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Abstract. We study minimal surfaces in ¢-deformed AdSsxS®. For this purpose, it is
convenient to introduce a coordinate system which describes the spacetime only inside the
singularity surface and treat the singularity surface as the holographic screen. In particular, we
consider minimal surfaces whose boundary shapes are 1) a straight line and 2) a circle. In the
g — 1 limit, the solutions correspond to a 1/2 BPS straight line Wilson loop and a 1/2 BPS
circular one, respectively. A remarkable point is that the classical Euclidean actions have no
linear divergence unlike the original ones. This finiteness indicates that the g-deformation may
be regarded as a UV regularization.

1. Introduction

The AdS/CFT correspondence is a realization of the equivalence between string theories and
gauge theories. The most well-studied example is a duality between type IIB string theory on
the AdS5xS® background and N = 4 super Yang-Mills theory at large N limit [1]. A great
discovery in the recent is an integrable structure behind the AdS/CFT [2]. On the string-theory
side, the Green-Schwarz string action on AdSsxS® is constructed based on a supersymmetric
coset [3] and its classical integrability has been shown in [4]. Although the essential mechanism
of the duality has not been fully understood yet, the integrability has played a crucial role in
checking conjectured relations in the AdS/CFT.

To reveal a deeper structure behind gauge/gravity dualities beyond the conformal invariance,
it would be worth considering integrable deformations of the AdS/CFT. On the string-theory
side, a good way is to employ the Yang-Baxter sigma model approach [5]. This is a systematic
way to consider integrable deformations of 2D non-linear sigma models. In this approach, an
integrable deformation is specified by picking up a skew-symmetric classical r-matrix satisfying
the modified classical Yang-Baxter equation (mCYBE). The deformed action is classically
integrable in the sense that a Lax pair exists.

The original argument was restricted to principal chiral models, then it was generalized to
the symmetric coset case [6]'. Based on this generalization, a g-deformed action of the AdSsxS®
superstring has been constructed in [11] by picking up the Drinfeld-Jimbo type r-matrix [12] and
the resulting action exhibits a quantum group symmetry. The metric and NS-NS two-form of the
deformed background have been found in [13]. In particular, a singularity surface exists in the
deformed AdS part. For this deformed string theory, many works have been done. Some special
limits of deformed AdS,, xS™ were studied in [14]. A mirror description were proposed in [15,16].

! For earlier developments on g-deformations of su(2) and si(2), see [7-10].



The fast-moving string limits were considered in [17]. Giant magnon solutions have been argued
in [15,18]. The deformed Nuemann models were derived in [19]. A possible holographic setup was
proposed in [20] and minimal surfaces have been studied in [20,21]. Two-parameter deformations
have been studied in [14,22]. For some arguments towards the complete supergravity solution,
see [23-25]. More recently, another integrable deformation called the A-deformation has been
proposed in [26,27]. This deformation is closely linked to the Yang-Baxter deformation by a
Poisson-Lie duality [26,28-30].

A generalization of the Yang-Baxter sigma model to the (non-modified) classical Yang-Baxter
equation (CYBE) has been considered in [31]. In this reformulation, the Lax pair and the kappa
transformation should be reconstructed and this generalization is not so trivial. An advantage in
comparison to the mCYBE case is that one may also consider partial deformations of AdSsxS° .
So far, in a series of works [32-38], many kinds of classical m-matrices have been identified with
the well-known type IIB supergravity solutions including the y-deformations of S® [39], gravity
duals for noncommutative gauge theories [40] and Schrédinger spacetimes [41], in addition to new
backgrounds [32]. This identification may be referred to as the gravity/CYBE correspondence
(For a short summary, see [42]). The solutions of the CYBE may be regarded as a moduli space
of the AdS5xS® string background. In the recent, this identification has been generalized to
integrable deformations of 4D Minkowski spacetime in [43]. Then Lax pairs for string theories
on Yang-Baxter deformed backgrounds have been derived explicitly in [44]. Another remarkable
feature of the CYBE case is that non-integrable backgrounds can be described. The well-
known example is AdS; x TH! [45] and the non-integrability of this background has been
shown by the existence of chaotic string solutions in [46,47]. It has been found that Yang-
Baxter deformations can also reproduce this background in [48]. This result indicates that the
gravity /CYBE correspondence is not restricted to a class of integrable backgrounds but also
applicable to a wider class of gravity solutions.

In this article, we focus on the g-deformed AdSsxS® superstring [11]. An interesting issue is
to consider a holographic relation in the g-deformed geometry. A proposal is that the singularity
surface in the deformed AdS may be regarded as the holographic screen [20]. For this purpose,
it is useful to introduce a coordinate system which describes the spacetime enclosed by the
singularity surface [20]. With this coordinate system, minimal surfaces whose boundary shapes
are a straight line and a circle have been considered in [20,21]. The solutions are reduced to
the well-known results [49-52] in the ¢ — 1 limit. A remarkable feature is that the classical
FEuclidean actions have no linear divergence, in comparison to the original ones. This result
indicates that the g-deformation may be regarded as a UV regularization.

This article is organized as follows. Section 2 gives a brief review of a coordinate system for
the g-deformed AdSsxS® which describes the spacetime only inside the singularity surface and
the associated Poincaré coordinates. In section 3, we consider two types of minimal surfaces.
The former is a static solution whose boundary is a straight line. The classical action does not
have the standard linear divergence but a logarithmic divergence, unlike the usual AdS/CFT
case. The solution corresponds to a 1/2 BPS straight line Wilson loop [49,50] in the undeformed
limit ¢ — 1. The latter is a circular solution which is constructed by supposing whose boundary
shape is a circle. A remarkable point is that in the circular case, the resulting classical action
is finite even though there is no UV cut-off. The solution corresponds to a 1/2 BPS circular
Wilson loop [51,52] in the undeformed limit ¢ — 1. Section 4 is devoted to conclusion and
discussion.

2. A ¢-deformed AdS;xS® background
We consider the bosonic part of the classical action of a g-deformed AdSsxS® superstring [11].
In the following, we focus on minimal surfaces ending at the singularity surface in the deformed



AdS. For this purpose, it is helpful to employ a coordinate system which describes the spacetime
only inside the singularity surface [20]. In this coordinate system, the singularity surface is
located at the boundary.

2.1. The bosonic part of the q-deformed action
Let us first introduce the metric part and the WZ term of the bosonic action with the coordinate
system [20], then the associated Poincaré coordinates [21].

The bosonic action (in the conformal gauge) is composed of the metric part and the Wess-
Zumino (WZ) term which describes the coupling of string to an NS-NS two-form.

With the coordinate system proposed in [20], the metric for the deformed AdS and sphere
parts are given by, respectively,
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Here the coordinates (¢,1,12,(,x) describe the deformed AdSs, while the the coordinates
(¢,01,p2,€,7) parameterize the deformed S°. The deformation is characterized by a real
parameter C' € [0,00). When C = 0, the geometry is reduced to the undeformed AdSsxS® with
the curvature radius R.

It should be mentioned that a curvature singularity exists at x = oo in this coordinate system
as well as the original one [13]. In [20], it has been shown that it takes infinite affine time for
a massless particle to reach the singularity surface, while it does not take infinite time to reach
the singularity in the coordinate time. This is the same feature as in the usual AdS space with
the global coordinates. Hence it seems likely to treat the singularity surface as the boundary in
the holographic setup for the g-deformed geometry.

The WZ term for the AdS part and the sphere part are given by, respectively,

2 rtsin 2¢
LY = ——CV14+02e™ 90 ByC . ]
AdS A \/76 [z2 +02(Z2 +7‘2)]2 T o2t SinQC 1P O C ( )
2 sin® 7y sin 2¢

Ld? = —2oVitozer B, b OE A

i 4 Vitee (14 C2?cos? )2 4 C2sin* ysin? ¢ k#1098 (4)

Here the totally anti-symmetric tensor ¢ is normalized as €’ = 41 and the coupling \ is
defined as

fEiQ. (5)
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Each component of the WZ term is proportional to C', and hence it vanishes when C = 0.



2.2. Poincaré coordinates
To consider minimal surfaces in the deformed AdS (1), it is helpful to introduce the associated
Poincaré coordinates.

Let us first perform a coordinate transformation,

1
cosf’

(6)

and then the Wick rotation ¢ — i7 to move to the Euclidean signature. Performing the following
coordinate transformation,

cosh y =

z=¢" cosb, r=e sinf, (7)

the Poincaré analogue of the deformed Euclidean AdSs is obtained as
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When C' =0, (8) is reduced to the Euclidean AdSs metric with the Poincaré coordinates.

After the Wick rotation has been performed, the space-like path is the only sensible measure
rather than time-like and null ones. As argued in [21], the space-like proper distance to the
singularity surface is finite when C' # 0, unlike the undeformed case with C = 0. This property
might be crucial in the next section.

3. Minimal surfaces

In this section, we consider minimal surfaces in the deformed AdS. The gauge-theory dual has
not been unveiled yet, but at least when C' = 0, these solutions should correspond to Wilson
loops in the N'=4 super Yang-Mills theory. The minimal surfaces may be a good clue to seek
for the dual gauge theory.

In the following, we consider minimal surfaces in the deformed AdSs subspace for two cases,
1) a straight line solution 2) a circular solution. In the undeformed limit, the solutions are
reduced to minimal surfaces dual for a 1/2 BPS straight Wilson loop [49,50] and a 1/2 BPS

circular one [51,52], respectively.

3.1. A straight line solution

Let us first study a straight string solution. Due to the deformation, it seems difficult to construct
a straight line solution with the Poincaré coordinates (8), while it is possible to construct a static
configuration of the string world-sheet in the global Lorentzian deformed AdSs (1). Then the
solution ends with two lines on the boundary.

Let us consider a static configuration of the string world-sheet with the ansatz:

t=KT, X:X(U)7 (=191 =12=0,
$=d1=ds=7=£=0. (9)

Then the full metric is reduced to that of a deformed AdSy subspace,

d
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Note that the WZ terms vanish under this ansatz (9). Then the Lagrangian is given by
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By integrating (13) with the boundary condition x(oc = 0) = oo,
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Note that (17) describes a solution which stretches from the boundary to the center of the
deformed AdS. The other direction of the AdS part can be described by the negative o region.
In total, the solution stretches from one boundary to the other boundary through the center.

Next, let us convert the solution (17) in the global coordinates into the one in the Poincaré
coordinates. Note that it is divided into two sections according to the positive (or negative) o
region. For the positive o region, the solution is given by
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Here 7 is taken as —oo < 7 < oo and the (%)-signatures correspond to the solution in the
positive o region (O <o < ao) and that of the negative o region (—O‘o < 0 < 0), respectively.



The positive o region is mapped to 6 = arctan(r/z),
f(c =0) = g (boundary) — 6(c =a9) =0 (origin), (20)
while the negative o region covers,
O(oc = —09) =0 (origin) — O(c=0)= —g (boundary) . (21)

Note that the contribution coming from the negative o region is the same value as that from
the positive o region.
Then the classical Fuclidean action is evaluated as
z 1

o 2 _
S = PV [Car [Taae(teilctanle) Zrol

1 — C?tan?[arctan[}] — ko]
TVA V1+C?
C

s

N

k arctanh [C cot (ke + arctan[C])} , (22)

where T is the interval of the world-sheet 7 and taken to be large. When C # 0, the above
expression can be expanded in terms of ¢ as
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Note that the divergence becomes logarithmic, unlike the usual AdS/CFT case.

The Legendre transformation It would be worth mentioning about an additional contribution
coming from the boundary [52]. In the undeformed case, it is well recognized that the classical
action has a linear divergence and it can be removed by considering a Legendre transformation.
The origin of this additional contribution is the surface term which appears in taking a variation
of the classical action to obtain the equations motion. This is just because the minimal surface
has the boundary. Thus it is important to discuss this contribution in the deformed case as well.

By taking account of a Legendre transformation, the total action is written as
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In the non-zero C case, St can be expanded in terms of ¢ as
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Thus, even though the boundary contribution (25) has been taken into account, the logarithmic
divergent term in (23) cannot be canceled out. There might be a proper method to regularize
(23), or it may be divergent essentially.

It is worth noting the undeformed limit of the classical action (23). By taking the C' — 0

limit (e:fixed), the well-known result in the undeformed case is reproduced,
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In the undeformed limit C' — 0 with € fixed, S, (25) results in
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and it cancels out the divergent term in (26) as usual.
3.2. A circular solution

Next, we shall consider minimal surfaces which ends up with a circle at the boundary of the
g-deformed AdSs with the Poincaré coordinates (8).

Let us consider an ansatz with the conformal gauge:

z=va%—r?, r=r(0), 1 =1 (7), Py =(=0, (28)

with 0 < 7 < 27,0 < 0 < oo. Here a is the radius of the circle at the boundary. Note that
(28) is a consistent ansatz and the WZ term vanishes under (28). Then the geometry with the
metric (8) is reduced to the following deformed AdSs,
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The next task is to evaluate the classical Euclidean action. By following the undeformed
case, let us formally introduce a cut-off € for the coordinate z. It may be regarded as a cut-off
op for the string world-sheet coordinate o through the classical solution (30) for z,

€ =atanhoy. (31)

Then the classical action is evaluated as
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where C' has been fixed in this expansion. It is easy to see that the cut-off can be removed for
non-vanishing C'. By taking ¢ — 0, the classical action (32) becomes,
V14 C?
S = \57; arccot[C] . (34)
It should be mentioned that the action (34) is finite even if there is no UV cut-off for the
string world-sheet (equivalently for the radial direction of the deformed AdS). The result would
come from the finiteness of the space-like proper distance to the singularity surface. Then the
deformation parameter C' works as a UV regularization and one does not need to introduce e
any more in evaluating the classical action. This point becomes clear by taking the C' — 0 limit
of (34). By expanding (34) in terms of C', we obtain the following expression:

—ﬁ+ﬁ% +0(0). (35)

However one needs to include € so as to reproduce the regularized result in the undeformed
limit [51,52] as shown below. For this purpose, it is helpful to consider the undeformed limit of
the classical action (32) by taking C' — 0 while keeping € finite. This corresponds to keeping the
boundary of the solution away from the singularity surface. Then the result in the undeformed
case [51,52] is reproduced as

= —VA+VAZ (36)

Note that the linear divergence is also reproduced in the undeformed limit and it can be canceled
by taking account of a Legendre transformation as usual.

The Legendre transformation 1t is of importance to consider the boundary term via a Legendre
transformation [52]. In the present case, the total derivative term is given by
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The term Sy, is a total derivative and evaluated as
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A remarkable point is that (38) vamshes in the limit ¢ — 0 when C # 0, hence it does not
contribute to the final expression of the action.

The next is to consider the undeformed limit of Sy, so as to cancel the divergent term in the
undeformed limit of S (32). The term Sz, in (38) vanishes when C' # 0, hence this is the first
place one need to introduce € so as to keep the boundary away from the singularity surface. By
taking the C' — 0 limit with € fixed, the resulting expression of Sy, is given by

Sp = fﬁgw(e), (39)

and it cancels the divergent term in (36) as usual.

It would be worth mentioning about the cut-off € and the deformation parameter C'. When
C # 0, there is no strict need to introduce € in evaluating the classical action and the Legendre
term vanishes. However, if the limit ¢ — 0 is taken first, or € is not turned on, the finite result
cannot be reproduced correctly in the C' — 0 limit. In this scene, there is a subtlety of the order
the two limits: 1) e — 0 and 2) C' — 0. At least so far, a possible resolution is to take the limit
C' — 0 first while keeping € finite.



4. Conclusion and discussion

In this article, we have discussed a g-deformation of the AdSsxS® superstring. It has been
conjectured in [20] that the singularity surface may be treated as a holographic screen in the
deformed theory. To look for some support for this conjecture, we have further considered
minimal surfaces by employing the coordinate system which is enclosed by the singularity surface.
A remarkable feature is that the classical Euclidean actions have no linear divergence unlike the
original ones. This finiteness comes from the fact that the g-deformation may be regarded as a
UV regularization. In the undeformed limit, the linear divergent term is also reproduced. This
result may indicate that our conjecture would make sense. To obtain more support, it would
be nice to consider other minimal surfaces like cusped solutions by employing the Poincaré
coordinates and calculate the corresponding quark-antiquark potantial by following [53].

There are a lot of issues to be studied. The most interesting issue is to find out the gauge-
theory side dual to the g-deformation of the AdS5xS® superstring. To tackle this issue, it would
be useful to look for some clues of the corresponding gauge theory by employing the Poincaré
coordinates.

We believe that our results on minimal surfaces can play an important role in unveiling a
possible gauge-theory dual.
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