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Abstract. We point out a difficulty that arises in extending the group theoretical approach
that deductively establish the quantum theory of a free particle to the case of an interacting
particle. Then we develop an approach which overcomes this difficulty. The result is a theory
of an interacting particle where the standard theory is characterized by specific covariance
properties related to the interaction.

1. Introduction
A very satisfactory approach to the Quantum Theory of a free particle can be accomplished
by following group theoretical methods, developed in particular by E.P. Wigner and G.W.
Mackey. The key starting point is that Galilei’s group G, within a non-relativistic theory, is
a group of symmetry transformations for a free particle; then Wigner’s theorem [1],[2] on the
representation of symmetries and Mackey’s imprimitivity theorem [3],[4],[5] apply. In so doing
the specific Quantum Theory of a free particle is explicitly obtained [3],[6],[7],[8],[9] without
invoking canonical quantization, but, instead, by means of a mathematical deduction based on
symmetry principles. We recall the main mathematical tools that allow for such an approach in
section 2, while the necessary formal implications of the concept of Galileian transformations in
the Quantum Theory of a particle are outlined in section 3.

But the Galileian transformations are not symmetries for an interacting particle, so that
an obstacle is found in extending the approach to this case. To overcome this difficulty, the
approaches that in the literature extend the cited group theoretical method to the interacting
case (e.g., [7],[8],[9]) adopt, among others, the following assumption.

(P) Each Galileian transformation g ∈ G is assigned a unitary operator Ug which realizes
the corresponding quantum transformations of states and observables according to
ρ g−→UgρU−1

g and A g−→UgAU−1
g ; the correspondence g → Ug is a projective representation.

Now, in section 4 we show that (P) forces the hamiltonian operator into the form H =
− 1

2µ
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)
+ Φ(x1, x2, x3). Therefore a Quantum Theory where (P) is assumed

cannot describe all empirically known interactions; in particular it excludes electromagnetic
interactions. An empirically more adequate approach must abandon assumption (P).

Then in section 5 we undertake the task of establishing the Quantum Theory of an interacting
particle through a group theoretical approach, but without assumption (P). The difficulties



raised by the loss of symmetry are addressed through a theoretical development based on the
passive interpretation of the Galileian transformations and on the concept of σ-conversion.
We find that the form of the dynamical equation is constrained by the covariance properties
preserved by the σ-conversion admitted by the interaction; in particular, we exactly identify
which covariance properties characterize electromagnetic interaction among all possible ones.

2. Group theoretical key results
Here we recall the main mathematical tools of the cited group theoretical approach.

2.1. Basic achievements
Given the Hilbert space H of the Quantum Theory of a physical system, we shall make use of
the following operator’s structures.

- The set Ω(H) of all self-adjoint operators of H, which represent quantum observables.
- The complete, ortho-complemented lattice Π(H) of all projections operators of H, i.e.

quantum observables with possible outcomes in {0, 1}.
- The set Π1(H) of all rank one orthogonal projections of H.
- The set S(H) of all density operators of H, which represent quantum states.
- The set U(H) of all unitary operators of the Hilbert space H.

The main mathematical tools will be used in this work are the imprimitivity theorem of Mackey
and Wigner’s representation theorem.

Mackey’s imprimitivity theorem is a representation theorem for imprimitivity systems relative
to projective representations [4]. The following definition recalls the notion of projective
representation.

Definition 2.1. Let G be a separable, locally compact group with identity element e. A
correspondence U : G → U(H), g → Ug, with Ue = 1I, is a projective representation of G if the
following conditions hold.

i) A complex function σ : G × G → C such that |σ(g1, g2)| = 1 for all g1, g2 ∈ G, called
multiplier, exists such that Ug1g2 = σ(g1, g2)Ug1Ug2 ;

ii) for all φ, ψ ∈ H, the mapping g → 〈Ugφ | ψ〉 is a Borel function in g.

A projective representation with multiplier σ is called σ-representation.
A projective representation is said to be continuous if for any fixed ψ ∈ H the mapping

g → Ugψ from G into H is continuous with respect to g.

Let E be the Euclidean group, i.e. the semi-direct product E = R3©s SO(3) between the group
of spatial translations R3 and the group of spatial proper rotations SO(3); each transformation
g ∈ E bi-univocally corresponds to the pair (a, R) ∈ R3×SO(3) such that Rx+ a ≡ g(x) is the
result of the transformation of the spatial point x = (x1, x2, x3) by g. The general imprimitivity
theorem is an advanced mathematical result, but its formulation becomes very simple when
adapted to the case of the Euclidean group E , that is the case we are interested to. Then we
introduce the concept of imprimitivity system and the theorem for this simple case.

Definition 2.2. Let H be the Hilbert space of a σ-representation g → Ug of the Euclidean
group E . A projection valued (PV) measure E : B(R3) → Π(H), ∆ → E(∆) is an imprimitivity
system for the σ-representation g → Ug if the relation

UgE(∆)U−1
g = E(g(∆)) ≡ E(R(∆) + a)

holds for all (a, R) ∈ E .



Mackey’s theorem of imprimitivity. If a PV measure E : B(R3) → Π(H) is an imprimitivity
system for a continuous σ-representation g → Ug of the Euclidean group E , then a σ-
representation L : SO(3) → U(H0) exists such that, modulo a unitary isomorphism,

(M.1) H = L2(R3,H0),
(M.2) (E(∆)ψ)(x) = χ∆(x)ψ(x), where χ∆ is the characteristic functional of ∆,

(M.3) (Ugψ)(x) = LRψ(g−1(x)) ≡ LRψ(R−1x−R−1a), for every g = (a, R) ∈ E .

In the literature different equivalent formulations of Wigner’s theorem have been proved
[2],[11]. Here we formulate those “Wigner’s’ theorems” we need for our work.

Wigner’s theorem 1. If S(1) : S(H) → S(H) and S(2) : Ω(H) → Ω(H) are bijective mappings
such that

Tr(S(1)[ρ]S(2)[A]) = Tr[ρA] (1)

holds for all (ρ,A) ∈ S(H) × Ω(H) for which Tr(ρA) exists, then either a unitary operator or
an anti-unitary operator U of H exists such that S(1)[ρ] = UρU∗ and S(2)[A] = UAU∗ for all
(ρ,A) ∈ S(H)× Ω(H), unique up a phase factor.

Wigner’s theorem 2. If S : Π(H) → Π(H) is an automorphism of Π(H), i.e. if it is a bijective
mapping such that

E1 ≤ E2 ⇔ S[E1] ≤ S[E2] and S[E⊥] = (S[E])⊥, ∀E1, E2, E ∈ Π(H),

then either a unitary operator or an anti-unitary operator U of H exists such that S(E) = UEU∗
for all E ∈ Π(H), unique up a phase factor.

2.2. Quantum theoretical implications
Wigner’s theorem has very important implications in Quantum Theory. We outline those of
interest for our aims.

Let g → Ûg be every continuous projective representation of Galilei’s group G, i.e. the group
generated by E and by Galileian velocity boosts. Let T1 ⊆ G be the abelian sub-group of spatial
translations along the x1 axis. If τ1(a) denotes the translation (x1, x2, x3) → (x1 + a, x2, x3),
then we have τ1(a)τ1(b) = τ1(a+b), so that Ûτ1(a+b) = σ (τ1(a), τ1(b)) Ûτ1(a)Ûτ1(b). The arbitrary

phase factor of each Ûτ1(a) can be chosen so that, according to Stone’s theorem, Ûτ1(a) = e−iP̂1a,
where P̂1 is a self-adjoint operator called the hermitean generator of the one parameter unitary
sub-group {e−iP̂1a, a ∈ R} ⊆ U(H). Now, the one-parameter abelian sub-groups Tα,Rα,
Bα of spatial translation, spatial rotations and Galileian boosts, relative to axis xα, are all
additive; then the argument used for T1 can be repeated to establish the existence of nine
hermitean generators P̂α, Ĵα, Ĝα, α ∈ {1, 2, 3}, of the nine one-parameter unitary subgroups
{e−iP̂αaα , a ∈ R}, {e−iĴαθα , θα ∈ R}, {e−iĜαuα , uα ∈ R} representing the sub-groups Tα,Rα,
Bα according to the projective representation g → Ûg of the Galilei’s group G. The structural
properties of G as a Lie group imply the validity of the following commutation relations [9].

(i) [P̂α, P̂β] = 0, (ii) [Ĵα, P̂β] = iε̂αβγP̂γ , (iii) [Ĵα, Ĵβ] = iε̂αβγ Ĵγ ,
(iv) [Ĵα, Ĝβ] = iε̂αβγĜγ , (v) [Ĝα, Ĝβ] = 0, (vi) [Ĝα, P̂β] = iδαβµ1I, (2)

where ε̂α,β,γ is the Levi-civita symbol εα,β,γ restricted by the condition α 6= γ 6= β, while µ is a
non-zero real number which characterizes the projective representation.

Another important achievement implied by Wigner’s theorem is the general evolution law of
Quantum Theory [5],[6] with respect to a homogeneous time:

ρt = Ut = e−iHtρeiHt and
d

dt
A(t) ≡ Ȧ(t) = i[H, A(t)]. (3)



3. Galileian quantum transformations
In this section we recall the concept of quantum transformation corresponding to a Galileian
transformation g ∈ G according to the active interpretation.

In correspondence with each Galileian transformation g ∈ G we can conceive two mappings
R

(1)
g and R

(2)
g which transform quantum states and quantum observables, respectively, according

to the active interpretation of the transformation:

ρ → R(1)
g [ρ], A → R(2)

g [A]. (4)

For instance, if h ∈ G is a pure velocity boost characterized by velocity parameters (u1, u2, u3) ≡
u, then R

(2)
h [A] is meant to be the observable whose measurement apparatus hA is identical to

an apparatus A that measures A, also for its location, but it is endowed with a constant velocity
u with respect to A.

If the theory is specializaed to a localizable particle, then three commuting quantum
observables Q = (Q1, Q2, Q3), the position observables, exist such that R

(2)
g [Q] = g−1(Q),

where the function g : R3 → R3, x → g(x) defines how g ∈ G transforms spatial points x.

Remark 3.1. The transformation of the position at time t, i.e. of Q(t) = eiHtQe−iHt, requires
a function gt different1 from g; in general, the following covariance relations hold.

(i) R(2)
g [Q(t)] = g−1

t (Q(t)); (ii) in particular, R(2)
g [Q] = g−1(Q). (5)

If all transformations g ∈ G are symmetry transformations for the quantum system, further
conditions can be implied in its Quantum Theory. First of all, R

(1)
g and R

(2)
g have to be bijective

on S(H) and Ω(H), respectively. Furthermore, the following statement holds.

R(1)
g1g2

= R(1)
g1
◦R(1)

g2
and R(2)

g1g2
= R(2)

g1
◦R(2)

g2
, for all g1g2 ∈ G. (6)

The symmetry’s character of g entails that the expected values of observables do not change
if both the quantum state and the observable are transformed by the same symmetry
transformation; then, whenever Tr(ρA) exists, the following statement holds for every g ∈ G.

Tr(R(1)
g [ρ]R(2)

g [A]) = Tr(ρA). (7)

4. The interacting particle problem
For a free particle, the validity of (7) makes possible to apply Wigner’s theorem 1, so that for
every g ∈ G an operator Ug exists such that R

(1)
g [ρ] = UgρU∗

g and R
(2)
g [A] = UgAU∗

g ; together
with (6), these relations imply that the restriction to E of g → Ug is a projective representation
[5]. Then, the relation UgQU−1

g = g−1(Q) follows from (5.ii); it entails that the spectral PV
measure of Q is an imprimitivity system [5]; therefore we can apply Mackey’s theorem. In so
doing, to each choice of the inducing representation L in Mackey’s theorem and of µ in (2), there
corresponds a different theory. The simplest choice, i.e. L : SO(3) → C, L(R) = 1, identifies
H = L2(R3) as the Hilbert space of the theory, and the position operators as (Qαψ) = xαψ(x);
moreover, by making use of Galileian invariance, valid for a free particle, it can be proved that
the form of the hamiltonian operator must be H = − 1

2µ

∑3
α=1

∂2

∂x2
α
. Hence, the simplest theory

1 For instance, the pure boost h ∈ G characterized by a velocity u = (u, 0, 0), does not change the position at all;

hence h(x) = x, i.e. R
(2)
h (Q) = h−1(Q) = Q. But Q(t) represents the position measured with a delay t, therefore

R
(2)
h [Q(t)] = (Q

(t)
1 − ut, Q2, Q3) ≡ ht(Q

(t)), where ht(x) = (x1 − ut, x2, x3).



deduced from symmetry principles by the group theoretical approach is the standard Quantum
Theory of a spin-0 free particle.

If the system is an interacting particle, then the group of Galileian transformations is not a
group of symmetry transformations, so that conditions (6) and (7) fail to hold and we find an
obstacle in extending the group theoretical approach to the interacting particle. However, in
the literature several proposals can be found [5],[7],[9] where the group theoretical methods are
extended to the interacting case. The aforesaid obstacles are overcome by assuming, more or
less implicitly, that the following statement holds (e.g., see [5], page 201 and [7], page 236).

(P) Each Galileian transformation g is represented in the formalism of the Quantum Theory by
a unitary or anti-unitary operator Ug in such a way that

i) R
(2)
g [A] = UgAU∗

g is the result of the active transformation of the observable A by g;

ii) R
(2)
g1g2 = R

(2)
g1 ◦R

(2)
g2 , for all g1, g2 ∈ G.

By making use of these assumptions, the cited approaches deduce that in the Quantum Theory
of a spin-0 particle undergoing an interaction homogeneous in time the hamiltonian operator H
must have the following form, able to describe also interactions with electromagnetic fields.

H =
1
2µ

3∑

α=1

(
−i

∂

∂xα
− aα(Q)

)2

+ Φ(x). (8)

Now we prove, instead, the following statement.

(R) Assumption (P) forces the hamiltonian of the Quantum Theory of a spin-0 particle
undergoing an interaction homogeneous in time into the form

H =
1
2µ

3∑

α=1

(
−i

∂

∂xα

)2

+ Φ(x).

To prove (R), first we imply from (P) that g → Ug is a projective representation of the Galileian
group G. Then, according to section 2.2, the sub-groups Tα, Rα, Bα can be represented by the
one parameter unitary sub-groups {e−iPαa}a∈R, {e−iJαθ}θ∈R, {eiGαu}u∈R, in such a way that the
hermitean generators Pα, Jα, Gα satisfy (2). Once defined the self-adjoint operators Fα = Gα

µ ,
it can be proved that relations (2) imply that

UgFU−1
g = g−1(F). (9)

Since the Fα’s commute with each other, according to spectral theory, there is a unique PV
measure P : B(R3) → Π(H) such that Fα =

∫
λdE

(α)
λ , where E

(1)
λ = P ((−∞, λ] × R2),

E
(2)
λ = P (R×(−∞, λ]×R), E

(3)
λ = P (R2×(−∞, λ]). Then (9) easily implies that ∆ → P (∆) is

an imprimitivity system for the restriction to E of g → Ug; therefore Mackey’s theorem applies.
In so doing, the simplest choice for H0, i.e. H0 = C, leads to identify H, Fα, Pα, Ûg as

H = L2(R3), (Fαψ)(x) = xαψ(x), Pα = −i
∂

∂xα
, (Ugψ)(x) = ψ

(
g−1(x)

)
. (10).

Both F and P in (10) are complete systems of operators in L2(R3), and (F,P) is an irreducible
system of operators [5]. Then we can easily prove the following proposition.

Proposition 4.1. If (P) holds, then in the simplest Quantum Theory of a localizable interacting
particle the equality F = Q holds.



Proof. If g ∈ T1 and (P) holds, then Ug = e−iPβa = 1I − iPβa + o1(a), where o1(a) is
an infinitesimal operator of order greater than 1 with respect to a; relation (5.ii) implies
[Qα, Pβ] = iδαβ1I. So, by using (2.vi) we obtain [Fα − Qα, Pβ] = 0; but (5.ii) for Ug = eiGβu =
1I + iGβu + o2(u) implies also [Fα − Qα, Fβ] = 0, i.e. Fα − Qα = cα1I ≡constant for the
irreducibility of (F,P); on the other hand, (P.i) together with (2.iv) and (5.ii) for Ug = e−iJαθ

imply [Jα, Fβ −Qβ] = iε̂α,β,γ(Fγ −Qγ) = [Jα, cβ1I] = 0; thus, Fα −Qα = 0. •
Prop. 4.1 together with (5.i) is sufficient to determine the form of the hamiltonian operator

H consistent with (P). First, we determine [Gα, Q̇β]. Let us start with

eiGαuQ̇βe−iGαu = Q̇β + i[Gα, Q̇β]u + o(u). (11)

By making use of Q̇β = i[H,Qβ] = limt→0
Q

(t)
β −Qβ

t and of eiGαuQ
(t)
β e−iGαu = Q

(t)
β − δαβut1I,

implied by (5.i), we also find

eiGαuQ̇βe−iGαu = lim
t→0

eiGαu
Q

(t)
β −Qβ

t
e−iGαu = lim

t→0

Q
(t)
β − δαβut1I−Qβ

t
= Q̇β − δαβu1I. (12)

The comparison between (11) and (12) yields

[Gα, Q̇β] = [Qα, µQ̇β] = iδαβ1I, which implies [Fα, µQ̇β − Pβ] = 0. (13).

By using Ug = e−iPαa and Ug = e−iJαθ instead of eiGαu in this last argument2, we obtain
[Pα, µQ̇β − Pβ] = 0 and [Jα, µQ̇β] = iε̂α,β,γµQ̇γ . These two relations, together with (13), imply
Q̇β = (1/µ)Pβ. To determine H, by making use of (2.vi) we obtain

i[H, Qβ] = Q̇β =
1
µ

Pβ = i

[
(1/2µ)(P 2

1 + P 2
2 + P 2

3 ),
Gα

µ

]
≡ i[(1/2µ)(P 2

1 + P 2
2 + P 2

3 ), Qα]. (14)

Then the completeness of Q implies that H − (1/2µ)(P 2
1 + P 2

2 + P 2
3 ) is a function of Q. Thus

H = − 1
2µ

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
+ Φ(Q). (15)

Thus, assumption (P) forbids the description of electro-magnetic interactions.

5. Quantum Theory of an interacting particle
According to the conclusion of the last section, to develop a Quantum Theory of a particle, able
to describe also electromagnetic interactions, assumption (P) must be abandoned besides the
symmetry’s implications (6) and (7). In this section we undertake such a development.

First, in sect. 5.1, we replace the active transformation A → R
(2)
g [A] of observables by the

passive transformation A → Sg[A]. This allows us to prove, without making use of (7), that a
unitary or an anti-unitary operator Ug exists such that Sg[A] = UgAU∗

g , for every g ∈ G.
Another problematic task is to exclude anti-unitary operators Ug without the condition that

g → Ug is a projective representation, condition necessary in the known arguments that obtain
such an exclusion [3],[5], [10]. Such a further problem is addressed and solved in sect. 5.2.

However, our correspondence U : G → U(H), Sg[A] = UgAU−1
g is yet not a projective

representation, so that Mackey’s theorem cannot apply. In section 5.3 we argue how g → Ug

2 It is just by extending the argument to translations (Ug = e−iPαa) and rotations (Ug = e−iJαθ) that we can
prove (R). If the argument is limited to boosts (Ug = eiGαa) [5],[7],[9] only the loser form (8) of H is obtained.



can be changed into a projective representation by means of a σ-conversion. We show that
the operators representing position are identifiable with the multiplication operators in the case
that the interaction admits a σ-conversion that leaves unaltered the covariance properties of
the position with respect to G. Therefore our approach explains such an identification by the
existence of a determined covariance property related to the interaction.

In section 5.4 we determine the dynamical law for this class of interactions, whose hamiltonian
operator turns out to be more general than the known hamiltonian of a particle in an
electromagnetic field. However, in section 5.5 we completely characterize the electromagnetic
interaction, among all possible ones, in terms of covariance properties preserved by the σ-
conversion.

5.1. Passive interpretation of quantum transformations
To recall the meaning of the passive interpretation we make use of the Quantum Theory of a
free particle, where H = L2(R3) and the position operators Qα are the multiplication operators
defined by (Qαψ)(x) = xαψ(x). In fact, these operators Qα represent the position observables
of the particle just as referred to a pre-specified spatial reference frame Σ0; if Σg is the frame
related to such a pre-fixed Σ0 just by g, then the position operators with respect to Σg must
be g−1(Q), in general different from Q. Such a dependence on the reference frame is not an
exclusive feature of the position observables; for each g ∈ G, we can introduce a mapping

Sg : Ω(H) → Ω(H), A → Sg[A] (16)

with the following interpretation.

(PI) If the operator A represents a given observable with respect to the pre-fixed reference frame
Σ0, the operator Sg[A] represents that observable with respect to Σg.

Statement (PI) expresses the passive interpretation of the transformation g. For instance, since
remark 3.1 extends to the mapping Sg, then the operators Q(t) transform according to

Sg[Q(t)] = g−1
t (Q(t)), and, as a particular case, Sg[Q] = g−1(Q). (17)

The following statements are conceptually implied by the meaning of the passive quantum
transformations.

(S.1) For every g ∈ G, the mapping Sg is bijective.
(S.2) Let f be any fixed real Borel function such that if A is a self-adjoint operator, then

B = f(A) is a self-adjoint operator too. Since in Quantum Theory a measurement of
the quantum observable f(A) can be performed by measuring A and then transforming
the obtained outcome a by the purely mathematical transformation f into the outcome
b = f(a) of f(A), the following equality has to hold:

f(Sg[A]) = Sg[f(A)]. (18)

Conditions (S.1) and (S.2) are sufficient to show further properties of the mappings Sg, according
to the following propositions.

Proposition 5.1. Let S : Ω(H) → Ω(H) be a bijective mapping such that S[f(A)] = f(S[A]),
for every function as in (S2). Then the following statements hold.

i) If E ∈ Π(H) then S[E] ∈ Π[H], i.e., the mapping S is an extension of a bijection of Π(H].
ii) If A,B ∈ Ω(H) and A + B ∈ Ω(H), then [A,B] = 0 implies S[A + B] = S[A] + S[B].

This partial additivity immediately implies S[A] = 0 if and only if A = 0.



iii) For all E, F ∈ Π(H), EF = 0 implies S[E + F ] = S[E] + S[F ] ∈ Π(H); as a consequence,
E ≤ F if and only if S[E] ≤ S[F ].

iv) S[P ] ∈ Π1(H) if and only if P ∈ Π1(H).

Proof. (i) If E ∈ Π(H) and f(λ) = λ2 then f(E) = E holds; so S[f(E)] = f(S[E]) implies
(Sg[E])2 ≡ f(S[E]) = S[E2] ≡ S[E], i.e. S2[E] = S[E].

(ii) If [A, B] = 0 then C ∈ Ω(H) and two functions fa, fb exist so that A = fa(C) and
B = fb(C); once defined the function f = fa + fb, we have S[A + B] ≡ S[f(C)] = f(S[C]) =
fa(S[C]) + fb(S[C]) = S[fa(C)] + S[fb(C)] ≡ S[A] + S[C].

(iii) If EF = 0, then [E, F ] = 0 and (E + F ) ∈ Π(H) hold. Statements (i) and (ii) imply
S[E + F ] = S[E] + S[F ] ∈ Π(H].

(iv) If P ∈ Π1(H) then S[P ] ∈ Π(H) by (i). If Q ∈ Π1(H) and Q ≤ S([P ] then
P0 ≡ S−1[Q] ≤ P by (iii); but P is rank 1, therefore P0 = P and Q = S[P ]. •
Corollary 5.1. From prop. 5.1 immediately follows that the restriction of S to Π(H) is a
bijection that also satisfies S[0] = 0, S[1I] = 1I, E ≤ F iff S[E] ≤ S[F ], S[E⊥] = (S[E])⊥.

In virtue of corollary 5.1, by Wigner’s Theorem 2 the following proposition is easily proved.

Proposition 5.2. If a mapping S satisfies the hypothesis of Prop. 5.1, then a unitary or an
anti-unitary operator exists such that S[A] = UAU∗ for every A ∈ Ω(H); if another unitary or
anti-unitary operator V satisfies S[A] = V AV ∗ for every A ∈ Ω, then V = eiθU with θ ∈ R.

5.2. Further implications
Propositions 5.1 and 5.2 imply that for every transformation g ∈ G, the corresponding passive
quantum transformation is given by A → Sg[A] = UgAU∗

g . If the correspondence g → Sg

satisfied Sg1g2 = Sg1 ◦ Sg2 , so that g → Ug would be a projective representation, then it could
be easily proved, according to [3],[5],[10],[12], that every Ug must be unitary. But in presence of
interaction g → Ug in general is not a projective representation. Now we prove that anti-unitary
Ug can be excluded under the only hypothesis that the correspondence g → Sg is continuous
according to the following continuity notion given by Bargmann [12].

Definition 5.1. Given P1, P2 ∈ Π1(H), the distance d(P1, P2) is defined as the minimal
distance ‖ψ1 − ψ2‖ between vectors ψ1, ψ2 such that P1 = |ψ1〉〈ψ1| and P2 = |ψ2〉〈ψ2|, i.e.,
d(P1, P2) = [2(1− |〈ψ1 | ψ2〉|]1/2.

A correspondence g → Tg from G into the set of all automorphims of Π(H) is continuous if
for any fixed P ∈ Π1(H) the mapping from G into Π1(H), g → Tg[P ] is continuous in g with
respect the distance d above defined on Π1(H).

Bargmann proved that if a correspondence g → Tg from G into the set of all automorphisms of
Π(H) is continuous then the arbitrary phase factor of the operator Ug for which Tg[A] = UgAU∗

g

can be chosen so that Ugψ is continuous with respect to g in the topology of H [12].

Proposition 5.3. If the correspondence g → Sg in (16) is continuous according to def. 5.1,
then every operator Ug such that Sg[A] = UgAU∗

g for all A ∈ Ω(H) is unitary.

Proof. Since Se[A] = A = 1IA1I∗, we can choose Ue = 1I which is unitary. Hence, because
of the continuity of g → Ug, a maximal neighborhood Ke of e must exist so that Ug is
unitary for all g ∈ Ke; otherwise a sequence gn → e would exist with Ugn anti-unitary and
so 〈ψ | ϕ〉 = 〈Ugnϕ | Ugnψ〉, and then 〈ψ | ϕ〉 = limn→∞〈Ugnϕ | Ugnψ〉 = 〈Ueϕ | Ueψ〉 = 〈ϕ | ψ〉
which cannot hold for all ψ, ϕ unless H is real. Now, such a neighborhood Ke has no boundary,
and since G is a connected group, Ke = G; indeed, if g0 ∈ ∂Ke, two sequences gn → g0 and
hn → g0 would exist with Ugn unitary and Uhn anti-unitary; therefore, the continuity of Ug

would imply that Ug0 should simultaneously be unitary and anti-unitary. •



5.3. σ-conversions
By switching to the passive interpretation, under a continuity condition we were able to
establish the existence of a continuous correspondence U : G → U(H), g → Ug, such that
Sg[A] = UgAU−1

g . The argument of section 4, which shows that assumption (P) is empirically
inadequate, can be easily adapted to show that such a correspondence is not a σ-representation,
in general, even if the passive interpretation is adopted. Without such a representation property
we cannot apply Mackey’s theorem to proceed with our approach. Now we address this obstacle.

The correspondence g → Ug, can be converted into a σ-representation if we multiply each
operator Ug by a suitable unitary operator Vg of H; namely, Vg is a unitary operator such that
the correspondence g → Ûg = VgUg turns out to be a σ-representation. The transition from
g → Ug to g → Ûg = VgUg will be called σ-conversion; the mapping V : G → U(H), g → Vg

that realizes the σ-conversion will be called σ-conversion mapping. If g → Vg is a σ-conversion
mapping for g → Ug and θ : G → R is a real function, then also g → eiθ(g)Vg is a σ-conversion
mapping, provided that eiθ(e) = 1. In any case, Ve = 1I must hold.

If g → Vg is a σ-conversion mapping for Ug then, according to sect. 2.2, the σ-representation
g → Ûg = VgUg has nine hermitean generators P̂α, Ĵα, Ĝα for which (2) hold. Moreover, the
common spectral measure of the triple F = Ĝ/µ is an imprimitivity system for the restriction
of g → Ûg to E . Then Mackey’s theorem allows us to identify H with L2(R3,H0) and explicitly
indicates the concrete form of F and of P̂α, Ĵα, Ĝα. In the following, we restrict ourselves to
the case H0 = C; is so doing we can take H = L2(R3), (Fαψ)(x) = xαψ(x), P̂α = −i ∂

∂xα
,

Ĵα = FβP̂γ − FγP̂β where (α, β, γ) is a cyclic permutation of (1, 2, 3), and Ĝα = µFα.
But Ûg is not the unitary operator which realizes the passive transformation: Sg[A] 6=

ÛgAÛ−1
g . Moreover, F is not the triple Q representing the position. So, our explicit realization

of the mathematical formalism of the theory is, in general, devoid of physical significance. But
the approach can go on if we restrict our investigation to those interactions which admit σ-
conversions Ug → Ûg = VgUg which are Q-covariant, i.e. σ-conversions that leave unaltered the
covariance properties of the position operators Q, i.e. such that

ÛgQÛ−1
g = g−1(Q) ∀g ∈ G. (19)

The proof of Prop. 4.1 can be easily adapted to show that if the interaction admits a Q-
covariant σ-conversion then F = Q in the present case too. Hence, the operator which
represents the position in the mathematical formalism of the theory is the multiplication
operator: Qαψ(x) = xαψ(x). So, in the present approach the identification of the multiplication
operator with the position operator is implied by the possibility that the interaction admits a
σ-conversion which preserves the covariance properties of the position operators. The existence
of interaction which are not Q-covariant is not excluded, of course.

However, the operators Ûg continue to be not the representative of the transformations of G,
i.e., Sg[A] = ÛgAÛ−1

g does not hold. The following proposition specify how Ûg relates to the
unitary operator Ug that realizes the transformation g according to the passive interpretation.

Proposition 5.4. The σ-conversion mapping of a Q-covariant σ-conversion has the form
g → Vg = eiθ(g,Q), for some function θ.

Proof. The relation VgUgQU−1
g V −1

g = g−1(Q) implied by (19) and (17) imply
Vg(g−1(Q))V −1

g = g−1(Q), i.e. [Vg, g
−1(Q)] = 0. Then [Vg, f(g−1(Q))] = 0 for every sufficiently

regular function f ; by taking f = g we have [Vg,Q] = 0. The thesis follows from the completeness
of Q and the unitary character of Vg. •



5.4. Dynamical equation for Q-covariant interactions
Let us consider a velocity boost g ∈ G such that Ûg = eiĜαu, for an interaction with Q-covariant
σ-conversion. Since Ĝα = µFα = µQα, we can write Ûg = eiµQαu; therefore

ÛgQ̇βÛ−1
g = Q̇β + iµ[Qα, Q̇β]u + o1(u). (20)

On the other hand

ÛgQ̇βÛ−1
g = lim

t→0
VgUg

(Q(t)
β −Qβ)

t
U−1

g V −1
g . (21)

By making use of UgQ
(t)
β U−1

g = Q
(t)
β − δαβut1I, implied by (17), in (21) and then comparing with

(20) we obtain

ÛgQ̇βÛ−1
g = VgQ̇βV −1

g − δαβu1I = Q̇β + iµ[Qα, Q̇β]u + o1(u). (22)

But Prop. 5.4 implies that Vg = eiςα(u,Q), for some fuction ςα; replacing in (22) we obtain

Q̇β + i[ςα(u,Q), Q̇β] + o2(u)− δαβu1I = Q̇β + iµ[Qα, Q̇β]u + o1(u). (23)

Since eiςα(0,Q) = 1I, the expansion of ςα with respect to u yields ςα(u,Q) = ∂ςα
∂u (0,Q)u + o3(u);

by replacing this last relation in (23) we obtain µ[Qα, Q̇β] = [ηα(Q), Q̇β] + iδαβ1I, where
ηα(Q) = ∂ςα

∂u (0,Q). By replacing Q̇β = i[H, Qβ] in this equation we can apply Jacobi’s identity,
and in so doing we obtain [Qβ, µQ̇α] = [Qβ, η̇α(Q)] + iδαβ1I, i.e.

[Qβ, η̇α(Q)− µQ̇α] = −iδαβ1I = [Qβ,−P̂α]. (24)

By the completeness of Q, from (24) we imply that an operator fα(Q), function of Q, must
exist such that the equation η̇(Q)− µQ̇α + P̂α = fα(Q) holds; then we can rewrite (24) as

i[H, µQα − ηα(Q)] = P̂α − fα(Q). (25)

This is a general dynamical equation for a localizable particle whose interaction admits Q-
covariant σ-conversions.

5.5. Characterization of the electromagnetic interaction
Once derived the general dynamical law (25) for a localizable particle with Q-covariant and
homogeneous in time interaction, it is worth to re-discover the equation currently assumed in
quantum physics as a particular case of the general equation (25). The nowadays adopted
Schroedinger equation for a spin-0 particle has the form

i
d

dt
ψt =

{
1

2m

3∑

α=1

[P̂α − aα(Q)]2 + Φ(Q)

}
ψt,

i.e. the Hamiltonian operator is H = (1/2µ)
∑3

α=1{P̂α − aα(x)}2 + Φ(Q). The consequent
Quantum Theory corresponds to the case that the function ηα in the general law (25) is a
constant function. Let us show this result.

Proposition 5.5. The hamiltonian operator H of an interacting particle which admits Q-
covariant σ-conversion has the form H = (1/2µ)

∑3
α=1{P̂α − aα(x)}2 + Φ(Q) if and only if the

functions ηα in (25) are constant functions. In this case aα = fα.



Proof. If ηα is a constant function, then (25) transforms into i[H,µQα] = P̂α − fα(Q)
which holds if H0 = 1

2µ

∑3
α=1[P̂α − fα(Q)]2 replaces H. Hence the operator H − H0 must

be a function Φ of Q because of the completeness of Q. Then ηα(Q) = cα1I implies
H = 1

2µ

∑3
α=1[P̂α − fα(Q)]2 + Φ(Q).

Now we prove the converse. Let us suppose that H = 1
2µ

∑3
α=1{P̂α − aα(Q)}2 + Φ(Q); by

replacing this H in (25) to obtain

i[H, µQα − ηα(Q)] = P̂α − fα(Q) =

=
i

2µ

∑

β

[P 2
β , µQα]− i

2µ

∑

β

[aβP̂β, µQα]− i

2µ

∑

β

[P̂βaβ, µQα] +
i

2µ

∑

β

[a2
β, µQα] +

− i

2µ

∑

β

[P 2
β , ηα] +

i

2µ

∑

β

[aβP̂β, ηα] +
i

2µ

∑

β

[P̂βaβ, ηα]− i

2µ

∑

β

[a2
β, ηα] +

+i[Φ(Q), µQα − ηα].

The last term and the fourth terms of the second and third lines are zero. Then we have

i[H, µQα − ηα(Q)] = P̂α − fα(Q) (26)

= P̂α − i

2

∑

β

(aβP̂βQα −QαaβP̂β + P̂βaβQα −QαP̂βaβ) +

− i

2µ

∑

β

[P 2
β , ηα] +

i

2µ

∑

β

(aβP̂βηα − ηαaβP̂β + P̂βaβηα − ηαP̂βaβ)

= P̂α − i

2

∑

β

(aβ[P̂β, Qα] + [P̂β, Qα]aβ)− i

2µ

∑

β

[P 2
β , ηα] +

i

2µ

∑

β

(aβ[P̂β, ηα] + [P̂β, ηα]aβ)

= P̂α − i

2
(−2iaα)− i

2µ

∑

β

[P 2
β , ηα] +

i

2µ

∑

β

(
−2i aβ

∂ηα

∂qβ

)

= P̂α − aα +
1
µ

∑

β

aβ
∂ηα

∂qβ
− i

2µ

∑
[P 2

β , ηα].

From the second and last members of this equations’ chain we obtain fα(Q) = aα− 1
µ

∑
β aβ

∂ηα

∂qβ
+

i
2µ

∑
[P 2

β , ηα], which implies that
∑

β[P 2
β , ηα] is a function of Q. Therefore we have

∑

β

[P 2
β , ηα] = φα(Q) =

∑

β

(P̂β[P̂β, ηα] + [P̂β, ηα]P̂β) = (−i)
∑

β

(
P̂β

∂ηα

∂qβ
+

∂ηα

∂qβ
P̂β

)

= (−i)
∑

β

([
P̂β,

∂ηα

∂qβ

]
+ 2

∂ηα

∂qβ
P̂β

)
= (−i)

∑

β

(
(−i)

∂2ηα

∂q2
β

+ 2
∂ηα

∂qβ
P̂β

)
.

Then
∑

β
∂ηα

∂qβ
P̂β is a function of Q, and this implies

∑
β

[
Qγ , ∂ηα

∂qβ
P̂β

]
= 0 = ∂ηα

∂qγ
[Qγ , P̂γ ] = i∂ηα

∂qγ

for every γ; therefore ∂ηα

∂qγ
= 0; thus ηα is a constant function. By using this result in the equality

between the second and the last members of (26) we obtain aα = fα. •
Now we show that the case ηα =constant is completely characterized in terms of covariance
properties tied to the interaction.



Proposition 5.6. The Q-covariant σ-conversions for which ηα(Q) = constant are those and
only those which leave unaltered the covariant properties of Q(t) with respect to the Galileian
boosts g ∈ G, at the first order in the boost’s velocity, i.e. the σ-conversions such that

ÛgQ(t)Û−1
g = g−1

t (Q(t)) + o(u), where Ûg = eiĜαu (27)

at the first order in u.

Proof. Let Ûg = eiĜαu = VgUg be the σ-converted unitary operator associated with the
Galileian boost g, where Vg = eiςα(u,Q) according to Prop.2. By starting from (27) and by
expanding e±iςα(u,Q) with respect to u we obtain

eiĜαuQ
(t)
β e−iĜαu = VgUgQ

(t)
β U−1

g V −1
g = Q

(t)
β + i[ηα(Q), Q(t)

β ]u− δαβut1I + o1(u). (28)

The covariance properties of Q(t) with respect to our Galileian boost g are expressed by
Sg[Q

(t)
β ] = Q

(t)
β − δαβut1I. Hence the equation

eiĜαuQ
(t)
β e−iĜαu = Q

(t)
β − δαβut1I + o2(u) (29)

is the condition in order that the σ-conversion leave unaltered the covariance properties of Q(t)

with respect to the Galileian boosts, at the first order in u; the comparison between (28) and
(29) implies that such a condition holds if and only if

[ηα(Q), Q(t)
β ] = 0. (30)

If ηα =constant then (30) holds, of course. Therefore, in order to prove the proposition, it is
sufficient to prove the inverse implication. Hence we suppose that (30) holds. By expanding
e±iĜαu with respect to u we find eiĜαuQ

(t)
β e−iĜαu = Q

(t)
β + i[Ĝα, Q

(t)
β ]u+o3(u), so that (29) holds

if and only if i[Ĝα, Q
(t)
β ] = −δαβt1I, i.e. if and only if [Qα, (µQ

(t)
β )/t] = iδαβ ≡ [Qα, P̂β]; then the

completeness of Q implies that a function ϕβ must exist such that (µQ
(t)
β )/t− P̂β = ϕβ(Q) and

hence the following equation holds.

Q
(t)
β =

t

µ
(ϕβ(Q) + P̂β). (31)

Now, the condition [ηα(Q), Qα] = 0 is obviously satisfied for all α; but it and the necessary and
sufficient condition (30), where (31) is used, imply also [ηα(Q), P̂β] = 0; therefore ηα(Q) is a
constant operator cα1I. •
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