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Abstract. Quantum tunnelling in two-well, triple-well and multi-well potentials is studied
analytically with the aid of exact propagators Kσ(x, y; t) corresponding to rational extensions
Hσ = Hosc + ∆V σ of the Harmonic oscillator.

Introduction
One of the main reason to develop new sophisticated analytical models is to use them as tests

for the various approximations or as the starting point for perturbation methods. Due to the
tunnelling, quantum evolution in the multi-well potentials becomes very complicated. Moreover,
it is difficult to use perturbation theory or WKB approach. For instance, calculating path
integral for a symmetric two-well potential one has to take into account instanton contributions
[1].

The aim of this paper is to present the well-known rationally extended Harmonic oscillators
as suitable analytical models for the description of quantum evolution in multi-well potentials.
In this respect we follow the idea of works [2, 3], where wave packet dynamics and tunnelling
for the oscillator’s polynomial SUSY partners were studied with the aid of SUSY QM relations
between propagators. We will show that propagators of monodromy free rational extensions of
the Harmonic oscillator are expressed in the elementary functions only.

An important property of rational extensions is related with the analytical structure of
wave-functions in the complex plane. There is a fundamental theorem which states that all
monodromy free rational extensions of the Harmonic oscillator are constructed by a finite chain
of level-removing Darboux transformations [4]. Hence, the general form of the corresponding
Hamiltonian reads

Hσ = −∂2xx +
x2

4
− 2∂2xx(ln Wr[Heσ(x), x]) + 2M , (1)

where σ is a string of increasing integers which label removed energy levels and

Heσ(x) = He{n1,n2,...,n2M}(x) = {Hen1(x),Hen2(x), . . . ,Hen2M (x)} .



Our suggestion is based on the following analytical structure of the corresponding propagators

Kσ(x, y; t) = Kosc(x, y; t)

σ[[−1]]+1∑
k=0

Qσk(x, y)e−ikt

σ[[−1]]+1∑
k=0

Qσk(x, y)

(2)

where symmetric polynomials Qσk(x, y) = Qσk(y, x) can be determined iteratively by a finite
number of steps. These polynomials provide a non-linear connection between Hermite and
exceptional Hermite polynomials.

Despite to the fact that rational extensions of harmonic oscillator are well studied, some
important questions still wait an answers. For instance, it worth to know how the shape of
a potential (the number and the structure of wells and barriers) depends on the parameters
of extension (i.e. on the sequence σ of deleted levels). Regarding the shape of potentials
V σ, it is known that V {k,k+1} is a k-well potential [5]. This “landscape” problem for the
rational extensions of the Harmonic oscillator is closely related to the pole configurations of the
corresponding potentials, which are defined by zeros of wronskians Wr[Heσ(x), x]. As it was
shown in [6] these zeros obey the Calogero relations. Some recent advantages in this direction
come from studies of “locus” (the term introduced by Airault, McKean and Moser) [7, 8]. In
particular, for a certain class of sequences σ, a simple qualitative relation is observed between
the shape of the corresponding Young diagram and the pattern of zeros of the Wronskian of
the corresponding Hermite polynomials. It is interesting that zeros of exceptional Hermite
polynomials define vortex configurations for quadrupole background flow [8].

The paper is organized as follows. In the first section we present a non-linear connection
formula between eigen-projectors of the Harmonic oscillator and its rational extensions.
Applying this formula to the propagator expansion we obtain analytical expressions for
propagators Kσ. In the next sections we will analyse two-well and triple-well potentials as
well the corresponding propagators. In a conclusion possible applications are discussed.

1. Rationally extended propagators
1.1. Non-linear connection coefficients

Consider Harmonic oscillator and its (monodromy free) rational extension

Hoscψn(x) =

(
n+

1

2

)
ψn(x) , Hσψσn(x) =

(
n+

1

2

)
ψσn(x) . (3)

First of all, two Hamiltonians are almost isospectral, that is specHσ ⊂ specHosc and
specHosc \ specHσ = σ.

It is well known that bound state wave functions for the rationally extended Harmonic
oscillator

ψσn(x) =
NnHeσn(x)

W (x)
e

−x2
4 =

hσn(x)

W (x)
e

−x2
4 , (4)

are related with the oscillator bound state wave functions

ψn(x) = pnHen(x)e−
x2

4 , pn =
(
n!
√

2π
)− 1

2
, (5)

by a Darboux transformation. Here and in what follows, together with standard (probabilistic)
Hermite polynomials Hen(x) and exceptional Hermite polynomials

Heσn(x) = Wr[Heσ∪{n}(x), x] , (6)



we will use their normalized versions hn(x) and hnσ(x)

hn(x) = pnHen(x) , (7)

hσn(x) = NnWr[hσ∪{n}(x), x] (8)

where a normalization factor reads

Nn =


(

2M∏
j=1

(n− σ[[j]])

)− 1
2

, n /∈ σ ,

0 , n ∈ σ .
(9)

Finally, the compact notations for the following Wronskians are in order

W (x) = Wr[Heσ(x), x] , w(x) = Wr[hσ(x), x] . (10)

Recently we discovered an alternative possibility to express exceptional Hermite polynomials
from standard ones using

Non-linear connection Lemma [9]. Given a Krein-Adler sequence σ = {k1, k1+1 . . . , kM , kM+
1}, the corresponding family of (formally normalized) exceptional Hermite polynomials hσn(x)
obeys the following relation

σ[[−1]]+1∑
k=0

hm−k(x)hm−k(y)Qσk(x, y) = hσm(x)hσm(y) , (11)

where symmetric connection polynomials Qσk are given by

Qσk(x, y) =
1

h0(x)h0(y)

hσk(x)hσk(y)−
k∑
j=1

Qσk−j(x, y)hj(x)hj(y)

 ,

0 ≤ k ≤ σ[[−1]] + 1 , (12)

and sum of connection polynomials is equal to product of Wronskians w(x)w(y) defined above
in (10)

σ[[−1]]+1∑
k=0

Qσk(x, y) = w(x)w(y) . (13)

The proof of this lemma was given in [9].
It is also convenient to rewrite these relations in terms of the corresponding wave functions.

Introducing projectors

Πn(x, y) = ψn(x)ψn(y) , Πσ
n(x, y) = ψσn(x)ψσn(y) , (14)

we write (11) as follows

σ[[−1]]+1∑
k=0

Πm−k(x, y)Qσk(x, y)

w(x)w(y)
= Πσ

m(x, y) . (15)



There are also several equivalent representations of non-linear connection lemma in a form
of some matrix equations. For instance, σ[[−1]] + 2 dimensional vector ~Qσ can be defined as a
solution of the following matrix equation

Π0 0 0 . . . 0
Π1 Π0 0 . . . 0
Π2 Π1 Π0 0 0
. . . . . . . . . . . . 0

Π2M+1 Π2M . . . . . . Π0




Qσ0
Qσ1
Qσ2
. . .

Qσ2M+1

 = w(x)w(y)


Πσ

0

Πσ
1

Πσ
2

. . .
Πσ

2M+1

 , (16)

defined by a Toeplitz matrix Π̂t and a vector ~Πσ with 2M vanishing components. That is, the
vector ~Qσ yields

~Qσ = w(x)w(y)Π̂−1t
~Πσ .

From another hand, we have the following (semi-infinite) matrix equation



Qσ0 0 0 0 0 . . .
Qσ1 Qσ0 0 0 0 . . .
Qσ2 Qσ1 Qσ0 0 0 . . .
. . . . . . . . . . . . 0 . . .

Qσσ[[−1]]+1 Qσσ[[−1]] . . . . . . Qσ0 . . .

0 Qσσ[[−1]]+1 Qσσ[[−1]] . . . . . . . . .

. . . . . . . . . . . . . . . . . .





Π0

Π1

Π2

. . .

. . .

. . .

. . .

. . .


= w(x)w(y)



Πσ
0

Πσ
1

Πσ
2

. . .

. . .

. . .

. . .

. . .


, (17)

1.2. Rational ansatz for the propagators
Combining non-linear connection (15) between projectors and expansion of propagators

Kosc(x, y; t) = λ
1
2

∞∑
n=0

λnΠn(x, y) , λ = e−it , (18)

Kσ(x, y; t) = λ
1
2

∑
n∈N\σ

λnΠσ
n(x, y) , (19)

one can obtain closed expression for the propagator Kσ

Kσ(x, y; t) = Kosc(x, y; t)

σ[[−1]]+1∑
k=0

Qσk(x, y)e−ikt

σ[[−1]]+1∑
k=0

Qσk(x, y)

(20)

in terms of elementary functions.

2. Exact propagators for two-well rational extensions of the Harmonic oscillator
The simplest two-well rational extension of the Harmonic oscillator reads (see also Fig. 1)

V {2,3}(x) =
x2

4
+ 2

(
1 + 4x2

x4 − 9

(x4 + 3)2

)
. (21)

This is a so-called ”shallow” two-well potential since it holds only one pair of bound states below
V {2,3}(0).



k Q
{2,3}
k (x, y)

0 (1+x2)(1+y2)
4π

1 −xy(−3+x2y2)
6π

2 −3−12x2y2+3y4+3x4+x4y4

24π

3 xy(−3+x2y2)
6π

4 (x2−1)(y2−1)
4π

Table 1. Sequence of connection polynomials Q
{2,3}
k (x, y)

Explicit expressions of connection polynomials Q
{2,3}
k (x, y) are given in Table 2. Hamiltonian

H{2,3} has the quasi-equidistant spectrum, En = n+ 1
2 , n ∈ N0 \ {2, 3}. That is the ground and

the first excited states are separated from the equidistant part of the spectrum by a gap energy
∆Eg = 3. Using connection polynomials we can construct propagator K{2,3}(x, y; t) by rational
ansatz (20). It reads explicitly

K{2,3} = e−2itKosc(x, y; t)

(
1−

8i sin t
[
xy(x2y2 − 3)− 3(x2 + y2) cos t− 3i(x2y2 + 1) sin t

]
(3 + x4)(3 + y4)

)
.

Propagator K{2,3}(x, y; t) completely describes wave packet dynamics in the potential (21).
In general a wide class of two-well extensions (see Fig. 1) can be classified by two parameters.

The first parameter is the splitting ∆Es = 2s+ 1, s = 0, 1, . . . of the ground state and the first
excited state (it is always an odd integer). The second parameter is the gap energy ∆Eg = 2g+1,
g = 1, 2, . . . between the first excited state and the second excited state. For instance, when
σ = {2, 3} we have ∆Es = 1, s = 0, and ∆Eg = 3, g = 1. Numerical studies suggest that when

s ≥ 2g ,

two minima will collapse. An example of collapsing wells when g is fixed and s is increased can
be seen in the first column of Fig. 1.

A two-well rational extension of the Harmonic oscillator which corresponds to s = 1, g = 1
gives the following potential

V {1,2,4,5}(x) =
x2

4
+ 4− 80(5 + 10x2 + 7x4)

(5 + 5x2 + 5x4 + x6)2
+

12(5 + x4)

5 + 5x2 + 5x4 + x6
. (22)

The corresponding connection polynomials which allow to calculate the propagator K{1,2,4,5}

are listed in the Table 2.
It should be noted that the parametrization of rationally extended Harmonic oscillators by

the splitting energy ∆Es and the gap energy ∆Eg suggests a possible application to an analytical
description of flux’s qubit time evolution. Indeed, in general a Josephson qubit behaves like a
nonlinear resonator formed from the Josephson inductance and its junction capacitance [10].
The system has many energy levels, nevertheless the operating space of the qubit must contain
only the two lowest states. As a result, [11] transition frequencies between the qubit ground



Figure 1. The rationally extended Harmonic oscillators with the splitting energy ∆Es = 2s+1
and gap energy ∆Eg = 2g+ 1. Energies of first 4 bound states are plotted by dashed horizontal
lines. The spectrum is equidistant starting from the second excited state.

k Q
{1,2,4,5}
k (x, y)

0 9(1+x2)(1+y2)
π2

1 −9xy(1+x2)(1+y2)
π2

2 −9(1+x2)(1+y2)(y2+x2+y2x2−1)
2π2

3 9xy(−65−30(x2+y2)+5(x4+y4)+10(x4y2+x2y4)+3x4y4)
20π2

4 9(−5+5(x2+y2)+15(x4+y4)+5(x6+y6)−95x2y2−35(x4y2+x2y4)+5(x6y2+x2y6)−5x4y4+5(x6y4+x4y6)+x6y6)
40π2

5 9xy(−45−10(x2+y2)+5(x4+y4)+20x2y2+10(x4y2+x2y4)+3x4y4)
20π2

6 9(x4+2x2−1)(y4+2y2−1)
π2

Table 2. Sequence of connection polynomials Q
{1,2,4,5}
k (x, y)

and first excited states should differ from the frequency of transition between the qubit first and
second excited states. The Hamiltonian which describes flux qubit reads

Hfq(p, δ) =
p2

2C
− I0Φ0

2π
cos δ +

1

2L

(
Φ− Φ0

2π
δ

)2

, Φ0 =
h

2e
. (23)

The corresponding potential can be fitted at low energies by tuning the splitting and the
gap energy of rational extensions of Harmonic oscillator. With the analytical model at hands



Figure 2. Transition probabilities defined by |K{3,4}(x, y; t)|2.

which completely describes all energies and evolution of arbitrary initial state one can optimize
efficiency of a flux qubit.

3. Exact propagators for three-well rational extensions of the Harmonic oscillator
The simplest the three-well rational extension of the Harmonic oscillator reads

V {3,4}(x) =
x2

4
+ 2− 1296(x4 − 2x2 − 1)

(9 + 9x2 − 3x4 + x6)2
+

12(x4 − 15)

9 + 9x2 − 3x4 + x6
(24)

Explicit expressions of connection polynomials Q
{3,4}
k (x, y) are given in Table 3. Hamiltonian

H{3,4} has the quasi-equidistant spectrum, En = n + 1
2 , n ∈ N0 \ {3, 4}. That is there exists

a group of three levels (ground, first and second excited states) separated from the equidistant
part of the spectrum by a gap energy ∆Eg = 3.

Using connection polynomials we can construct propagator K{3,4}(x, y; t) by rational ansatz
(20). In Fig. 2 we visualize |K{3,4}(x, y; t)|2 at different moments of time to show tunnelling
pattern.

In general a wide class of three-well extensions (see Fig. 3) can be classified by three
parameters. There are two splitting energies ∆Es = Eσ1 −Eσ0 = 2s+ 1, and ∆Eh = Eσ2 −Eσ1 =
2h+1 s, h = 0, 1, . . ., and the gap energy ∆Eg = Eσ3 −Eσ2 2g+1, g = 1, 2, . . .. For instance, when
σ = {3, 4} we have ∆Es = ∆Eh = 1, s == h = 0, and ∆Eg = 3, g = 1. One can see in Fig. 3
that when g is fixed, wells tend to collapse with increasing parameters s and h. Unfortunately
we didn’t find any simple criteria to distinguish degenerate and non-degenerate cases.



k Q
{3,4}
k (x, y)

0 (3+x4)(3+y4)
24π

1 −xy(9−6y2+3y4+x4(3−2y2+y4)−2x2(3+2y2+y4))
48π

2 27−27x2−45x4+9x6−27y2+81x2y2+9x4y2+9x6y2−45y4+9x2y4−21x4y4−3x6y4+9y6+9x2y6−3x4y6+x6y6
288π

3 xy(−27+6x2+3x4+6y2−8x2y2−2x4y2+3y4−2x2y4+x4y4)
48π

4 −3−6x2+x4−6y2+2x4y2+y4+2x2y4−x4y4
16π

5 xy(x2−3)(y2−3)
12π

Table 3. Sequence of connection polynomials Q
{3,4}
k (x, y)

Figure 3. The rationally extended Harmonic oscillators with the splitting energies ∆Es = 2s+1,
∆Eh = 2h + 1, and gap energy ∆Eg = 2g + 1, (g = 1). Energies of first 5 bound states are
plotted by dashed horizontal lines. The spectrum is equidistant starting from the third excited
state.

4. Conclusions
Using the rational form of the propagators

Kσ(x, y; t) = Kosc(x, y; t)

σ[[−1]]+1∑
k=0

Qσk(x, y)e−ikt

σ[[−1]]+1∑
k=0

Qσk(x, y)

(25)

we present a new example of Feynman path integrals that can be calculated analytically [12].



Given a sequence σ of levels deleted by Darboux transformation, the rationally extended
oscillator potential V σ appears to be a multi-well potential with Nw minima, where

Nw ≤ σ[[−1]] + 1− |σ| . (26)

The number Nw of classical vacua (stable equilibrium of V σ) is related with the structure of
non-equidistant part of the spectrum. We established that two-level non-equidistant part of
spectrum corresponds to the two well potential when the splitting parameter s, ∆Es = 2s = 1
is smaller than the doubled gap parameter g, ∆Eg = 2g+ 1, that is when s < 2g. The resulting
two-well potentials and corresponding propagators can be used to model dynamics of a flux
qubit [13].

Analytical propagators for the two-well and triple-well potentials may be applied also
to studies of oscillations and self-trapping of BEC or to dynamics of a single trapped ion
[14, 15, 16, 17, 18].
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