally symmetric tensor fields Kµ1···µr satisfying the generalized Killing equation

∇(µKν1···νr) = 0 , (1)

where the round brackets indicate symmetrization over the indices within.
In the presence of a SK tensor the system of a free particle with the Hamiltonian

H =
1

2
gµνpµpν , (2)

admits the conserved quantity
K = Kµ1···µrpµ1 · · · pµr , (3)

commuting with Hamiltonian (2) in the sense of Poisson brackets. Here pµ are canonical
momenta conjugate to the coordinates xµ, pµ = gµν ẋ

ν with overdot denoting proper time
derivative.

Another important generalization of Killing vector fields is represented by antisymmetric KY
tensors which are r-forms obeying the equation [4]

∇(µΨν1)ν2...νr = 0 . (4)

It turns out that the most part of known interesting KY tensors are the so called special Killing
forms satisfying for some constant c the additional equation [2]

∇X(dΨ) = cX∗ ∧Ψ , (5)

for any vector field X on M , X∗ being the 1-form dual to the vector field X.
There is an important connection between these two generalizations of the Killing vectors.

To wit, the partially contracted product of two KY tensors Ψi1,...,ir and Σi1,...,ir generates a SK
tensor of rank 2:

K
(Ψ,Σ)
ij = Ψii2...irΣ i2...ir

j + Σii2...irΨ i2...ir
j . (6)

This fact offers a method to generate higher order integrals of motion by identifying the complete
set of Killing-Yano tensors.

Let us note that trying to solve straightforwardly the generalized Killing equations (1) or (4)
turns out to be very difficult. For this reason in what follows we shall present an approachable
way for finding hidden symmetries on SE spaces.



3. Special KY forms on SE spaces
A (2n − 1)-dimensional manifold M is a contact manifold if there exists a 1-form η (called a
contact 1-form) on M such that:

η ∧ (dη)n−1 6= 0 . (7)

For every choice of contact 1-form η there exists a unique vector field Kη, called the Reeb vector
field, which satisfies:

η(Kη) = 1 and Kη−| dη = 0 , (8)

where −| is the operator dual to the wedge product.
Let us introduce the metric cone C(M) of the manifold M as the product manifold M×R>0,

with dimC(M) = 2n, endowed with the warped metric

ḡ := dr2 + r2g . (9)

Here r ∈ (0,∞) may be considered as a coordinate on the positive real line R+.
A compact Riemannian manifold (M, g) is Sasakian if and only if its metric cone C(M) is

Kähler and its Kähler 2-form is given by

ω =
1

2
d(r2η) . (10)

If the Sasaki manifold M is Einstein

Ricg = 2(n− 1)g , (11)

then the Kähler metric cone is Ricci-flat (Ricḡ = 0), i.e. CY manifold.
A first set of KY tensors of a SE manifold is given by the special Killing forms

Ψk = η ∧ (dη)k , k = 0, 1, · · · , n− 1 . (12)

These tensors do not exhaust the complete set of KY tensors on SE spaces. In order to
find all special KY tensors we must resort to the CY metric cone of a SE manifold. To write
explicitly two additional Killing forms we shall express the volume form of the metric cone in
terms of the Kähler form ω:

dV =
1

n!
ωn . (13)

The volume form of a Kähler manifold can be also written as [2, 5]:

dV =
in

2n
(−1)n(n−1)/2Ω ∧ Ω, (14)

where Ω is the volume holomorphic (n, 0) form of C(M). The additional Killing forms on C(M)
are given by the real respectively the imaginary part of the complex volume form.

The last step to finding all special KY tensors of the SE manifold M makes use of the fact that
special Killing forms on Sasaki manifolds are exactly those forms which translate into parallel
forms on the metric cone. More precisely, for any p-form Ψ on the space M we can define an
associated (p+ 1)-form ΨC on the cone C(M):

ΨC := rpdr ∧Ψ +
rp+1

p+ 1
dΨ . (15)

ΨC is parallel if and only if Ψ is a special Killing-Yano tensor (5) with constant c = −(p + 1)
[2].

Therefore the complete list if special KY forms on SE spaces are given by the Killing forms
(12) and two additional KY tensors connected with the real and imaginary parts of the complex
volume (n, 0) form of C(M) and extracted as in (15).



4. Complex volume form of CY toric manifold
In order to write the complex volume form we need the complex coordinates of the CY cone
manifold.

Let us consider that C(M) is toric, the standard n-torus Tn = Rn/2πZn acting effectively on
C(M)

τ : Tn → Diff(C(M), ω), (16)

preserving the Kähler form ω. Let us denote by Φi the angular coordinates along the torus
action generated by ∂/∂Φi and write the Reeb vector field as

Kη = bi
∂

∂Φi
. (17)

Associated to (C(M), ω, τ) there is a moment map

µ =
1

2
r2η , (18)

and the action coordinates are

yi = µ

(
∂

∂Φi

)
. (19)

The Tn-invariant Kähler metric on C(M) in the symplectic coordinates (y,Φ) is

ds2 = Gijdy
idyj +GijdΦidΦj , (20)

where Gij is the Hessian of the symplectic potential G(y) in the y coordinates

Gij =
∂2G

∂yi∂yj
, 1 ≤ i, j ≤ n, (21)

and Gij = (Gij)
−1.

For what follows we need the evaluation of the symplectic potential G. This object is obtained
using the Delzant construction [3]. A Delzant polytope is a covex polytope such that there are
n edges meeting at each vertex, each edge meeting at the vertex is of the form 1 + tui where
ui ∈ Zn, and {ui} can be chosen to form basis in Zn. This polytope can be described by the
inequalities

la(y) := (y, va) ≥ 0, for 1 ≤ a ≤ d , (22)

where va are the inward pointing normal vectors to the d facets of the polyhedral cone. The set
of vectors {va}

vA = via

(
∂

∂Φi

)
, (23)

is called a toric data.
Using the Delzant construction the general symplectic potential has the following form in

terms of the toric data [6, 7]:
G = Gcan +Gb + h, (24)

where

Gcan =
1

2

∑
a

la(y) log la(y), (25)

Gb =
1

2
lb(y) log lb(y)− 1

2
l∞(y) log l∞(y), (26)



with lb(y) = (b, y) , l∞(y) =
∑

a(va, y) and h is a homogeneous degree one function of variables
yi

h = λiy
i + t, (27)

λi, t being some constants.
The standard complex coordinates of C(M) are wi on C\{0}. Log complex coordinates are

zi = logwi = xi + iΦi, with

xi =
∂G

∂yi
. (28)

The final form of the (n, 0) holomorphic form of the Ricci-flat metric on the CY cone turns
out to be [8]:

Ω = exp (x1 + iΦ1)dz1 ∧ · · · ∧ dzn . (29)

5. Applications
We shall exemplify the general procedure in the case of the 5-dimensional spaces Y p,q and T 1,1.
The complete list of special KY tensors allows us to prove the complete integrability of geodesic
motions on these spaces.

5.1. Y p,q spaces
A particular interesting class of toric contact structures on S2×S3 have been studied by physicists
[9, 10] and denoted by Y p,q where p, q are relative prime integers satisfying 0 ≤ q ≤ p.

The explicit local metric of the 5-dimensional Y p,q manifold is given by the line element [11]

ds2 =
1− c y

6
(dθ2 + sin2 θ dφ2) +

1

w(y)q(y)
dy2 +

q(y)

9
(dψ − cos θ dφ)2

+ w(y)

[
dα+

ac− 2y + c y2

6(a− y2)
[dψ − cos θ dφ]

]2

,

(30)

where

w(y) =
2(a− y2)

1− cy
,

q(y) =
a− 3y2 + 2cy3

a− y2
.

(31)

The constant c can be rescaled by a diffeomorphism, so in what follows we take c = 1. For
0 < α < 1 we can take the range of the angular coordinates (θ, φ, ψ) to be 0 ≤ θ ≤ 2π , 0 ≤
φ ≤ 2π , 0 ≤ ψ ≤ 2π. Choosing 0 < a < 1, the range of the coordinate y is taken between the
negative and the smallest positive roots of the cubic equation

a− 3y2 + 2y3 = 0 . (32)

The Sasakian 1-form η is

η = −2ydα+
1− y

3
(dψ − cos θdφ) , (33)

and the Reeb vector field is [11]

Kη = 3
∂

∂ψ
− 1

2

∂

∂α
. (34)



The explicit form of the KY tensor Ψ1 (12) is

Ψ1 = (1− y)2 sin θ dθ ∧ dφ ∧ dψ − 6dy ∧ dα ∧ dψ
+ 6 cos θ dφ ∧ dy ∧ dα− 6(1− y)y sin θ dθ ∧ dφ ∧ dα .

(35)

For the additional KY tensors we shall construct the symplectic potential G (24) using the
toric data for Y p,q [11, 12] and finally the holomorphic form Ω (29). From (15) in the case of
the 5-dimensional Y p,q spaces we have

Ω := r3dr ∧Ψ +
r3

3
dΨ . (36)

Decomposing Ψ into its real (<Ψ) and imaginary (=Ψ) parts, and ignoring the multiplicative
constants, we get the following special real Killing forms [13, 14, 15]:

<Ψ =

√
1− y
p(y)

(
cosψ

[
dθ ∧ dy + 6p(y) sin θ dφ ∧ dα+ p(y) sin θ dφ ∧ dψ

]
− sinψ

[
sin θ dφ ∧ dy − 6p(y)dθ ∧ dα− p(y)dθ ∧ dψ

+ p(y) cos θ dθ ∧ dφ
])

,

(37)

=Ψ =

√
1− y
p(y)

(
sinψ

[
dθ ∧ dy + 6p(y) sin θ dφ ∧ dα+ p(y) sin θ dφ ∧ dψ

]
+ cosψ

[
sin θ dφ ∧ dy − 6p(y)dθ ∧ dα− p(y)dθ ∧ dψ

+ p(y) cos θ dθ ∧ dφ
])

.

(38)

For Y p,q spaces the conjugate momenta to the coordinates (θ, φ, y, α, ψ) are [16]:

pθ =
1− y

6
θ̇ ,

pφ + cos θpψ =
1− y

6
sin2 θφ̇ ,

py =
1

6p(y)
ẏ ,

pα = w(y)
(
α̇+ f(y)

(
ψ̇ − cos θφ̇

))
,

pψ = w(y)f(y)α̇+

[
q(y)

9
+ w(y)f2(y)

](
ψ̇ − cos θφ̇

)
.

(39)

From the isometry SU(2)×U(1)×U(1) of the metric (30) we have that the momenta pφ, pψ
and pα are conserved. pφ is the third component of the SU(2) angular momentum and pψ, pα
are associated to the U(1) factors. In addition, the total SU(2) angular momentum

~J 2 = p2
θ +

1

sin2 θ
(pφ + cos θpψ)2 + p2

ψ , (40)

is also conserved [16, 17].



The next conserved quantities, quadratic in momenta, will be expressed in terms of Stäckel-
Killing tensors as in (3). The Stäckel-Killing tensors of rank two on Y p,q will be constructed
from Killing-Yano tensors according to (6). For this purpose we shall use the Killing 3-form Ψ1

(35) and the additional 2-forms (37) and (38).

The first Stäckel-Killing tensor K
(1)
µν is constructed according to (6) using the real part of the

Killing form Ψ (37):

K(1)
µν = (<Ψ)µλ(<Ψ)λν . (41)

Let us denote by K(1) the corresponding quantity constructed from K
(1)
µν .

The next SK tensor can be constructed using the imaginary part =Ψ, but we find that this
SK tensor produces the same conserved quantity K(1).

In principle a mixed combination of KY tensors <Ψ and =Ψ produces a SK tensor (6), but
it proves that all components of this tensor are zero.

Finally we construct the Stäckel-Killing tensor from the Killing form Ψ1:

K(2)
µν = (Ψ1)µλσ(Ψ1)λσν , (42)

and let us denote by K(2) the corresponding conserved quantity.
In conclusion we have a set of 7 conserved quantities H, pφ, pψ, pα, ~J

2,K(1),K(2). We can
examine if this set constitutes a functionally independent set of constants of motion for the
geodesics of Y p,q constructing the Jacobian:

J =
∂(H, pφ, pψ, pα, ~J

2,K(1),K(2))

∂(θ, φ, y, α, ψ, θ̇, φ̇, ẏ, α̇, ψ̇)
. (43)

The rank of this Jacobian is 5, exactly the number of the degrees of freedom, which means that
the system is completely integrable [18] in contrast to the assertion made in [17]. In spite of
the presence of the Stäckel-Killing tensors K(1) and K(2), the system is not superintegrable,
K(1) and K(2) being a combination of the first integrals H, pφ, pψ, pα, ~J

2. Therefore the toric
Sasaki-Einstein spaces Y p,q spaces possess several Killing-Yano tensors, but these Killing forms
do not generate new Stäckel-Killing tensors, i.e. genuine conserved quantities.

5.2. T 1,1 space
The homogeneous Sasaki-Einstein metric on S2 × S3 is usually referred to as T 1,1. The T 1,1

space was considered as the first example of toric Sasaki-Einstein/quiver duality [19].
The isometries of T 1,1 form the group SU(2)×SU(2)×U(1) and the metric of this space may

be written down explicitly by utilizing the fact that it is a U(1) bundle over S2×S2. Let us denote
by (θ1, φ1) and (θ2, φ2) the coordinates which parametrize the two sphere in a conventional way,
and the angle ψ ∈ [0, 4π) to parametrize the U(1) fiber. Using these parametrizations the T 1,1

metric may be written as [20, 11]:

ds2(T 1,1) =
1

6
(dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2)

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 .

(44)

The globally defined contact 1-form η is:

η =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , (45)



and the Reeb vector field Kη has the form:

Kη = 3
∂

∂ψ
. (46)

From the contact form η (45), using (12) we construct the Killing 3-form

Ψ1 =
1

9
(sin θ1dψ ∧ dθ1 ∧ dφ1 + sin θ2dψ ∧ dθ2 ∧ dφ2

− cos θ1 sin θ2dθ2 ∧ dφ1 ∧ dφ2

+ cos θ2 sin θ1dθ1 ∧ dφ1 ∧ dφ2) .

(47)

Again, using the toric data for T 1,1 we evaluate the symplectic potential G and the complex
coordinates on the CY cone manifold. The additional real Killing forms extracted from the
holomorphic volume (3, 0) form are [21]

<Ψ = cosψ dθ1 ∧ dθ2 + sin θ2 sinψ dθ1 ∧ dφ2

− sin θ1 sinψ dθ2 ∧ dφ1

− sin θ1 sin θ2 cosψ dφ1 ∧ dφ2 ,

(48)

=Ψ = sinψ dθ1 ∧ dθ2 − sin θ2 cosψ dθ1 ∧ dφ2

+ sin θ1 cosψ dθ2 ∧ dφ1

− sin θ1 sin θ2 sinψ dφ1 ∧ dφ2 .

(49)

The conjugate momenta to the coordinates (θ1, θ2, φ1, φ2, ψ) are:

pθ1 =
1

6
θ̇1 ,

pθ2 =
1

6
θ̇2 ,

pφ1 =
1

6
sin2 θ1 φ̇1 +

1

9
cos2 θ1 φ̇1 +

1

9
cos θ1 ψ̇ +

1

9
cos θ1 cos θ2 φ̇2 ,

pφ2 =
1

6
sin2 θ2 φ̇2 +

1

9
cos2 θ2 φ̇2 +

1

9
cos θ2 ψ̇ +

1

9
cos θ1 cos θ2 φ̇1 ,

pψ =
1

9
ψ̇ +

1

9
cos θ1 φ̇1 +

1

9
cos θ2 φ̇2 .

(50)

Taking into account the isometries of T 1,1, the momenta pφ1 , pφ2 and pψ are conserved. On
the other hand two total SU(2) angular momenta are also conserved:

~J 2
1 =p2

θ1 +
1

sin2 θ1
(pφ1 − cos θ1pψ)2 + p2

ψ

=
1

36

[
θ̇2

1 + sin2 θ1φ̇
2
1

]
+

1

81

[
ψ̇2 + cos2 θ1φ̇

2
1 + cos2 θ2φ̇

2
2

+2 cos θ1 φ̇1ψ̇ + 2 cos θ2φ̇2ψ̇ + 2 cos θ1 cos θ2φ̇1φ̇2

]
,

~J 2
2 =p2

θ2 +
1

sin2 θ2
(pφ2 − cos θ2pψ)2 + p2

ψ

=
1

36

[
θ̇2

2 + sin2 θ2φ̇
2
2

]
+

1

81

[
ψ̇2 + cos2 θ1φ̇

2
1 + cos2 θ2φ̇

2
2

+2 cos θ1 φ̇1ψ̇ + 2 cos θ2φ̇2ψ̇ + 2 cos θ1 cos θ2φ̇1φ̇2

]
.

(51)



As for the Y p,q spaces we construct the conserved quantities associated with the Killing forms
(47), (48), (49) and find again that we have only two nontrivial conserved quantities K(1) and
K(2) as in the previous case. In fact metric (44) of the T 1,1 space can be obtained from metric
(30) of the Y p,q spaces taking c = 0, setting a = 3 and making some changes of coordinates [9].

Finally we investigate the integrability of the geodesic motion on T 1,1 and for this purpose
we construct the Jacobian:

J =
∂(H, pφ1 , pφ2 , pψ,

~J 2
1 ,

~J 2
2 ,K

(1),K(2))

∂(θ1, θ2, φ1, φ2, ψ, θ̇1, θ̇2, φ̇1, φ̇2, ψ̇)
. (52)

As in the case of Y p,q spaces, the rank of this Jacobian is 5 implying the complete integrability
of the geodesic motion on T 1,1. Because not all aforesaid constants of motion are functionally
independent, from 8 constants we can choose a subset of 5 constants as functionally independent.
For T 1,1 space the expressions of the constants of motion are simpler than in the case of Y p,q

spaces and we can write explicitly the relations between them. For example, selecting the subset
(H, pφ1 , pφ2 , pψ,

~J 2
1 ) as functionally independent constants of motion, the constants ~J 2

2 ,K
(1)

and K(2) can be expressed in terms of the chosen subset:

~J 2
2 =

1

3
H +

1

2
p2
ψ − ~J 2

1 ,

K(1) = 72H − 324p2
ψ ,

K(2) = 16H + 72p2
ψ .

(53)

6. Conclusions
An important point of interest in physics is to identify constants of motion or conserved quantities
of a system.

KY tensors are known to be highly relevant for both mathematics and physics as they can be
used to construct higher order integrals of motion. In this paper we present a method to extract
Killing forms on a toric SE space using successively its contact form, the symplectic, complex
coordinates and holomorphic volume form of its CY metric cone.

A detailed analysis of the KY tensors on 5-dimensional Y p,q and T 1,1 spaces shows that
the number of functionally independent constants of motion is five implying the complete
integrability.

Using toric geometry, many other SE manifolds can be investigated and these spaces are a
good testing ground for the predictions of the AdS/CFT correspondence.
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