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Abstract. The new relativistic equations of motion for the particles with arbitrary spin
and nonzero mass have been introduced. The axiomatic level description of the relativistic
canonical quantum mechanics of the arbitrary mass and spin has been given. The 64-dimensional

ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The link between the
relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field
theory has been found. Different methods of the Dirac equation derivation have been reviewed.
The manifestly covariant field equations for an arbitrary spin that follow from the quantum
mechanical equations have been considered. The covariant local field theory equations for spin
s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle antiparticle multiplet, spin
s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s
= (2,0,2,0) particle-antiparticle multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet
have been introduced. The Maxwell-like equations for the boson with spin s = 1 and nonzero
mass have been introduced as well.

1. Introduction
Recently in [1, 2] the interesting results in the area of relativistic quantum mechanics and
quantum field theory have been presented. This article contains brief exposition of the results
[1, 2], which were reported on the conference. The general forms of quantum-mechanical and
covariant equations for arbitrary spin are presented. The corresponding relativistic quantum
mechanics of arbitrary spin is given as the brief version of the system of axioms. The partial
cases of the spin s=(0,0) and spin s=(3/2,3/2) particle-antiparticle doublets are considered in
explicit forms. The brief review of the different investigations in the area of relativistic canonical
quantum mechanics (RCQM) is given and the brief analysis of the existing approaches to the
field theory of arbitrary spin is initiated.

Note that in the Dirac model [3, 4] the quantum-mechanical interpretation is not evident.
It has been demonstrated in [1, 2, 5, 6] that the quantum-mechanical interpretation is much
more clear in the Foldy–Wouthuysen (FW) model [5, 6]. Nevertheless, the complete quantum-
mechanical picture is possible only in the framework of RCQM. This assertion is one of the main
conclusions proved in [1, 2].

The relativistic quantum mechanics under consideration is called canonical due to three
main reasons. (i) The model under consideration has direct link with nonrelativistic quantum



mechanics based on nonrelativistic Schrödinger equation. The principles of heredity and
correspondence with other models of physical reality leads directly to nonrelativistic Schrödinger
quantum mechanics. (ii) The FW model is already called by many authors as the canonical
representation of the Dirac equation or a canonical field model, see, e. g., the paper [6]. And the
difference between the field model given by FW and the RCQM is minimal – in corresponding
equations it is only the presence and absence of beta matrix. (iii) The list of relativistic quantum-
mechanical models is long. The Dirac model and the FW model are called by the ”‘old”’
physicists as the relativistic quantum mechanics as well (one of my tasks in this paper is to
show in visual and demonstrative way that these models have only weak quantum-mechanical
interpretation). Further, the fractional relativistic quantum mechanics and the proper-time
relativistic quantum mechanics can be listed (recall matrix formulation by W. Heisenberg,
Feynman’s sum over path’s quantum theory, many-worlds interpretation by H. Everett), etc.
Therefore, in order to avoid a confusion the model under consideration must have its proper
name. Due to the reasons (i)–(iii) the best name for it is RCQM.

The general and fundamental goals here are as follows: (i) visual and demonstrative
generalization of existing RCQM for the case of arbitrary spin, (ii) more complete formulation
of this model on axiomatic level (on the test example of spin s=(1/2,1/2) particle-antiparticle
doublet), (iii) vertical and horizontal links between the three different models of physical reality:
relativistic quantum mechanics of arbitrary spin in canonical form, canonical (FW type) field
theory of any spin, locally covariant (Dirac and Maxwell type) field theory of arbitrary spin.

2. Concepts, definitions and notations
The concepts, definitions and notations here are the same as in [1, 2]. For example, in the
Minkowski space-time

M(1, 3) = {x ≡ (xµ) = (x0 = t, −→x ≡ (xj))}; µ = 0, 3, j = 1, 2, 3, (1)

xµ denotes the Cartesian (covariant) coordinates of the points of the physical space-time in the
arbitrary-fixed inertial reference frame (IRF). We use the system of units with h̄ = c = 1. The
metric tensor is given by

gµν = gµν = gµν , (g
µ
ν ) = diag (1,−1,−1,−1) ; xµ = gµνx

µ, (2)

and summation over the twice repeated indices is implied.
Note that the square-root operator equation i∂tf(x) =

√
m2 −∆f(x), which is the main

equation of RCQM, has been rejected by Dirac in his consideration in [4] (chapter 11, section
67), see [2] for the details. Nevertheless, today, contrary to the year 1928, the definition of the
pseudo-differential (non-local) operator

ω̂ ≡
√
−̂→p

2
+m2 =

√
−∆+m2 ≥ m > 0, −̂→p ≡ (p̂j) = −i∇, ∇ ≡ (∂ℓ), (3)

is well known. The action of the operator (3) in the coordinate representation (see, e. g. [7]) is
given by

ω̂f(t,−→x ) =
∫
d3yK(−→x −−→y )f(t,−→y ), f ∈ H3,N, (4)

where the function K(−→x −−→y ) has the form K(−→x −−→y ) = −2m2K2(m|−→x −−→y |)
(2π)2|−→x −−→y |2

and Kν(z) is the

modified Bessel function (Macdonald function), |−→a | designates the norm of the vector −→a , H3,N

is the Hilbert space of N-component functions.



Further, the following integral form

(ω̂f)(t,−→x ) = 1

(2π)
3
2

∫
d3kei

−→
k −→x ω̃f̃(t,−→k ), ω̃ ≡

√
−→
k

2
+m2, f̃ ∈ H̃3,N, (5)

of the operator ω̂ is used often, see, e. g., [6, 8], where f and f̃ are linked by the 3-dimensional
Fourier transformations

f(t,−→x ) = 1

(2π)
3
2

∫
d3kei

−→
k −→x f̃(t,−→k ) ⇔ f̃(t,

−→
k ) =

1

(2π)
3
2

∫
d3ke−i

−→
k −→x f̃(t,−→x ), (6)

(in (6)
−→
k belongs to the spectrum R3

k⃗
of the operator −̂→p , and the parameter t ∈ (−∞,∞) ⊂

M(1, 3)).
Note that the space of states H3,N is invariant with respect to the Fourier transformation (6).

Therefore, both −→x -realization H3,N and
−→
k -realization H̃3,N of the space of states are suitable

for the purposes of our consideration. In the
−→
k -realization the Schrödinger–Foldy equation has

the algebraic-differential form

i∂tf̃(t,
−→
k ) =

√
−→
k

2
+m2f̃(t,

−→
k );

−→
k ∈ R3

k⃗
, f̃ ∈ H̃3,N. (7)

Below in the places, where misunderstanding is impossible, the symbol ”tilde” is omitted.
Thus, today on the basis of above given definitions the difficulties, which stopped Dirac in

1928, can be overcome.
The name of the person, whose contribution in the theoretical model based on the square-root

operator equation was decisive, is Leslie Lawrance Foldy (1919–2001). His interesting biography
is presented in [9]. In our investigations we always marked the role of L. Foldy. Taking into
account the L. Foldy’s contribution in the construction of RCQM and his proof of the principle
of correspondence between RCQM and non-relativistic quantum mechanics, we propose [10, 11]
and [1, 2] to call the N -component square-root operator equation i∂tf(x) =

√
m2 −∆f(x) as

the Schrödinger–Foldy equation. Note here that this equation, which is a direct sum of one
component spinless Salpeter equations [12], has been introduced in the formula (21) of [6].
Furthermore, note here that the nonlocal Poincaré group representation generators are known
from the formulae (B-25)–(B-28) of the L. Foldy’s paper [6].

Contrary to the times of papers [3, 5, 6, 12], the RCQM today is enough approbated and
generally accepted theory. The spinless Salpeter equation has been introduced in [12]. The
allusion on the RCQM and the first steps are given in [6], where the Salpeter equation for the
2s+1-component wave function was considered and the cases of s=1/2, s=1 were presented
as an examples. In [13] Foldy continued his investigations [6] by the consideration of the
relativistic particle systems with interaction. The interaction was introduced by the specific
group-theoretical method.

After that in the RCQM were developed both the construction of mathematical foundations
and the solution of concrete quantum-mechanical problems for different potentials. The brief
review of 24 articles devoted to contemporary RCQM has been given in [2]. In the papers [10, 11],
where we started our investigations in RCQM, this relativistic model for the test case of the spin
s=(1/2,1/2) particle-antiparticle doublet is formulated. In [10], this model is considered as the
system of the axioms on the level of the von Neumann monograph [14], where the mathematically
well-defined consideration of the nonrelativistic quantum mechanics was given. Furthermore, in
[10, 11] the operator link between the spin s=(1/2,1/2) particle-antiparticle doublet RCQM and
the Dirac theory is given and Foldy’s synthesis of covariant particle equations is extended to
the start from the RCQM of the spin s=(1/2,1/2) particle-antiparticle doublet. In [1] the same



procedure is fulfilled for the spin s=(1,1), s=(1,0,1,0), s=(3/2,3/2), s=(2,2), s=(2,0,2,0) and
spin s=(2,1,2,1) RCQM. The corresponding equations, which follow from the RCQM for the
covariant local field theory, are introduced.

Taking into account the 24 RCQM results reviewed in [2] the following conclusion is given.
Here and in [1, 2] I am not going to formulate a new relativistic quantum mechanics! The
foundations of RCQM based on the spinless Salpeter equation are already formulated in [6, 7]
and in Refs. [9–35] given in [2].

3. Brief analysis of the covariant equations for an arbitrary spin
One of the goals of [1] is the link between the RCQM of an arbitrary spin and the different
approaches to the covariant local field theory of an arbitrary spin. Surely, at least the brief
analysis of the existing covariant equations for an arbitrary spin should be presented.

Note that in [1] and here only the first-order particle and the field equations (together with
their canonical nonlocal pseudo-differential representations) are considered. The second order
equations (like the Klein–Gordon–Fock equation) are not the subject of this investigation.

Different approaches to the description of the field theory of an arbitrary spin can be found in
[6, 15–24]. Here and in [1, 2] only the approach started in [6] is the basis for further application.
Other results given in [15–24] are not used here.

Note only some general deficiencies of the known equations for arbitrary spin. The
consideration of the partial cases, when the substitution of the fixed value of spin is fulfilled,
is not successful in all cases. For example, for the spin s > 1 existing equations have the
redundant components and should be complemented by some additional conditions. Indeed,
the known equations [25, 26] for the spin s=3/2 (and their confirmation in [27]) should be
essentially complemented by the additional conditions. The main difficulty in the models of
an arbitrary spin is the interaction between the fields of higher-spin. Even the quantization of
higher-spin fields generated the questions. These and other deficiencies of the known equations
for higher-spin are considered in Refs. [50–61] given in [2] (a brief review of deficiencies see in
[28]).

Equations suggested in [1] and here are free of these deficiencies. The start of such
consideration is taken from [6], where the main foundations of the RCQM are formulated. In
the text of [1, 2] and here the results of [6] are generalized and extended. The operator link
between the results of [5] and [6] (between the canonical FW type field theory and the RCQM)
is suggested. Note that the cases s=3/2 and s=2 are not presented in [6], especially in explicit
demonstrative forms. The results of [1, 2] are closest to the given in [29, 30]. The difference is
explained in the section 5 below after the presentation of the results [1, 2].

Even this brief analysis makes us sure in the prospects of the investigations started in [1].
The successful description of the arbitrary spin field models is not the solved problem today.

4. Axioms of the relativistic canonical quantum mechanics of an arbitrary spin
The RCQM of the arbitrary spin given in sections 2 and 18 of [1] can be formulated at the level
of von Neumann’s consideration [14]. The difference with [14] is only in relativistic invariance
and in the consideration of multicomponent and multidimensional objects.

The partial case of axiomatic formulation is already given in section 7 of [1] at the example of
spin s=1/2 particle-antiparticle doublet. The RCQM of the arbitrary spin particle-antiparticle
doublet (or particle singlet) can be formulated similarly as the corresponding generalization of
this partial case.

Below the brief presentation of the list of the axioms is given. Note that some particular
content of these axioms is already given in section 2 of [1], where the RCQM of the arbitrary
spin particle singlet has been formulated.



4.1. On the space of states
The space of states of isolated arbitrary spin particle singlet in an arbitrarily-fixed inertial frame
of reference (IFR) in its −→x -realization is the Hilbert space

H3,N = L2(R
3)⊗ C⊗N = {f = (fN) : R3 → C⊗N;

∫
d3x|f(t,−→x )|2 <∞}, N = 2s+ 1, (8)

of complex-valued N-component square-integrable functions of x ∈ R3 ⊂ M(1, 3) (similarly, in
momentum, −→p -realization). In (8) d3x is the Lebesgue measure in the space R3 ⊂ M(1, 3) of
the eigenvalues of the position operator −→x of the Cartesian coordinate of the particle in an
arbitrary-fixed IFR. Further, −→x and −→p are the operators of canonically conjugated dynamical
variables of the spin s=(1/2,1/2) particle-antiparticle doublet, and the vectors f , f̃ in −→x - and
−→p -realizations are linked by the 3-dimensional Fourier transformation (the variable t is the
parameter of time-evolution).

The mathematical correctness of the consideration demands the application of the rigged
Hilbert space

S3,N ≡ S(R3)× CN ⊂ H3,N ⊂ S3,N∗. (9)

where the Schwartz test function space S3,N is the core (i. e., it is dense both in H3,N and in the
space S3,N∗ of the N-component Schwartz generalized functions). The space S3,N∗ is conjugated
to that of the Schwartz test functions S3,N by the corresponding topology (see, e. g. [31]).

Strictly speaking, the mathematical correctness of consideration demands to make the
calculations in the space S3,N∗ of generalized functions, i. e. with the application of cumbersome
functional analysis (see, e. g. [32]). Nevertheless, one can take into account the properties
of the Schwartz test function space S3,N in the triple (9). The space S3,N is dense both in
quantum-mechanical space H3,N and in the space of generalized functions S3,N∗. Therefore, any
physical state f ∈ H3,N can be approximated with an arbitrary precision by the corresponding
elements of the Cauchy sequence in S3,N, which converges to the given f ∈ H3,N. Further, taking
into account the requirement to measure the arbitrary value of the quantum-mechanical model
with non-absolute precision, it means that all concrete calculations can be fulfilled within the
Schwartz test function space S3,N. Thus, such consideration allows us to perform, without any
loss of generality, all necessary calculations in the space S3,N at the level of correct differential
and integral calculus. More detailed consideration see in [1, 2].

Note finally that in the case of arbitrary spin particle-antiparticle doublet the dimension of
spaces (8), (9) is M=2N=2(2s+1).

4.2. On the time evolution of the state vectors
The time dependence of the state vectors f ∈ H3,N (time t is the parameter of evolution) is
given either in the integral form by the unitary operator

u (t0, t) = exp [−iω̂(t− t0)] ; ω̂ ≡
√
−∆+m2, (10)

(below t0 = t is put), or in the differential form by the Schrödinger–Foldy equation of motion

(i∂0 − ω̂)f(x) = 0. (11)

with the wave function

f ≡ column(f1, f2, ..., fN), N = 2s+ 1, f ∈ H3,N. (12)

Note that here the operator ω̂ ≡
√
−∆+m2 is the relativistic analog of the energy operator

(Hamiltonian) of nonrelativistic quantum mechanics. The Minkowski space-time M(1,3) is



pseudo Euclidean with metric g = diag(+1,−1,−1,−1). The step from the particle singlet
of arbitrary spin to the corresponding particle-antiparticle doublet is evident.

Thus, for the arbitrary spin particle-antiparticle doublet the system of two N-component
equations (i∂0 − ω̂)f(x) = 0 and (i∂0 − ω̂)f(x) = 0 is used. Therefore, the corresponding
Schrödinger–Foldy equation is given by (11), where the 2N-component wave function is the
direct sum of the particle and antiparticle wave functions, respectively. Due to the historical
tradition of the physicists the antiparticle wave function is put in the down part of the 2N-
column.

The general solution of the Schrödinger–Foldy equation of motion (11) (in the case of particle-
antiparticle arbitrary spin doublet) has the form

f(x) =
1

(2π)
3
2

∫
d3ke−ikxa2N

(−→
k
)
d2N, kx ≡ ωt−−→

k −→x , ω ≡
√
−→
k

2
+m2, (13)

where the orts of the N-dimensional Cartesian basis can be found in [1] in formulae (10).
The action of the pseudo-differential (non-local) operator ω̂ ≡

√
−∆+m2 is explained in (4),

(5).

4.3. On the fundamental dynamical variables
The dynamical variable −→x ∈ R3 ⊂M(1,3) (as well as the variable

−→
k ∈ R3

k⃗
) represents the

external degrees of freedom of the arbitrary spin particle-antiparticle doublet. The spin −→s of
the particle-antiparticle doublet is the first in the list of the carriers of the internal degrees of
freedom. Taking into account the Pauli principle and the fact that experimentally an antiparticle
is observed as the mirror reflection of a particle, the operators of the charge sign and the spin
of the arbitrary particle-antiparticle doublet are taken in the form

g ≡ −Γ0
2N ≡ −σ32N =

∣∣∣∣ −IN 0
0 IN

∣∣∣∣ , −→s 2N =

∣∣∣∣∣ −→s N 0

0 −Ĉ−→s NĈ

∣∣∣∣∣ , N = 2s+ 1, (14)

where Γ0
2N is the 2N×2N Dirac Γ0 matrix, σ32N is the 2N×2N Pauli σ3 matrix, Ĉ is the operator

of complex conjugation in the form of N×N diagonal matrix, the operator of involution in H3,2N,
and IN is N × N unit matrix. Thus, the spin is given by the generators of SU(2) algebra! The
spin matrices −→s 2N (14) satisfy the commutation relations[

sj2N, s
ℓ
2N

]
= iεjℓnsn2N, ε123 = +1, (15)

of the algebra of SU(2) group, where εjℓn is the Levi-Civita tensor and sj = εjℓnsℓn are the
Hermitian 2N× 2N matrices (14) – the generators of a 2N-dimensional reducible representation
of the spin group SU(2) (universal covering of the SO(3)⊂SO(1,3) group).

4.4. On the relativistic invariance of the theory
The relativistic invariance of the model under consideration (the relativistic invariance of
the Schrödinger–Foldy equation (11)) requires, as a first step, consideration of its invariance

with respect to the proper ortochronous Lorentz L↑
+ = SO(1,3)={Λ = (Λµ

ν )} and Poincaré

P↑
+ = T(4)×)L↑

+ ⊃ L↑
+ groups. This invariance in an arbitrary relativistic model is the

implementation of the Einstein’s relativity principle in the special relativity form. Note that
the mathematical correctness requires the invariance mentioned above to be considered as the

invariance with respect to the universal coverings L = SL(2,C) and P ⊃ L of the groups L↑
+

and P↑
+, respectively.



For the group P we choose real parameters a = (aµ) ∈M(1,3) and ϖ ≡ (ϖµν = −ϖνµ) with
well-known physical meaning. For the standard P generators (pµ, jµν) we use commutation
relations in the manifestly covariant form

[pµ, pν ] = 0, [pµ, jρσ] = igµρpσ − igµσpρ, (16)

[jµν , jρσ] = −i (gµρjνσ + gρνjσµ + gνσjµρ + gσµjρν) .

The following assertion should be noted. Not a matter of fact that non-covariant objects such
as the Lebesgue measure d3x and non-covariant (non-Lie) generators of algebras are explored,
the model of RCQM of arbitrary spin is a relativistic invariant in the following sense. The
Schrödinger–Foldy equation (11) and the set of its solution {f} (13) are invariant with respect
to the irreducible unitary representation of the group P, the N×N matrix-differential generators
of which are given by the following nonlocal operators

p̂0 = ω̂ ≡
√
−∆+m2, p̂ℓ = i∂ℓ, (17)

ĵℓn = xℓp̂n − xnp̂ℓ + sln ≡ m̂ℓn + sℓn,

ĵ0ℓ = −ĵℓ0 = tp̂ℓ −
1

2
{xℓ, ω̂} −

(
sℓnp̂n
ω̂ +m

≡ s̆ℓ

)
, (18)

where the orbital parts of the generators are not changed under the transition from one spin to
another. Under such transitions only the spin parts (14), (15) of the expressions (17), (18) are
changed. Indeed, the direct calculations visualize that generators (17), (18) commute with the
operator of equation (11) and satisfy the commutation relations (16) of the Lie algebra of the
Poincaré group P. In formulae (17), (18), the SU(2)-spin generators sℓn have particular specific
forms for each representation of the SU(2) group (see the list of examples in [1]).

Note that the generators (17), (18) are known from the formulae (B-25) (B-28) of the paper
[6].

Note also that together with the generators (17), (18) another set of 10 operators commutes
with the operator of equation (11), satisfies the commutation relations (16) of the Lie algebra of
Poincaré group P, and, therefore, can be chosen as the Poincaré symmetry of the model under
consideration. This second set is given by the generators p̂0, p̂ℓ from (17) together with the
orbital parts of the generators ĵℓn, ĵ0ℓ from (18).

Thus, the irreducible unitary representation of the Poincaré group P in the space (9), with
respect to which the Schrödinger-Foldy equation (11) and the set of its solution {f} (13) are
invariant, is given by a series converges in this space

(a,ϖ) → U(a,ϖ) = exp(−ia0p̂0 − i−→a −̂→p − i

2
ϖµν ĵµν) (19)

where the generators (p̂µ, ĵµν) are given in (17), (18) with the arbitrary values of the SU(2)
spins −→s = (sℓn) (14), (15).

The validity of this assertion is verified by the following three steps. (i) The calculation that
the P-generators (17), (18) commute with the operator i∂0−ω̂ of the Schrödinger–Foldy equation
(11). (ii) The verification that the P-generators (17), (18) satisfy the commutation relations
(16) of the Lie algebra of the Poincaré group P. (iii) The proof that generators (17), (18) realize
the spin s(s+1) representation of this group. Therefore, the Bargman–Wigner classification on
the basis of the corresponding Casimir operators calculation should be given. These three steps
can be made by direct and non-cumbersome calculations.

The expression (19) is well known, but rather formal. In fact the transition from a Lie algebra
to a finite group transformations is a rather non-trivial action. The mathematical justification



of (19) can be fulfilled in the framework of Schwartz test function space and will be given in
next special publication.

The corresponding Casimir operators have the form

p2 = p̂µp̂µ = m2IN, (20)

W = wµwµ = m2−→s 2 = s(s + 1)m2IN, (21)

where IN is the N×N unit matrix and s =1/2, 1, 3/2, 2, ...
Note that together with the generators (17), (18) another set of 10 operators commutes with

the operator of equation (11), satisfies the commutation relations (16) of the Lie algebra of
Poincaré group P, and, therefore, can be chosen as the Poincaré symmetry of the model under
consideration. This second set is given by the generators p̂0, p̂ℓ from (17) together with the
orbital parts of the generators ĵℓn, ĵ0ℓ from (18). Thus, this second set of Poincaré generators
is given by

p̂0 = ω̂ ≡
√
−∆+m2, p̂ℓ = i∂ℓ, m̂ℓn = xℓp̂n − xnp̂ℓ, m̂0ℓ = −m̂ℓ0 = tp̂ℓ −

1

2
{xℓ, ω̂} . (22)

Note that in the case s=0 only generators (22) form the Poincaré symmetry.
Note that the modern definition of P invariance (or P symmetry) of the equation of motion

(11) in H3,N is given by the following assertion, see, e. g. [33]. The set F ≡ {f} of all possible
solutions of the equation (11) is invariant with respect to the P f -representation of the group P,
if for arbitrary solution f and arbitrarily-fixed parameters (a,ϖ) the assertion

(a,ϖ) → U(a,ϖ) {f} = {f} ≡ F (23)

is valid. In [2] this axiom is considered together with very useful axiom on the dynamic and
kinematic aspects of the relativistic invariance.

4.5. On the Clifford–Dirac algebra
This axiom is additional and is not necessary. Nevertheless, such axiom is very useful for the
dimensions, where the Γ matrices exist. Application of the Clifford–Dirac algebra is the useful
method of calculations in RCQM. Three different definitions of the Clifford algebra and their
equivalence are considered in [34]. In different approaches to the relativistic quantum mechanics
the matrix representation of the Clifford algebra in terms of the Dirac gamma matrices is used.
This representation is called the Clifford–Dirac algebra.

For our purposes the anticommutation relations of the Clifford–Dirac algebra generators are
taken in the general form

Γµ̄
2NΓ

ν̄
2N + Γν̄

2NΓ
µ̄
2N = 2gµ̄ν̄ ; µ̄, ν̄ = 0, 4, (gµ̄ν̄) = (+−−−−), (24)

where Γµ̄
2N are the 2N × 2N Dirac Γµ̄ matrices (2N × 2N generalization of the Dirac 4 × 4 γ

matrices), Γ4
2N ≡ Γ0

2NΓ
1
2NΓ

2
2NΓ

3
2N. Here and in our publications (see, e. g. the last years articles

[35–39]) we use the γ4 ≡ γ0γ1γ2γ3 matrix instead of the γ5 matrix of other authors. Our γ4 is

equal to iγ5standard. Notation γ
5 is used in [35–39] for a completely different matrix γ5 ≡ γ1γ3Ĉ.

As well as the element Γ4
2N ≡ Γ0

2NΓ
1
2NΓ

2
2NΓ

3
2N of (24) is dependent the algebra basis is formed

by 4=1+3 independent elements. Therefore, such Clifford algebra over the field of complex
numbers is denoted ClC(1,3) and the dimension of the algebra is 24 = 16.

The best consideration of this axiom is given in [2], where the complete analysis is presented.
Moreover, in [2] new Clifford–Dirac algebra over the field of real numbers is introduced. Two

important representations of this algebra are defined as ClR(4,2), ClR(0,6) and the dimension of
this algebra is 26 = 64.



4.6. Briefly on other axioms
Other axioms of arbitrary spin RCQM are given in [2]. The list of these axioms is as follows.
On the external and internal degrees of freedom, on the algebra of observables, on the main and
additional conservation laws, on the stationary complete sets of operators, on the solutions of the
Schrödinger-Foldy equation, on the mean value of the operators of observables, on the principles
of heredity and the correspondence, on the second quantization (external axiom), on the physical
interpretation. All axioms of this section eventually need to be reconciled with three levels of
description used in this paper: RCQM, canonical FW and Dirac models. Nevertheless, this
interesting problem cannot be considered in few pages. The readers of this paper can compare
the axioms of RCQM given above with the main principles of the Dirac model given in B.
Thaller’s monograph [40] on the high mathematical level.

5. General description of the arbitrary spin field theory
The step by step consideration of the different partial examples in [1] (sections 21–27) enabled
us to rewrite them in the general form, which is valid for arbitrary spin. Therefore, the
generalization of the consideration given in [1] leads to the general formalism of the arbitrary
spin fields.

The formalism presented below in this section is valid for an arbitrary particle-antiparticle
multiplet in general and for the particle-antiparticle doublet in particular.

5.1. The canonical (FW type) model of the arbitrary spin particle-antiparticle field
The operator, which transform the RCQM of the arbitrary spin particle-antiparticle multiplet
into the corresponding canonical particle-antiparticle field, is given by

v2N =

∣∣∣∣∣ IN 0

0 ĈIN

∣∣∣∣∣ , v−1
2N = v†2N = v2N, v2Nv2N = I2N, N = 2s+ 1, (25)

where ĈIN is the N × N operator of complex conjugation. Indeed, the operator (25) translates
any operator from canonical field FW representation into the RCQM representation and vice
versa:

v2Nq̂
anti−Herm
cf v2N = q̂anti−Herm

qm , v2Nq̂
anti−Herm
qm v2N = q̂anti−Herm

cf . (26)

Here q̂anti−Herm
qm is an arbitrary operator from the RCQM of the 2N-component particle-

antiparticle doublet in the anti-Hermitian form, e. g., the operator (∂0 + iω̂) of equation of
motion (11), the operator of spin −→s 2N (14) taken in anti-Hermitian form, etc., q̂anti−Herm

cf is
an arbitrary operator from the canonical field theory of the 2N-component particle-antiparticle
doublet in the anti-Hermitian form. Thus, the only warning is that operators here must be taken
in anti-Hermitian form, see section 9 in [1] for the details and see [41, 42] for the mathematical
correctness of anti-Hermitian operators application.

Further, the operator (25) translates

ϕ = v2Nf, f = v2Nϕ, (27)

the solution (13) of the Schrödinger–Foldy equation (11) into the solution

ϕ(x) =
1

(2π)
3
2

∫
d3k

[
e−ikxaN(

−→
k )dN + eikxa∗N̆(

−→
k )dN̆

]
, (28)

N = 1, 2, ...,N, N̆ = N + 1,N+ 2, ..., 2N, of the FW equation

(i∂0 − Γ0
2Nω̂)ϕ(x) = 0, Γ0

2N ≡ σ32N =

∣∣∣∣ IN 0
0 −IN

∣∣∣∣ , (29)



ω̂ ≡
√
−∆+m2, N = 2s + 1, and vice versa. Thus, the transformation (25), (26) translates

the matrices Γ0
2N and

Γj
2N =

∣∣∣∣∣ 0 Σj
N

−Σj
N 0

∣∣∣∣∣ , j = 1, 2, 3, (30)

into the RCQM representation and vice versa

Γ̄µ̄
2N = v2NΓ

µ̄
2Nv2N, Γµ̄

2N = v2NΓ̄
µ̄
2Nv2N. (31)

In (30) Σj
N are the N × N Pauli matrices. Matrices Γµ

2N (29), (30) together with matrix
Γ4
2N ≡ Γ0

2NΓ
1
2NΓ

2
2NΓ

3
2N satisfy the anticommutation relations (24) of the Clifford–Dirac algebra.

The formulas mentioned below are found from the corresponding formulas of RCQM with
the help of the operator (25) on the basis of its properties (26), (27). Thus, for the general
form of arbitrary spin canonical particle-antiparticle field the equation of motion of the FW
type is given by (29). The general solution has the form (28), where aN(

−→
k ) are the quantum-

mechanical momentum-spin amplitudes of the particle and aN̆(
−→
k ) are the quantum-mechanical

momentum-spin amplitudes of the antiparticle, {d} is 2N-component Cartesian basis.
It is evident from (28) that the model under consideration is not quantum mechanics. Indeed,

contrary to (13) the solution (28) contains positive and negative frequency terms and, as a
consequence, equation (29) is dealing with positive and negative energies (contrary to equation
(11)).

The spin operator, which follows from (14), has the form

−→s 2N =

∣∣∣∣ −→s N 0
0 −→s N

∣∣∣∣ , N = 2s+ 1, (32)

where −→s N are N × N generators of arbitrary spin irreducible representations of SU(2) algebra,

which satisfy the commutation relations
[
sjN, s

ℓ
N

]
= iεjℓnsnN, ε123 = +1.

The generators of the reducible unitary representation of the Poincaré group P, with respect
to which the canonical field equation (29) and the set {ϕ} of its solutions (28) are invariant, are
given by

p̂0 = Γ0
2Nω̂ ≡ Γ0

2N

√
−∆+m2, p̂ℓ = −i∂ℓ, ĵℓn = xℓp̂n − xnp̂ℓ + sℓn2N ≡ m̂ℓn + sℓn2N, (33)

ĵ0ℓ = −ĵℓ0 = x0p̂ℓ − 1

2
Γ0
2N

{
xℓ, ω̂

}
+ Γ0

2N

(−→s 2N ×−→p )ℓ

ω̂ +m
, (34)

where arbitrary spin SU(2) generators −→s 2N = (sℓn2N) have the form (32), Γ0
2N is given in (29).

Note that together with the generators (33), (34) another set of 10 operators commutes with
the operator of equation (29), satisfies the commutation relations (16) of the Lie algebra of
Poincaré group P, and, therefore, can be chosen as the Poincaré symmetry of the model under
consideration. This second set is given by the generators p̂0, p̂ℓ from (33) together with the
orbital parts of the generators ĵℓn, ĵ0ℓ from (33), (34), respectively. In another way this set
follows from the set (22) after the transformation (25), (26).

The calculation of the Casimir operators p2 = p̂µp̂µ, W = wµwµ (wµ is the Pauli–Lubanski
pseudovector) for the fixed value of spin completes the brief description of the model.



5.2. The locally covariant model of the arbitrary spin particle-antiparticle field
The operator, which transform the canonical (FW type) model of the arbitrary spin particle-
antiparticle field into the corresponding locally covariant particle-antiparticle field, is the
generalized FW operator and is given by

V ∓ =
∓−→
Γ 2N · −→p + ω̂ +m√

2ω̂(ω̂ +m)
, V − = (V +)†, V −V + = V +V − = I2N, N = 2s+ 1, (35)

where Γj
2N are known from (30) and Σj

N are the N×N Pauli matrices.
Note that in formulas (35) and in all formulas before the end of the subsection the values

of N are only even. Therefore, the canonical field equation (29) describes the larger number of
multiplets then the generalized Dirac equation (36) given below.

The formulas (36)–(41) below are found from the corresponding formulas (28), (29), (32)–(34)
of canonical field model on the basis of the operator (35).

For the general form of arbitrary spin locally covariant particle-antiparticle field the Dirac-
like equation of motion follows from the equation (29) after the transformation (35) and is given
by [

i∂0 − Γ0
2N(

−→
Γ 2N · −→p +m)

]
ψ(x) = 0. (36)

The general solution has the form

ψ(x) = V −ϕ(x) =
1

(2π)
3
2

∫
d3k

[
e−ikxaN(

−→
k )v−N(

−→
k ) + eikxa∗N̆(

−→
k )v+

N̆
(
−→
k )
]
, (37)

where amplitudes and notation N̆ are the same as in (28);
{
v−N(

−→
k ), v+

N̆
(
−→
k )
}
are 2N-component

Dirac basis spinors with properties of orthonormalisation and completeness similar to 4-
component Dirac spinors from [43].

The spin operator is given by
−→s D = V −−→s 2NV

+, (38)

where operator −→s 2N is known from (32). The explicit forms of few partial cases of spin operators
(38) are given in formulae (259)–(261), (284)–(286), (359) of [1] for the particle-antiparticle
multiplets s=(1,0,1,0), s=(3/2,3/2), s=(2,1,2,1), respectively.

The generators of the reducible unitary representation of the Poincaré group P, with respect
to which the covariant field equation (36) and the set {ψ} of its solutions (37) are invariant,
have the form

p̂0 = Γ0
2N(

−→
Γ 2N · −→p +m), p̂ℓ = −i∂ℓ, ĵℓn = xℓDp̂

n − xnDp̂
ℓ + sℓnD ≡ m̂ℓn + sℓnD , (39)

ĵ0ℓ = −ĵℓ0 = x0p̂ℓ − 1

2

{
xℓD, p̂

0
}
+
p̂0(−→s D ×−→p )ℓ

ω̂(ω̂ +m)
, (40)

where the spin matrices −→s D = (sℓnD ) are given in (38) and the operator −→x D has the form

−→x D = −→x +
i
−→
Γ 2N

2ω̂
−

−→s Γ
2N ×−→p

ω̂(ω̂ +m)
− i−→p (−→Γ 2N · −→p )

2ω̂2(ω̂ +m)
, (41)

where specific spin matrices −→s Γ
2N are given by

−→s Γ
2N ≡ −→s FW =

(
s12N, s

2
2N, s

3
2N

)
=
i

2
(Γ2

2NΓ
3
2N, Γ

3
2NΓ

1
2N, Γ

1
2NΓ

2
2N). (42)



Note that for corresponding partial cases of −→x D in [1] ((267) for s=(1,0,1,0), once more (267)
but for s=(3/2,3/2), (333) for s=(2,0,2,0), (363) for s=(2,1,2,1)) the corresponding −→s Γ

2N are
given by

s = (1, 0, 1, 0) and s = (3/2, 3/2) : −→s Γ
8 ≡

(
s18, s

2
8, s

3
8

)
=
i

2
(Γ2

8Γ
3
8, Γ

3
8Γ

1
8, Γ

1
8Γ

2
8), (43)

for −→x D [1] (267), where the Γj
8 matrices are given in (253),

s = (2, 0, 2, 0) : −→s Γ
12 ≡

(
s112, s

2
12, s

3
12

)
=
i

2
(Γ2

12Γ
3
12, Γ

3
12Γ

1
12, Γ

1
12Γ

2
12), (44)

for −→x D [1] (333), where the Γj
12 matrices are given in (324),

s = (2, 1, 2, 1) : −→s Γ
16 ≡

(
s116, s

2
16, s

3
16

)
=
i

2
(Γ2

16Γ
3
16, Γ

3
16Γ

1
16, Γ

1
16Γ

2
16), (45)

for −→x D [1] (363), where the Γj
16 matrices are given in (353).

It is easy to verify that the generators (39), (40) for any N commute with the operator of
equation (36), and satisfy the commutation relations (16) of the Lie algebra of the Poincaré
group. The last step in the brief description of the model is the calculation of the Casimir
operators p2 = p̂µp̂µ, W = wµwµ (wµ is the Pauli–Lubanski pseudovector) for the fixed value of
spin.

5.3. The example of spin s=(0,0) particle-antiparticle doublet
The completeness of simplest spin multiplets and doublets consideration of [1] is achieved by the
supplementation of this example. The formalism follows from the general formalism of arbitrary
spin after the substitution s=0.

The Schrödinger–Foldy equation of RCQM is given by (11) for N=1, i. e. it is 2-component
equation. The solution is given by (13) for N=1. The Poincaré group P generators, with respect
to which the equation (11) for s=(0,0) is invariant, are given by (17), (18) taken in the form of
2 × 2 matrices with spin terms equal to zero, i. e. the corresponding generators are given by
2× 2 matrices (22).

The corresponding FW type equation of canonical field theory is given by

(i∂0 − σ3ω̂)ϕ(x) = 0, σ3 =

∣∣∣∣ 1 0
0 −1

∣∣∣∣ , ω̂ ≡
√
−∆+m2. (46)

The general solution is given by

ϕ(x) =
1

(2π)
3
2

∫
d3k

[
e−ikxa1(

−→
k )d1 + eikxa∗2(

−→
k )d2

]
. (47)

The Poincaré group P generators, with respect to which the equation (45) and the set {ϕ} of
its solutions (47) are invariant, have the form

p̂0 = σ3ω̂ ≡ σ3
√
−∆+m2, p̂ℓ = −i∂ℓ, ĵℓn = xℓp̂n − xnp̂ℓ, (48)

ĵ0ℓ = −ĵℓ0 = x0p̂ℓ − 1

2
σ3
{
xℓ, ω̂

}
. (49)

Generators (48), (49) are the partial 2 × 2 matrix form of operators (33), (34) taken with the
spin terms equal to zero.



5.4. The example of covariant field equation for spin s=(3/2,3/2) particle-antiparticle doublet
Consider the nontrivial partial example of covariant field equation for arbitrary spin. Such
example is given by covariant field equation for spin s=(3/2,3/2) particle-antiparticle doublet.
This case presents the demonstrative example how new equations can be derived by the
developed in [1] and here methods.

Now contrary to [1] equation for spin s=3/2 is found as the simple partial case of general
equation (36): [

i∂0 − Γ0
8(
−→
Γ 8 · −→p +m)

]
ψ(x) = 0. (50)

Here the Γµ
8 matrices are given by

Γ0
8 =

∣∣∣∣ I4 0
0 −I4

∣∣∣∣ , Γj
8 =

∣∣∣∣ 0 Σj

−Σj 0

∣∣∣∣ , (51)

where Σj are the 4× 4 Pauli matrices

Σj =

∣∣∣∣ σj 0
0 σj

∣∣∣∣ , (52)

and σj are the standard 2× 2 Pauli matrices. The matrices Σj satisfy the similar commutation
relations as the standard 2× 2 Pauli matrices and have other similar properties. The matrices
Γµ
8 (51) satisfy the anticommutation relations of the Clifford–Dirac algebra in the form (24) with

N=4.
Note that equation (50) is not the ordinary direct sum of the two Dirac equations. Therefore,

it is not the complex Dirac–Kahler equation [44]. Moreover, it is not the standard 16-component
Dirac–Kahler equation [45]. Furthermore, for the same reason it is not the spin 3/2 equation
from [29, 30].

The solution of equation (50) is derived as a partial case from the solution (37) of the general
equation (36) and is given by

ψ(x) = V −
8 ϕ(x) =

1

(2π)
3
2

∫
d3k

[
e−ikxbA(

−→
k )v−A(

−→
k ) + eikxb∗B(

−→
k )v+B(

−→
k )
]
, (53)

where A = 1, 4, B = 5, 8 and the 8-component spinors (v−A(
−→
k ), v+B(

−→
k )) are given by (257) in

[1].

The spinors (v−A(
−→
k ), v+B(

−→
k )) satisfy the relations of the orthonormalization and completeness

similar to the corresponding relations for the standard 4-component Dirac spinors, see, e. g.,
[43].

In the covariant local field theory, the operators of the SU(2) spin, which satisfy the

corresponding commutation relations
[
sj8D, s

ℓ
8D

]
= iεjℓnsn8D and commute with the operator[

i∂0 − Γ0
8(
−→
Γ 8 · −→p +m)

]
of equation (50), are derived from the pure matrix operators (279)

of [1] with the help of transition operator V −
8 : −→s 8D = V −

8
−→s 8V

+
8 . The explicit form of the

transition operator V ∓
8 is given in (249)–(251) of [1]. The explicit form of these s=(3/2,3/2)

SU(2) generators was given already by formulae (284)–(287) in [1].
The equations on eigenvectors and eigenvalues of the operator s38D (286) in [1] follow from

the equations (280) of [1] and the transformation V −
8 . In addition to it, the action of the

operator s38D (286) in [1] on the spinors (v−A(
−→
k ), v+B(

−→
k )) (257) in [1] also leads to the result

s38Dv
−
1 (

−→
k ) = 3

2v
−
1 (

−→
k ), s38Dv

−
2 (

−→
k ) = 1

2v
−
2 (

−→
k ), s38Dv

−
3 (

−→
k ) = −1

2v
−
3 (

−→
k ), s38Dv

−
4 (

−→
k ) = −3

2v
−
4 (

−→
k ),

s38Dv
+
5 (

−→
k ) =

3

2
v+5 (

−→
k ), s38Dv

+
6 (

−→
k ) =

1

2
v+6 (

−→
k ), s38Dv

+
7 (

−→
k ) = −1

2
v+7 (

−→
k ), s38Dv

+
8 (

−→
k ) = −3

2
v+8 (

−→
k ).

(54)



In order to verify equations (54) the identity (ω̃+m)2 + (
−→
k )2 = 2ω̃(ω̃+m) is used. In the case

v+B(
−→
k ) in the expression s38D(

−→
k ) (286) of [1] the substitution

−→
k → −−→

k is made.
The equations (54) determine the interpretation of the amplitudes in solution (53).

Nevertheless, the direct quantum-mechanical interpretation of the amplitudes should be made in
the framework of the RCQM and is already given in [1] (section 14 in paragraph after equations
(183)).

The explicit form of the P-generators of the fermionic representation of the Poincaré group
P, with respect to which the covariant equation (50) and the set {ψ} of its solutions (53)
are invariant, is derived as a partial case from the generators (39), (40). The corresponding
generators are given by

p̂0 = Γ0
8(
−→
Γ 8 · −→p +m), p̂ℓ = −i∂ℓ, ĵℓn = xℓDp̂

n − xnDp̂
ℓ + sℓn8D ≡ m̂ℓn + sℓn8D, (55)

ĵ0ℓ = −ĵℓ0 = x0p̂ℓ − 1

2

{
xℓD, p̂

0
}
+
p̂0(−→s 8D ×−→p )ℓ

ω̂(ω̂ +m)
, (56)

where the spin matrices −→s 8D = (sℓn8D) are given by (284)–(286) in [1] and the operator −→x D has
the form

−→x D = −→x +
i
−→
Γ 8

2ω̂
−

−→s Γ
8 ×−→p

ω̂(ω̂ +m)
− i−→p (−→Γ 8 · −→p )

2ω̂2(ω̂ +m)
, (57)

with specific spin matrices −→s Γ
8 given in (43).

It is easy to verify that the generators (55), (56) with SU(2) spin (284)–(286) from [1] commute

with the operator
[
i∂0 − Γ0

8(
−→
Γ 8 · −→p +m)

]
of equation (50), satisfy the commutation relations

(16) of the Lie algebra of the Poincaré group and the corresponding Casimir operators are given

by p2 = p̂µp̂µ = m2I8, W = wµwµ = m2−→s 2
8D = 3

2

(
3
2 + 1

)
m2I8.

The conclusion that equation (50) describes the local field of fermionic particle-antiparticle
doublet of the spin s=(3/2,3/2) and mass m > 0 (and its solution (53) is the local fermionic
field of the above mentioned spin and nonzero mass) follows from the analysis of equations (50)
and the above given calculation of the Casimir operators p2, W = wµwµ.

6. Brief conclusions
Hence, the equation (50) describes the spin s=(3/2,3/2) particle-antiparticle doublet on the same
level, on which the standard 4-component Dirac equation describes the spin s=(1/2,1/2) particle-
antiparticle doublet. Moreover, the external argument in the validity of such interpretation is
the link with the corresponding RCQM of spin s=(3/2,3/2) particle-antiparticle doublet, where
the quantum-mechanical interpretation is direct and evident. Therefore, the fermionic spin
s=(3/2,3/2) properties of equation (50) are proved.

Contrary to the bosonic spin s=(1,0,1,0) properties of the equation (50) found in [1] (section
22), the fermionic spin s=(1/2,1/2,1/2,1/2) properties of this equation are evident. The fact that
equation (50) describes the multiplet of two fermions with the spin s=1/2 and two antifermions
with that spin can be proved much more easier then the above given consideration. The proof is
similar to that given in the standard 4-component Dirac model. The detailed consideration can
be found in sections 7, 9, 10 of [1]. Therefore, equation (50) has more extended property of the
Fermi–Bose duality then the standard Dirac equation [35–39]. This equation has the property
of the Fermi–Bose triality. The property of the Fermi–Bose triality of the manifestly covariant
equation (50) means that this equation describes on equal level (i) the spin s=(1/2,1/2,1/2,1/2)
multiplet of two spin s=(1/2,1/2) fermions and two spin s=(1/2,1/2) antifermions, (ii) the spin
s=(1,0,1,0) multiplet of the vector and scalar bosons together with their antiparticles, (iii) the
spin s=(3/2,3/2) particle-antiparticle doublet.



It is evident that equation (50) is new in comparison with the Pauli–Fierz [25], Rarita–
Schwinger [26] and confirmed by Davydov [27] equations for the spin s=3/2 particle. Contrary
to 16-component equations from [25–27] equation (50) is 8-component and does not need any
additional condition. Formally equation (50) looks like to have some similar features with
the Bargman–Wigner equation [29] for arbitrary spin, when the spin value is taken 3/2. The

transformation V ∓
8 = ∓

−→
Γ 8·−→p +ω̂+m√

2ω̂(ω̂+m)
looks like the transformation of Pursey [30] in the case of

s=3/2. Nevertheless, the difference is clear. Equation (50) is not the ordinary direct sum of the
two Dirac equations. Furthermore, the given here model is derived from the first principles of
RCQM (not from the FW type representation of the canonical field theory). Our consideration
is original and new. The link with corresponding RCQM, the proof of the symmetry properties
and relativistic invariance, the well defined spin operator (284)–(286) in [1], the features of the
Fermi–Bose duality (triality) of the equation (50), the interaction with electromagnetic field and
many other characteristics are suggested firstly.

Interaction, quantization and Lagrange approach in the above given spin s=(3/2,3/2) model
are completely similar to the Dirac 4-component theory and standard quantum electrodynamics.
For example, the Lagrange function of the system of interacting 8-component spinor and
electromagnetic fields (in the terms of 4-vector potential Aµ(x)) is given by

L = −1

4
FµνFµν+

i

2

(
ψ(x)Γµ

8

∂ψ(x)

∂xµ
− ∂ψ(x)

∂xµ
Γµ
8ψ(x)

)
−mψ(x)ψ(x)+qψ(x)Γµ

8ψ(x)Aµ(x), (58)

where ψ(x) is the independent Lagrange variable and ψ = ψ†Γ0
8 in the space of solutions {ψ}.

In Lagrangian (101) Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor in the terms of
potentials, which play the role of variational variables in this Lagrange approach. Thus, the
difficulties mentioned in [28] are absent here.

Therefore, the covariant local quantum field theory model for the interacting particles with
spin s=3/2 and photons can be constructed in complete analogy to the construction of the
modern quantum electrodynamics. This model can be useful for the investigations of processes
with interacting hyperons and photons.

Other results mentioned in abstract are proved similarly. The consideration of these results
is presented in [1] and [2].
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