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Abstract. Solutions of the Yang-Baxter relations with orthogonal or symplectic symmetry
are studied emphasizing the analogies of both cases. Starting from Jordan-Schwinger
representations the distinguishing features of the spinor representation and its symplectic
analogon are shown. The corresponding L matrix and the spinorial R operator are discussed.

1. Introduction

The R matrix obeying the Yang-Baxter (YB) relation and representing the orthogonal or
symplectic algebras in their fundamental representation is not linear in the spectral parameter
[1, 2, 4]. The RLL case of the YB relation involving this fundamental R matrix together
with the L matrix operators of the form La,b(u) = uδab + Mab does not hold for an arbitrary
representation with the generators Mab. The spinor representation of the orthogonal algebra
withMab =

1
4 [γa, γb] is a distinguished case, where the RLL relation is obeyed. Also the spinorial

R matrix, intertwining two spinor representations, is known [3]. This and other representations
of the orthogonal algebra distinguished in this sense and the corresponding R operators have
been considered recently and the spinorial R operator has been analysed in detail [6].

We consider the YB relations with symplectic symmetry relying on the known analogies
to the orthogonal case. We use the Jordan-Schwinger (JS) type of representations, where the
generators Mab are composed of canonical pairs xa, ∂a obeying the Heisenberg commutation
relation in the usual bosonic or in the fermionic/Grassmann version [5].

2. Jordan-Schwinger representations

From 2n(+1) canonical pairs xa, ∂a, a = 1, ..., 2n(+1) one can construct operators obeying the
gℓ(2n(+1)) algebra relations. We consider two versions,

E+
ab = xa∂b, E−

ab = −∂axb, (1)

related by the elementary canonical transformations

CE+
abC

−1 = E−
ab (2)

defined as

Ca

(

xa
∂a

)

C−1
a =

(

∂a
−xa

)

, C =
∏

Ca. (3)



We consider the action of the constructed generators on functions of xa. On the linear space
spanned by xa we have the fundamental representations. The two representations are dual
to each other in the following sense. If the first set of generators acts on V+ as infinitesimal
transformations and the second one on V−, both spanned by the xa as basis vectors, the scalar
product of x1 ∈ V+ and x2 ∈ V− defined as (x1x2) =

∑

a x1,ax2,a is invariant in the sense

[E
(1)+
ab + E

(2)−
ab , (x1x2)] = 0. (4)

In both cases the algebra commutes with
∑

Na, Na = xa∂a.
We need also a fermionic/Grassmann version of the JS representation based on odd canonical

pairs θa, ∂
θ
a, [θa, ∂

θ
b ]+ = δab. The relations of gℓ(2n(+1)) are fulfilled as well by

E+
ab = θa∂

θ
b , E−

ab = ∂θ
aθb

The elementary canonical transformations are now

C(α)
a

(

θa
∂θ
a

)

C(α)
a =

(

α∂θ
a

α−1θa

)

.

We shall use the cases α = ±1. The bilinear form is the same one with the bosonic coordinates
substituted by the fermionic ones.

Now we consider the case that both sets E±
ab act on the same space. The sum is invariant

with respect to the elementary canonical transformation,

CFabC
−1 = Fab, Fab = E+

ab + E−
ab + δab = xa∂b − xb∂a,

and the scalar product of two elements of this space is invariant,

[Fab, (x1x2)] = 0.

In this way in the JS case the subalgebra so(2n(+1)) of gℓ(2n(+1)) can be considered as the
one invariant with respect to the elementary canonical transformation.

In order to have a smooth comparison with the symplectic case we rewrite the bilinear form
as a result of relabelling the indices 1, 2, ...2n + (1) → −n,−n + 1, ..., (0), ..., n − 1, n. There is
a difference between the even and odd cases. In the latter the index value 0 is included and in
the even case it is excluded. The bilinear form reads now

(x1x2) =

n
∑

−n

x1,ax2,−a, (5)

and the generators of the so(2n(+1)) subalgebra are

Fab = E+
ab + E−

−a,−b. (6)

They are invariant with respect to the elementary canonical transformation including the index
value reflection.

C =
∏

Ca,

where in the bosonic case we have

Ca

(

xa
∂a

)

C−1
a =

(

∂−a

−x−a

)

, (7)



and the fermionic case

C(±)
a

(

θa
∂θ
a

)

C(±)
a =

(

±∂θ
−a

±θ−a

)

.

The subalgebra sp(n) of gℓ(2n) is defined as the one commuting with the bilinear form

< x1x2 >=

n
∑

−n

εax1,ax2,−a

[Gij , < x1x2 >] = 0, Gij = E+
ab + εaεbE

−
−a,−b

where εa denotes the sign of the index a. We have an analogous statement about
the characterisation of sp(n) as the subalgebra of gℓ(2n), but the elementary canonical
transformations enter with an index sign dependent modification. In the bosonic case we have

C̃ =

n
∏

1

Ca

−1
∏

−n

C−1
a , (8)

and in the fermionic case

C̃ =

n
∏

1

C+
a

−1
∏

−n

C−
a . (9)

Thus the subalgebra sp(n) for JS representations can be regarded as the one invariant with
respect to this canonical transformation C̃.

It is important to notice that there are linear combinations of the underlying Heisenberg
generators, invarant (up to sign ) under the above elementary canonical transformations.

C(∂a ± θ−a)C = ±(∂a ± θ−a), (10)

C̃(∂a ± εax−a)C̃
−1 = ∓(∂a ± εax−a).

The first relation involving C is relevant for orthogonal and the second with the index sign
dependent C̃ in the symplectic case. Interchanging the bosonic with the fermionic versions we
do not obtain invariance, but the two linear combinations transform into each other:

C(∂a ± x−a)C
−1 = ±(∂a ∓ x−a), C̃(∂a ± εaθ−a)C̃ = ∓(∂a ∓ εaθ−a).

3. Linear transformations separating generators

We shall study linear transformations of the canonical pairs xa, ∂a or θa, ∂
θ
a. Let us write the

bosonic case
x′a = Aabxb +Bab∂b, ∂′

a = Cabxb +Dab∂b.

We may calculate the commutation relations of the new combinations in terms of the
transformation matrix blocks A,B,C,D.

[x′a, ∂
′
b] = (BCT −ADT )ab, [x′a, x

′
b] = (BAT −ABT )ab, [∂′

a, ∂b] = (DCT − CDT )ab.

Now we have the important case of linear canonical transformations, where the latter two (anti)
commutators vanish and the first one is proportional to the unit matrix.

We shall consider the case of the transformation, where the opposite occurs. Namely, the first
commutator vanishes and the other two are proportional to the distinguished matrix defining
the invariant scalar product. In the orthogonal case it is the unit matrix I or the matrix ε̂+ with



the elements ε+ab = δa,−b if one prefers to label the components by −n, ...,+n . In the symplectic
case it is the antisymmetric matrix ε̂−, ε−ab = εaδa,−b.

In the orthogonal case this can work only in the fermionic version, since the distinguished
matrix is symmetric. In the symplectic case it can work only in the bosonic version since
the distinguished matrix is anti-symmetric. In the following we specify the transformations as
A = I,B = −ε, C = −ε,D = I. Then we have for the symplectic case

[x′a, ∂
′
b] = 0, [x′a, x

′
b] = −2εaδa,−b, [∂′

a, ∂
′
b] = 2εaδa,−b,

and for the orthogonal case

[θ′a, ∂
θ,′
b ]+ = 0, [θ′a, θ

′
b]+ = 2δa,−b, [∂′

a, ∂
′
b]+ = −2δa,−b.

Now let us rewrite the JS generators in the transformed canonical variables. In the orthogonal
case we have

Mab = θa∂
θ
b − θb∂

θ
a = Mγ ab − M̃γ ab, (11)

with the notations
γa = θ′a = θa + ∂θ

a, γ̃a = −∂θ′
a = θa − ∂θ

a. (12)

Mγ ab =
1

4
[γa, γb], M̃γ ab =

1

4
[γ̃a, γ̃b]. (13)

In particular we have
[Mγ ab, M̃γ cd] = 0

Therefore the two terms in (11) obey the orthogonal algebra relations independently. γa may
be identified with the conventional gamma matrices. Indeed, they generate the Clifford algebra
in 2n(+1) dimensions.

Note that the two sets of Clifford generators, γa and γ̃a are just the linear combinations (10)
of the fermionic Heisenberg generators that are invariant up to sign with respect to the fermionic
elementary canonical transformations (7).

In the symplectic case we have

Gab = xa∂b − εaεbx−b∂−a = GΓ ab + G̃Γ ab, (14)

with the notations
Γ̃a = x′a = xa + εa∂−a, Γa = ∂′

a = ∂a − εax−a, (15)

G̃Γ ab =
1

4
εb[Γ̃a, Γ̃−b]+, GΓ ab =

1

4
εa[Γ−a,Γb]+. (16)

In particular we have in analogy
[GΓ ab, G̃Γ cd] = 0. (17)

Therefore the two terms in (14) obey the symplectic algebra relations independently. Γa generate
the symplectic analogon of the Clifford algebra,

[Γa,Γb] = [∂′
a, ∂

′
b] = 2εaδa,−b = 2ǫab. (18)

We recall that the two sets of symplectic Clifford generators Γa and Γ̃a are just the linear
combinations of the bosonic Heisenberg generators (10) invariant with respect to the sign
dependent bosonic elementary canonical transformation (8).

In this way we have seen that the JS generators of sp(n), so(2n) both separate in two terms,
commuting and generating the equivalent algebra independently. Each set of such separated
generators is built from 2n quasi-Clifford generators γa, a = −n, ...,+n.

The latter can also be viewed as n Heisenberg pairs, γ−a, γa, a = 1, ..., n, bosonic in the
symplectic case and fermionic in the orthogonal case. And these quasi-Clifford generators can
be used for building JS representations of gℓ(n).



4. Fundamental YB matrices and L operators

In both orthogonal and symplectic cases there are analoga of Yang’s fundamental Yang-Baxter
matrix R12 = uI + P12 obeying the Yang-Baxter relation in the form

Ra1a2
b1b2

(u)Rb1a3
c1b3

(u+ v)Rb2b3
c2c3

(v) = Ra2a3
b2b3

(v)Ra1b3
b1c3

(u+ v)Rb1b2
c1c2

(u). (19)

In the orthogonal and symplectic fundamental R matrices the existence of the invariant tensor
causes a third term in the corresponding expressions, and related to this the dependence on the
spectral parameter involves its second power. The well known results [1, 2, 4] are easily checked
starting from the ansatz

Ra1a2
b1b2

(u) = u(u+ β)δa1b1 δ
a2
b2

+ (u+ β)δa1b2 δ
a2
b1

− uεa1εb2δ
a1,−a2δb1,−b2 , (20)

where we have denoted εa = 1 in the orthogonal case and εa = sign(a) in the symplectic case.
One finds that the above YB relation holds if

β = β± = n∓ 1 (21)

for the orthogonal or symplectic case, respectively.
Above we have reformulated the orthogonal case to get closer to the symplectic one by

choosing the index range a, b = −n, ...(0)..., n and have written the scalar product with the
metric δa,−b. The anti-symmetry relation then reads

Mab = −M−b−a, a, b = −n, ...(0)..., n (22)

If we agree to denote by εa in the symplectic case sign(a) and just 1 in the orthogonal case then
the anti-symmetry relation in both cases reads

Gab = −εaεbG−b,−a, (23)

and the invariant tensor defining the scalar product can be written as εa,b = εaδa,−b. It is
symmetric in a → b in the orthogonal case and anti-symmetric in the symplectic case. We have
also εabε

bc = δca, εab = ε−aδ
a,−b.

Let us define the L matrix as
Lab = uδab −Gab (24)

where Gab, a, b = −n,−n + 1, ...,−1, (0), 1, ..., n obey the Lie algebra relations of
so(2n(+1)), sp(n), respectively.

We consider the RLL relation in the form

Ra1a2
b1b2

(u)Lb1
c1
(u+ v)Lb2

c2
(v) = La2

b2
(v)La1

b1
(u+ v)Rb1b2

c1c2
(u), (25)

and look for the conditions under which this relation is obeyed.
We obtain that the additional condition on the generators for allowing a linear L matrix

reads in the uniform notation

εb1,b2 [G
a1b1 , Ga2,b2 ]+ = Aεa1,a2 . (26)

If we choose the generators Gab composed of the Clifford generators γa (13, 16) as

Gab =
1

4
ε−a[γ

a, γ−b]∓ (27)

the additional condition (26) is fulfilled.
The Clifford algebra relation and its symplectic modification can be written uniformly as

[γa, γb]± = 2εba, (28)

where we can choose the Clifford generators as the combinations of the basic Heisenberg
generators, γa|so = ∂θ

−a + θā, γa|sp = ∂a − εax−a.



5. The spinorial Yang-Baxter operators

In general, for Li(u) = uI −Gi with Gab = 1
2γ

[ab] (27), the RLL relation

R12(u− v)L1(u)L2(v) = L1(v)L2(u)R12(u− v) (29)

can be considered as the defining relation for R12(u) which acts in the tensor product of two
spinor representations. This relation results by separation of the dependence on u+v from u−v

in the symmetry condition
[G1 +G2, R12(u)] = 0,

and in the additional defining condition

u(R12(u)G2 −G1R12(u))− (R12(u)G1G2 −G1G2R12(u)) = 0. (30)

The symmetry condition implies that the spinorial R operator decomposes into the invariants
composed from the Clifford generators in both tensor factors γa1 and γa2 ,

εa1,a′1 ...εak ,a
′

k
S{γa11 ...γ

ak
1 } S{γ

a′
1

2 ...γ
a′
k

2 } = εAk ,A
′

k
γ
Ak

1 γ
A′

k

2 . (31)

The last form defines abbreviations in terms of which we write the ansatz

R(u) =
∑

k

εAk,Ak′
γ
Ak

1 γ
A′

k

2

rk(u)

k!
. (32)

The product of Clifford generators S{γa11 ...γ
ak
1 } is anti-symmetrised in the orthogonal case and

symmetrised in the symplectic case. Recall that the generators Gab
i are composed of those γai in

the anti-symmetrised or symmetrised way too (27).
In the defining condition (30) we encounter the multiplication of (anti-)symmetrised products.

The transformation of such products into (anti-)symmetrised terms is conveniently done by using
generating functions. We use auxiliary variables κa and their scalar product with the Clifford
generators (κγ) = εabκ

aγb. They are anti-commuting (Grassmann) ones in the orthogonal case
and commuting in the symplectic case.

S{γa1 ...γak} = ∂ak ...∂a1 e(κγ)|κ=0 = ∂Ak e(κγ)|κ=0,

∂aκ
b = δba, ∂

a = εab∂b, ∂
aκb = εab, εabε

bc = δca.

We illustrate the computations encountered here in the following example.

γAk γ[ab] = ∂
Ak

1 e(κ1γ) ∂b
2∂

a
2e

(κ2γ)|κ1=κ2=0 =

∂
Ak

1 ∂b
2∂

a
2 e((κ1+κ2)γ)ε(κ1κ2)|κ1=κ2=0.

Here we have used the Baker-Hausdorff formula and the generalised Clifford relation (28),

[(κ1γ), (κ2γ)] = εabεcdκ
a
1κ

c
2[γ

b, γd]± = 2εdbεabεcdκ
a
1κ

c
2 =

2εacκ
a
1κ

c
2 = 2(κ1κ2).

Now we transform κ1, κ2 to κ = κ1 + κ2, κ2. The derivatives with respect to the auxiliary κ

variables then transform as ∂1 → ∂, ∂2 → ∂ + ∂2. This results in

γAk γ[ab] = ∂Ak(∂b + ∂b
2)(∂

a + ∂a
2 ) e

(κγ)e(κκ2)|κ=κ2=0 =

∂Ak{(∂b − κb)(∂a − κa) + εba} e(κγ)|κ=0.

In this way we obtain that the additional defining condition (30) results in the relation for
the coefficients of the expansion (32)

rk+2(u) =
u+ k

u− k ± 2β±
rk(u). (33)

The iteration goes in steps of 2, thus the spinorial R operator decomposes into the even and the
odd parts, both obeying the defining relation independently, R(u) = R+(u) +R−(u).



6. Discussion

We have considered the special representations (generators Gab) of the orthogonal and symplectic
algebras resulting in L operators of the form L = uI − G obeying the YB relation with the
fundamental R matrix. We have discussed the orthogonal and symplectic cases in analogy
starting from the JS type representations of the general linear algebra.

In the Jordan-Schwinger case, the reduction of the algebra of gℓ(2n(+1)) to so(2n(+1))
or sp(n) can be related to the elementary linear canonical transformation. This is the same
transformation which connects the two fundamental representations of gℓ(2n(+1)) dual to each
other.

In the resulting JS formulation of the orthogonal or symplectic generators a linear
transformation of the underlying Heisenberg algebra generators leads to a separation in two
terms which both obey the orthogonal or symplectic algebra and mutually commute. Thus in
this form the algebra decomposes into two subalgebras. The generators of both subalgebras are
found to be composed bilinearly of linear combinations of Heisenberg generators obeying the
(quasi-) Clifford algebra relation.

These linear combinations of the underlying Heisenberg generators coincide with those
obeying the condition of symmetry under the elementary canonical transformations.

The Clifford generators can be regarded equivalently as n Heisenberg pairs (creation and
annihilation operators) fermionic in the orthogonal case and bosonic in the symplectic case. In
the fermionic case we have the known spinor representation and in the symplectic case we find
that the representation generated by n bosonic Heisenberg pairs is the appropriate counterpart
of the spinorial one.

There are linear in the spectral parameter L operators in both cases, L = Iu−G, where Ga,b

are the generators of the orthogonal or symplectic algebra and obey additionally the condition
(26). The generators bilinear in the Clifford generators obey this additional condition.

The Yang-Baxter R operator intertwining two spinorial representaions can be obtained in
both orthogonal and symplectic cases in analogous way.

It can be checked that the fundamental R matrix (quadratic in u) can be reproduced by
fusion including projection from the product of the spinorial L with its conjugate. More details
about this and further results can be found in [7].
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