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Abstract. In this paper we make some general considerations about the geometry of complex
Riemannian foliations, we introduce a leafwise characteristic connection and we write Einstein
equations with respect to it. Next, using an one-to-one correspondence between leafwise
holomorphic Riemannian metrics and leafwise anti-Kählerian metrics, we focus on the Einstein
condition for a leafwise holomorphic Riemannian metric and the associated real leafwise anti-
Kählerian metric on a manifold endowed with a complex foliation.

1. Introduction
The importance of (holomorphic) complex Riemannian metrics in mathematical physics is
without question (see for instance [3, 16, 20]). We recall that a (holomorphic) complex
Riemannian manifold is a complex manifold M , together with a (holomorphic) complex tensor
field G that is a complex scalar product (i.e., nondegenerate, symmetric, C-bilinear form) on each
holomorphic tangent space of M . The (holomorphic) complex Riemannian geometry possesses
an underlying real geometry consisting of a pseudo-Riemannian metric of neutral signature and
there is a strong relation between holomorphic Riemannian metrics and anti-Kählerian metrics
(also known as Kähler-Norden metrics [10, 18, 19, 21]). In [2], it is proved that an anti-Kählerian
metric must be the real part of a holomorphic metric. There is studied the Einstein condition
for anti-Kählerian metrics and some generalized Einstein conditions on holomorphic Riemannian
manifolds are investigated in [19]. Also, we notice that in [6, 7, 8], a study of connections and
curvatures on (holomorphic) complex Riemannian manifolds is given, and the anti-Hermitian
metrics which are locally conformal with anti-Kählerian metrics are investigated in [5].

In this paper we work in the category of smooth manifolds endowed with complex foliations,
and we check that more of the techniques used in the study of (holomorphic) complex
Riemannian geometry can be adjusted to the foliated picture. Thus, we generalize the main
notions from the geometry of complex Riemannian manifods to that of complex Riemannian
foliations. Incidentally the classical case is contained in the foliation formalism by taking the
foliation which consists of the leaf M only.

The structure of the paper is as follows. In the second section, we brief recall the definition
of a complex foliation which is used for instance in [4, 13, 14] , we define the leafwsise complex
Riemannian metrics and we present some examples. Also, following [2, 7, 11] we generalize
some notions from complex Riemannian manifolds to that of complex Riemannian foliations (not
necessarily leafwise holomorphic). More exactly we consider the associated leafwise characteristic
connection, we study its properties and we write Einstein equations with respect to it. In the
last section we study the Einstein condition for leafwise holomorphic Riemannian metrics.



The main methods used here are similar and closely related to those used in the study of
complex Riemannian manifolds [7, 8, 11] and anti-Kählerian manifolds [3, 2, 19, 21]. For this
reason the most proofs are omitted here.

2. Complex Riemannian foliations
Let M be a smooth (2m+n)-dimensional manifold endoweed with a smooth regular foliation F
of codimension n. Then the dimension of the foliation F is 2m. We denote by TF the tangent
bundle along the leaves and by T ∗F its dual.

An almost complex structure along the leaves of F is defined as a smooth real vector bundle
automorphism JF of TF satisfying J2

F = −IdF . Given such a leafwise almost complex structure,
we obtain the decomposition TCF = TF ⊗R C = T 1,0F ⊕ T 0,1F , where

T 1,0F = {X − iJFX |X ∈ Γ(TF)} and T 1,0F = {X + iJFX |X ∈ Γ(TF)}.

Moreover, if the Nijenhuis tensor along the leaves

NJF := [JFX, JFY ]− JF [JFX,Y ]− JF [X, JFY ]− [X,Y ], for X,Y ∈ Γ(TF) (2.1)

vanishes, then JF is called a complex structure on F and (F , JF ) is called a complex foliation
on M . In this case, the complex foliation F can be defined by an open cover {Ui}, i ∈ I, of
M and diffeomorphisms φi : Ωi × Oi → Ui (where Ωi is an open polydisc in Cm and Oi is an
open ball in Rn) such that, for every pair (i, j) ∈ I × I with Ui ∩Uj 6= φ, the coordinate change
φij = φ−1j ◦ φi : φ−1i (Ui ∩ Uj) → φ−1j (Ui ∩ Uj) is of the form (z′, x′) = (φ1ij(z, x), φ2ij(x)) with

φ1ij(z, x) holomorphic in z for every x fixed. A such adapted atlas will be called leafwise complex.

If we set za = ua + ium+a, a = 1, . . . ,m, then the complex structure along the leaves
JF : TF → TF is given by

JF

(
∂

∂ua

)
=

∂

∂um+a
, JF

(
∂

∂um+a

)
= − ∂

∂ua
, a = 1, . . . ,m

and its complex extension to TCF is given by

JF

(
∂

∂za

)
= i

∂

∂za
, JF

(
∂

∂za

)
= −i ∂

∂za
, a = 1, . . . ,m.

Remark 2.1. The above notion of complex foliations is also related to laminations. For instance,
a lamination by Riemann surfaces is a topological space locally homeomorphic to a model space
of type D × T , where D is the open unit disc in C and T is a topological space. The transition
functions between two such charts is assumed to be of the form D × T → D × T ′ and defined
by (z, x) 7→ (f(z, x), g(x)), where f(z, x) is holomorphic in z and continuous in x, and g(x) is a
continuous function of x (see Section 2 in [9]).

We have the following simple examples of complex foliations.

Example 2.1. Any complex manifold M of dimCM = m is a complex foliation of complex
dimension m and codimension 0.

Example 2.2. Let M be an open set of Cm×N , where N is an n-dimensional smooth manifold.
For every t ∈ N , the set M t = {z ∈ Cm | (z, t) ∈ M} is an open set of Cm called the section of
M along t. Then, sections of M are leaves of a complex foliation F of dimension m called the
complex canonical foliation of M .



Example 2.3. Let F be a complex manifold of dimC F = m and N an n-dimensional smooth
manifold. Every locally trivial fibration F ↪→ M → N whose cocycle takes values in the
automorphism group Aut(F ) of (the complex manifold) F is a complex foliation, the fibers
being the leaves. If the fibration is trivial, that is M = F × N , we say that F is a complex
product foliation.

For more examples of complex foliations, see for instance [13, 14] and references therein.

Definition 2.1. A leafwise complex Riemannian metric on (M,F , JF ) is a covariant symmetric
2-tensor field G : Γ(TCF)×Γ(TCF)→ C, which is non-degenerate at each point (z, x) of (M,F)
and satisfies

G(Z1, Z2) = G(Z1, Z2) for every Z1, Z2 ∈ Γ(TCF), (2.2)

G(Z1, Z2) = 0 for every Z1 ∈ Γ(T 1,0F) and Z2 ∈ Γ(T 0,1F). (2.3)

It is easy to see that the relation (2.3) is equivalent to

G(JFZ1, JFZ2) = −G(Z1, Z2) for every Z1, Z2 ∈ Γ(TCF), (2.4)

where, we have denoted again by JF the C-linear extension of JF to TCF . Thus, a leafwise
complex Riemannian metric on (M,F , JF ) is completely determined by its values on Γ(T 1,0F).

Definition 2.2. The pair (M,F , JF , G) consisting by a smooth (2m+n)-dimensional manifold
M endowed with a complex foliation (F , JF ) and with a leafwise complex Riemannian metric
G on (M,F , JF ), will be called a complex Riemannian foliation.

If (z1, . . . , zm, x1, . . . , xn) is an adapted local coordinate system (leafwise complex) on
(M,F , JF ), such that Γ(TCF) = span{∂/∂za, ∂/∂za}, we put

GAB(z, x) = G

(
∂

∂zA
,
∂

∂zB

)
, A,B ∈ {1, . . . ,m, 1, . . . ,m}. (2.5)

Then, for a leafwise complex Riemannian metric G, the defining conditions (2.2) and (2.3) can
be expressed locally in the form

GAB = GAB and Gab = Gab = 0. (2.6)

Definition 2.3. A leafwise complex Riemannian metric G on (M,F , JF ) is called leafwise
holomorphic Riemannian metric if the local components Gab(z, x) are leafwise holomorphic
functions, that is

∂Gab
∂zc

= 0 , for every c ∈ {1 . . . ,m}. (2.7)

As in the case of complex Riemannian manifolds (see [7]) for a given leafwise complex

Riemannian metric G on (M,F , JF ), we define the leafwise tensor field G̃ on (M,F , JF ) by
setting

G̃(Z1, Z2) = (G ◦ JF )(Z1, Z2) := G(JFZ1, Z2) for every Z1, Z2 ∈ Γ(TCF). (2.8)

This metric is called leafwise twin metric, and locally, it satisfies

G̃ab = iGab and G̃a b = −iGa b. (2.9)

Also, we notice that given a leafwise complex Riemannian metric G on (M,F , JF ) it induces a
leafwise real Riemannian metric g on the underlying real foliated manifold (M,F , JF ) by setting

g(X,Y ) = 2ReG(X̂, Ŷ ) , X, Y ∈ Γ(TF), (2.10)



where X̂ = (1/2)(X − iJFX), Ŷ = (1/2)(Y − iJFY ) ∈ Γ(T 1,0F), and this real metric satisfies

g(JFX, JFY ) = −g(X,Y ) for every X,Y ∈ Γ(TF), (2.11)

or, equivalently
g(JFX,Y ) = g(X, JFY ) for every X,Y ∈ Γ(TF). (2.12)

Such a leafwise real metric will be called a leafwise anti-Hermitian metric, or leafwise Norden
metric and (M,F , JF , g) will be called the realization of (M,F , JF , G).

Conversely, every leafwise anti-Hermitian metric on the underlying real foliated manifold
(M,F , JF ) induces a leafwise complex Riemannian metric on the (M,F , JF ) by setting

G(X̂, Ŷ ) =
1

2
(g(X,Y )− ig(X, JFY )) , (2.13)

where X,Y ∈ Γ(TF) and X̂ = (1/2)(X − iJFX), Ŷ = (1/2)(Y − iJFY ) ∈ Γ(T 1,0F) as above,
and next we extend G to have the conditions (2.2) and (2.3), which is possible because of (2.11).

We recall (see [17]) that a leafwise (or tangential) connection ∇ on (M,F) can be seen
as a linear map ∇ : Γ(TCF) × Γ(TCF) → Γ(TCF) with ∇fXY = f∇XY and ∇X(gY ) =
X(g) · Y + g∇XY for every f, g ∈ C∞(M) ⊗R C and X,Y ∈ Γ(TCF). Given any leafwise
connection D on (M,F , JF ), with respect to an adapted coordinate system (z, x) (leafwise
complex), we put

D ∂

∂zA

∂

∂zB
= LCAB(z, x)

∂

∂zC
.

We notice that the leafwise covariant differentiation, which is defined for leafwise real vector
fields in Γ(TF), can be extended by complex linearity on leafwise complex vector fields from

Γ(TCF). Then LC
AB

= LCAB, where A = A.

Definition 2.4. A leafwise (real) connection D on (M,F , JF ) is called leafwise almost complex
if DJF = 0.

By direct calculus, we easy obtain

Proposition 2.1. A leafwise connection D on (M,F , JF ) is leafwise almost complex if and only
if Lcab = Lc

ab
= 0

Let us consider the leafwise (or tangential) Levi-Civita connection of a tangential Riemannian
metric (see Proposition 5.18 in [17]). We have

Definition 2.5. A leafwise anti-Hermitian metric g on (M,F , JF ) is called leafwise anti-
Kählerian metric if the leafwise Levi-Civita connection of g is leafwise almost complex.

In the following we present some examples of leafwise anti-(Kählerian) Hermitian metrics on
manifolds endowed with complex foliations.

Example 2.4. Let (M,J, g) be a locally conformal anti-Kähler manifold, with a parallel Lee
form and a non light-like Lee vector field (see [5]). Then, its vertical foliation (defined by Lee
and anti-Lee vector fields) carries a complex structure with respect to which the induced leafwise
metric is anti-Hermitian (see Theorem 5 in [5]).

Example 2.5. It is well known [3] that every parallelisable complex manifold G (including
complex Lie groups) can be endowed with anti-Kählerian metrics. Thus, it is easy to see that
every product complex foliation defined by trivial fibration M = G × N → N where G is a
parallelisable complex manifold and N is a paracompact smooth manifold, can be endowed with
leafwise anti-Kählerian metrics.



Example 2.6. We consider an m-dimensional smooth manifold M and let π : TM → M
its tangent bundle with the total space TM , called the tangent manifold of M . Let (xa, ya),
a = 1, . . . ,m the local coordinates on the manifold TM , where (xa) are the local coordinates on
M and (ya) are the vector coordinates with respect to the basis { ∂

∂xa }. The fibers of TM define
the vertical foliation V, and we shall denote by V = TV the tangent bundle along the vertical
leaves, which is the vertical bundle. Now, we consider the total space T V of the vertical bundle
V → TM , which is a 3m-dimensional manifold, called the vertical tangent manifold of M . The
iterated tangent manifold T (TM) has local coordinates (xa, ya, ξa, ηa), where ξ, η are vector
coordinates with respect to the natural basis { ∂

∂xa ,
∂
∂ya }, and the vertical tangent manifold T V

may be seen as the submanifold of T (TM) defined by ξa = 0. For the projection p : T V →M
given by p(x, y, η) = x its kernel is the Whitney sum W = V1 ⊕ V2, where V2 ∼= V1 = V .
The vertical bundle W = span{ ∂

∂ya ,
∂
∂ηa } is called the double vertical bundle, which defines the

double vertical foliation W, with leaves defined by xa = const., see [22]. Moreover the following
operator

JW(
∂

∂ya
) =

∂

∂ηa
, JW(

∂

∂ηa
) = − ∂

∂ya
, (2.14)

defines an almost complex structure on W , which is integrable. Thus (W, JW) is a complex
foliation on T V and, we can consider the holomorphic coordinates along the leaves of W by
putting za = ya + iηa.

Let us consider now a (locally) Lagrange metric L : TM → R with the fundamental metric
tensor gab(x, y) = ∂2L/∂ya∂yb. It defines a nondegenerate Riemannian metric on the vertical
bundle V by formula

gV(X,Y ) = gab(x, y)Xa(x, y)Y b(x, y), (2.15)

for every X = Xa(x, y)∂/∂ya, Y = Y a(x, y)∂/∂ya ∈ Γ(V ). This metric descends to a vertical
pseudo-Riemannian metric on W , defined by

gW(X,Y ) = gab(x, y)Xa
1 (x, y, η)Y b

1 (x, y, η)− gab(x, y)Xa
2 (x, y, η)Y b

2 (x, y, η), (2.16)

for every X = Xa
1 (x, y, η)∂/∂ya +Xa

2 (x, y, η)∂/∂ηa, Y = Y a
1 (x, y, η)∂/∂ya + Y a

2 (x, y, η)∂/∂ηa ∈
Γ(W ). By direct calculus we get gW(JW(X), JW(Y )) = −gW(X,Y ), for every X,Y ∈ Γ(W )
which says that gW is a leafwise anti-Hermitian metric on the complex foliation (T V,W, JW).
If we consider ∇ the leafwise Levi-Civita connection associated to this metric, then it is locally
given by

∇ ∂
∂ya

∂

∂yb
= ∇ ∂

∂ηa

∂

∂ηb
= Ccab

∂

∂yc
, ∇ ∂

∂ya

∂

∂ηb
= ∇ ∂

∂ηb

∂

∂ya
= Ccab

∂

∂ηc
, (2.17)

where

Ccab =
1

2
gcd

∂gbd
∂ya

. (2.18)

We observe that ∇ ∂
∂ya

JW( ∂
∂ηb

) = −JW
(
∇ ∂

∂ya

∂
∂ηb

)
, which says that ∇JW 6= 0, so the metric gW

is not leafwise anti-Kählerian.

Example 2.7. Sasakian-like almost contact complex Riemannian manifolds. Let (M,ϕ, ξ, η, g)
be an almost contact complex Riemannian manifold (see [12]), that isM is a (2m+1)-dimensional
smooth manifold endowed with a quadruple (ϕ, ξ, η, g) consisting of an endomorphism ϕ of the
tangent bundle, a vector field ξ and its dual 1-form η, and g is a pseudo-Riemannian metric on
M of signature (m+ 1,m), satisfying the conditions

ϕ ◦ ξ = 0 , ϕ2 = −Id + η ⊗ ξ , η ◦ ϕ = 0 , η(ξ) = 1 , g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ). (2.19)



The associated twin metric is given by g̃(X,Y ) = g(ϕX, Y ) + η(X)η(Y ) and, the almost
contact complex Riemannian manifold (M,ϕ, ξ, η, g) is said to be normal if the Nijenhuis
tensor associated with the endomorphism ϕ satisfies Nϕ(X,Y ) + 2dη(X,Y )ξ = 0 for every
X,Y ∈ Γ(TM). Also, we consider the structure tensor F of type (0, 3) on (M,ϕ, ξ, η, g) given
by F (X,Y, Z) = g((∇Xϕ)Y,Z), and according to [12], the almost contact complex Riemannian
manifold (M,ϕ, ξ, η, g) is called Sasakian-like almost contact complex Riemannian manifold if
the structure tensors ϕ, ξ, η, g satisfy

F (X,Y, Z) = F (ξ, Y, Z) = F (ξ, ξ, Z) = 0 and F (X,Y, ξ) = −g(X,Y ), X, Y, Z ∈ Γ(TM).
(2.20)

Moreover, it is proved (see [12]) that if (M,ϕ, ξ, η, g) is a Sasakian-like almost contact complex
Riemannian manifold, then it is normal and the fundamental 1-form η is closed. Then, H = ker η
is an integrable 2m-dimensional distribution which defines a complex foliation (H,JH = ϕ|H) on
M and the leafwise metric h = g|H , induced on each leaf of H, is anti-Kählerian. Indeed, from
the first relation of (2.20) it follows that h((∇hXJH)Y,Z) = F (X,Y, Z) = 0, X,Y, Z ∈ Γ(H),
where ∇h is the leafwise Levi-Civita connection of h. For more concrete examples of such kind
of structures we refer [12].

Similary to the case of complex manifolds [18, 19, 21] (see also, [2, 3]), we have the following
one-to-one correspondence between the leafwise anti-Kählerian metrics and leafwise holomorphic
Riemannian metrics on (M,F , JF ).

Proposition 2.2. Let M be a smooth (2m+ n)-dimensional manifold endowed with a complex
foliation (F , JF ). If G is a leafwise holomorphic Riemannian metric (M,F , JF ) then g defined
in (2.10) is a leafwise anti-Kählerian metric on the realization (M,F , JF ), and conversely if g
is a leafwise anti-Kählerian metric on the underlying real foliated manifold (M,F , JF ) then G
defined in (2.13) is a leafwise holomorphic Riemannian metric on (M,F , JF ).

Now, let us denote by ∇ and ∇̃ the leafwise Levi-Civita connections of G and G̃, respectively.
Then, as usual, the leafwise Christoffel symbols of G are given by

ΓCAB =
1

2
GCD

(
∂GBD
∂zA

+
∂GAD
∂zB

− ∂GAB
∂zD

)
, (2.21)

where (GAB)m×m denotes the inverse matrix of (GAB)m×m, and similarly for the leafwise

Christoffel symbols Γ̃CAB of G̃.
Taking into account (2.6) and (2.9), we have the following relations which relates the leafwise

Christoffel symbols of G and G̃, respectively

Γ̃cab = Γcab =
1

2
Gcd

(
∂Gbd
∂za

+
∂Gad
∂zb

− ∂Gab
∂zd

)
(2.22)

Γ̃cab = −Γcab =
1

2
Gc d

∂Gab

∂zd
, Γ̃cab = Γcab =

1

2
Gcd

∂Gbd
∂za

. (2.23)

By analogy with the case of complex manifolds [7], we define the fundamental leafwise tensor Φ
of a leafwise complex Riemannian metric G by setting

Φ(Z1, Z2) = ∇̃Z1Z2 −∇Z1Z2 , for every Z1, Z2 ∈ Γ(TCF). (2.24)

By this definition, we deduce

Φ(Z1, Z2) = Φ(Z1, Z2) , for every Z1, Z2 ∈ Γ(TCF). (2.25)



Using (2.24), (2.22), (2.23) and (2.25), it follows that the nonvanishing components of the
fundamental leafwise tensor Φ are given by

Φc
ab = Gc d

∂Gab

∂zd
and Φc

a b
= Φc

ab. (2.26)

Also, from (2.24) and (2.26) we have

Proposition 2.3. The fundamental leafwise tensor of a complex leafwise Riemannian metric
G satisfy

Φ(Z1, Z2) = Φ(Z2, Z1) , Φ(JFZ1, Z2) = −JFΦ(Z1, Z2) , ∀Z1, Z2 ∈ Γ(TCF). (2.27)

Remark 2.2. If (M,F , JF , g) is the realization of a complex Riemannian foliation (M,F , JF , G)
we can define as in (2.24) the fundamental leafwise tensor for real leafwise vector fields, and the
property (2.25) of Φ implies that Φ is the complex extension of the real fundamental leafwise
tensor on (M,F , JF , g).

In the following, we extend the study from [7] to the case of complex Riemannian foliations,
and we shall construct a leafwise characteristic connection on (M,F , JF , G).

We consider the fundamental leafwise tensor of type (0, 3) defined by

Ψ(Z1, Z2, Z3) = G(Φ(Z1, Z2), Z3) , for every Z1, Z2, Z3 ∈ Γ(TCF). (2.28)

In an adapted coordinate system (leafwise complex) on (M,F , JF ), we have

ΨAB,C = ΦD
ABGDC , (2.29)

and the nonvanishing componets of ΨAB,C are

Ψab,c =
∂Gab
∂zc

and Ψa b,c = Ψab,c. (2.30)

We have

Theorem 2.1. On every complex Riemannian foliation (M,F , JF , G) there exists an unique
leafwise connection D with local coefficients LCAB such that

(i) D is symmetric, that is LCAB = LCBA;

(ii) D is leafwise almost complex, that is Lcab = Lc
ab

= 0;

(iii) The leafwise covariant derivatives DaGbc = ∂Gbc/∂z
a − LdabGdc − LdacGbd vanishes.

Proof. If we define the local coefficients of D by

LCAB = ΓCAB +
1

2
ΦC
AB −

1

2
GCD(ΨDA,B + ΨDB,A), (2.31)

where ΓCAB are the leafwise complex Christoffel symbols of G, then by direct calculus we obtain
that D satisfies the conditions of theorem.

Also, if D′ is another leafwise connection with local coefficients L′CAB which satisfy the all
conditions of theorem, we denote by DC

AB = LCAB − L′CAB the leafwise difference tensor. Then,
we easily obtain

DC
AB = DC

BA , D
c
ab = Dc

ab
= 0 , Dd

abGdc +Dd
acGab = 0, (2.32)

which implies DC
AB = 0, that is D = D′, and the uniqueness then follows.



The leafwise connection from the above theorem, will be called the leafwise characteristic
connection of the complex Riemannian foliation (M,F , JF , G).

The defining equality (2.31) of the leafwise characteristic connection and the properties of
the fundamental leafwise tensor, implies

Corollary 2.1. On every complex Riemannian foliation (M,F , JF , G) there exists an unique
leafwise connection D such that

(i) D is symmetric;

(ii) D is leafwise almost complex;

(iii) DAGBC = ΨBC,A, i.e the leafwise covariant derivative of the metric G is the fundamental
leafwise tensor Ψ.

Remark 2.3. The third condition of Theorem 2.1 says that the nonvanishing components of
the leafwise tensor DAGBC are

DaGbc = Ψbc,a and DaGb c = DaGbc. (2.33)

On the realization of a complex Riemannian foliation we have

Corollary 2.2. If (M,F , JF , g) is the realization of a complex Riemannian foliation
(M,F , JF , G), then the leafwise characteristic connection D on (M,F , JF , g) is the unique
leafwise connection which satisfy the conditions

(i) D is symmetric;

(ii) D is leafwise almost complex;

(iii) (DXg)(Y,Z) = (DJFXg)(JFY,Z), for every X,Y, Z ∈ Γ(TF).

The defining equality (2.31) together with (2.30) imply that the nonvanishing coefficients of
the leafwise characteristic connection D are

Lcab = Γcab and Lc
a b

= Lcab, (2.34)

that is, D is completely determined on Γ(T 1,0F).
We notice that a leafwise vector field Z = Za(z, x)∂/∂za ∈ Γ(T 1,0F) is leafwise holomorphic

if Za are leafwise holomorphic functions on (M,F , JF ). Also, using the leafwise Cauchy-
Riemann equations, it is easy to see that for a given leafwise vector field X ∈ Γ(TF), then

X̂ = (1/2)(X − iJFX) ∈ Γ(T 1,0F) is leafwise holomorphic if and only if

(LXJF )Y = [X,JFY ]− JF [X,Y ] = 0 , ∀Y ∈ Γ(TF). (2.35)

In that follows we denote the set of leafwise holomorphic vector fields on (M,F , JF ) by
Γhol(T

1,0F).

Definition 2.6. A leafwise connection D on (M,F , JF ) is called leafwise holomorphic if
DZ1Z2 ∈ Γhol(T

1,0F) for arbitrary leafwise holomorphic vector fields Z1, Z2.

We have

Proposition 2.4. The leafwise characteristic connection D of a complex Riemannian foliation
(M,F , JF , G) is leafwise holomorphic if and only if the leafwise complex Christoffel symbols
Lcab = Γcab are leafwise holomorphic functions.

As a direct consequence of (2.30), (2.22), (2.23), Corollary 2.1 and (2.31), we get

Theorem 2.2. For every complex Riemannian foliation (M,F , JF , G), the following assertions
are equivalent:



(i) The fundamental leafwise tensor Φ (or Ψ) is zero;

(ii) The local components Gab of the leafwise metric G are leafwise holomorphic functions;

(iii) The leafwise Levi-Civita connection ∇ of G is leafwise almost complex, that is ∇JF = 0;

(iv) The leafwise characteristic connection D is metrical with respect to G, that is DG = 0;

(v) The leafwise Levi-Civita connection ∇ coincides with the leafwise characteristic connection
D.

Let R be the leafwise characteristic curvature tensor of the leafwise characteristic connection
D, defined as usual by

R(X,Y )Z = [DX , DY ]Z −D[X,Y ]Z, for every X,Y, Z ∈ Γ(TCF).

The local components of R are given by

R

(
∂

∂zA
,
∂

∂zB

)
∂

∂zC
= RDC,AB

∂

∂zD
, (2.36)

and the nonvanishing components of R are

Rdc,ab =
∂Ldcb
∂za

− ∂Ldca
∂zb

+ LfcbL
d
fa − LfcaLdfb , Rdc,a b = Rdc,ab, (2.37)

Rdc,ab =
∂Ldbc
∂za

, Rd
c,ab

= Rdc,ab. (2.38)

It is easy to see that Rdc,ab = 0 if and only if D is a leafwise holomorphic connection. Also, the

leafwise characteristic Riemann curvature tensor of D is defined as usual by R(Z1, Z2, Z3, Z4) =
G(R(Z1, Z2)Z3, Z4) and its local components are RABCD = GDFR

F
C,AB. Its nonvanishing

components are

Rabcd = GdfR
f
c,ab and Rabcd = GdfR

f
c,ab, (2.39)

and their complex conjugates.
Moreover, every nondegenerate 2-plane in T 1,0

(z,x)F is called a leafwise holomorphic 2-plane,

and the leafwise holomorphic characteristic sectional curvature, for a given leafwise holomorphic
2-plan P = span{Z1, Z2}, where Z1, Z2 ∈ Γ(T 1,0

(z,x)F), (z, x) ∈M , is defined by

K(z,x)(P ) =
R(Z1, Z2, Z1, Z2)

G(Z1, Z1)G(Z2, Z2)− (G(Z1, Z2))2
. (2.40)

Then, the following Schur type theorem holds.

Theorem 2.3. Let (M,F , JF ) be a connected complex foliation with m ≥ 3 endowed with a
leafwise holomorphic metric G. If the leafwise holomorphic sectional curvatures does not depend
on the 2-plane P , then it is a basic function c(x).

In the end of this section we describe the Einstein equations for complex Riemannian
foliations. The associated leafwise characteristic Ricci tensor Ric is locally given by

Ric

(
∂

∂zC
,
∂

∂zA

)
= RicCA = RBC,AB, (2.41)

and its nonvanishing components are

Ricca = Rbc,ab , Ricca = Rbc,ab , Ricc a = Ricca , Ricca = Ricca. (2.42)



The function ρ defined by

ρ = GCARicCA = GcaRicca +Gc aRicc a (2.43)

is called the leafwise scalar curvature of D and it is a real valued function.
The equation

Ric− ρ

2
G = 8πcT (2.44)

is called the Einstein equation of the complex Riemannian foliation (M,F , JF , G). In the
equation (2.44), the left hand side is called the leafwise Einstein curvature which is constructed
using the leafwise complex Riemannian metric G, while in the right hand side we have a
leafwise tensor T called the leafwise stress-energy-momentum tensor and represents the matter
and energy that generate the gravitational field of potentials (GAB). The constant c is the
gravitational constant. Locally, the leafwise Einstein equation is expressed as

RicAB −
ρ

2
GAB = 8πcTAB. (2.45)

Remark 2.4. i) If the Einstein equation holds, then taking into account (2.6) it follows that

Ricab = 8πcTab. (2.46)

ii) In the empty leave space (no matter, no energy) we have TAB = 0, and contracting (2.45)
with GAB one gets ρ = 0 and so it reduced to

RicAB = 0. (2.47)

Consequently, Ricab = Rica b = 0.

iii) Letting EAB = RicAB − (ρ/2)GAB and EAB = GACECB, the leafwise divergence of E is
defined by

divE = EAB|A, (2.48)

where ”|” denotes the leafwise covariant derivative with respect to ∇ and we have divE = 0.
Indeed, the assertion follows using the second leafwise Bianchi identity

∑
cycl

(∇XR)(Y,Z) = 0

written in a local basis
{
∂/∂zA

}
of Γ(TCF). Assuming the Einstein equation holds, by using

divE = 0, we must have
div T = 0, (2.49)

which is called the leafwise continuity condition for complex Riemannian foliation
(M,F , JF , G).

Also, by analogy with the case of complex manifolds, see [11], the following result concerning
the Einstein condition for complex Riemannian foliations holds.

Definition 2.7. The complex Riemannian foliation (M,F , JF , G) is said to be leafwise
characteristic Einstein if Ricca = 0 and Ricca = fGca, where f = f1 + if2 is a complex valued
function on (M,F).

Theorem 2.4. Let (M,F , JF , G) be a leafwise characteristic Einstein complex Riemannian
foliation with m ≥ 3. Then the leafwise characteristic scalar curvature ρ0 = GcaRicca is a
leafwise anti-holomorphic function on (M,F , JF ) and Ricca = (ρ0/m)Gca.



Example 2.8. Let us consider the complex foliation (W, JW) defined by the double vertical
bundle W on the vertical tangent manifold T V as in the Example 2.6 endowed with leafwise
anti-hermitian metric gW from (2.16). If we consider za = ya+iηa, a = 1, . . . ,m the holomorphic
coordinates along the leaves of W and the leafwise complex vector fields

∂

∂za
=

1

2

(
∂

∂ya
− i ∂

∂ηa

)
,
∂

∂za
=

1

2

(
∂

∂ya
+ i

∂

∂ηa

)
, a = 1, . . . ,m,

then the corresponding leafwise complex Riemannian metric GW induced by gW (using (2.13))
have the local components

Gab = GW

(
∂

∂za
,
∂

∂zb

)
=

1

2
gab , Ga b = GW

(
∂

∂za
,
∂

∂zb

)
= Gab =

1

2
gab and Gab = Gab = 0.

Moreover, the local coefficients of the corresponding leafwise characteristic connection are
Lcab = (1/8)Ccab and the local components of characteristic curvatures of GW are given by

Rdc,ab(GW) =
1

16

(
∂Cdcb
∂ya

− ∂Cdca
∂yb

)
+

1

64
(CfcbC

d
fa − CfcaCdfb)

=
1

64
Rdc,ab(gV) +

3

64

(
∂Cdcb
∂ya

− ∂Cdca
∂yb

)
and

Rdc,ab(GW) =
1

16

∂Cdcb
∂ya

,

where R··,··(gV) denotes the local components of the curvature of vertical metric gV from (2.15).
The corresponding leafwise Ricci tensors are

Ricca(GW) =
1

64
Ricca(gV) +

3

64

(
∂Cbcb
∂ya

− ∂Cbca
∂yb

)
and Ricca(GW) =

1

16

∂Cbcb
∂ya

.

Hence, it is easy to see that if ∂Cbcb/∂y
a = ∂Cbca/∂y

b = 0 and the vertical metric gV is Einstein
(in the next section, the definition of an Einstein metric is recalled), then (T V,W, JW , GW) is
leafwise characteristic Einstein.

3. Leafwise holomorphic Riemannain Einstein metrics
We recall that a (real) metric g on the (real) manifold M is said to be Einsteinian if Ric(g) = λg,
where λ is a real constant and Ric(g) denotes the Ricci tensor of the metric g. By analogy, a
(real or complex) leafwise metric G on (M,F) is called leafwise Einstein metric if

Ric(G) = λG, (3.1)

where λ is a (real or complex) constant and Ric(G) denotes the Ricci tensor of the leafwise
metric G.

The aim of this section, is to point out that by taking the real part of a leafwise holomorphic
Einstein metric on a smooth (2m+n)-dimensional manifold M endowed with a complex foliation
(F , JF ) one gets a real leafwise Einstein metric on the real foliated manifold (M,F) obtaining
a result similar to Theorem 5.1 from [2] from the anti-Kählerian manifolds case.

Let (M,F , JF , G) be a complex foliation (F , JF ) on M endowed with a leafwise holomorphic
Riemannian metric G. Then, as we already noticed in the previous section the relations (2.10)
and (2.13) establishes an one-to-one correspondence between the leafwise anti-Kählerian metrics



on the (real) foliated manifold (M,F , JF ) and the leafwise holomorphic Riemannian metrics on
the complex foliation (F , JF ) on M .

Although we can follow an argument similar from [2, 3], for a better presentation of the
notions that we use, in this section we denote the leafwise holomorphic Riemannain metric G
by ĝ and we follow an argument similar to [19, 21] for Kähler-Norden manifolds.

Without loss of generality, we consider the real leafwise vector fields X,Y, . . . ∈ Γ(TF) such

that X̂, Ŷ , . . . ∈ Γhol(T
1,0F), are leafwise holomorphic vector fields on the complex foliation

(M,F , JF ), that is the relation (2.35) holds. Then, we easily obtain

[JFX,Y ] = [X, JFY ] = JF [X,Y ] , [JFX, JFY ] = [X,Y ] , [X̂, Ŷ ] = [̂X,Y ] =: [X,Y ]̂ . (3.2)

Also, by a direct calculation, we have that for every leafwise complex function f = Re f + iImf
on (M,F , JF ), and every real leafwise vector field X ∈ Γ(TF), the following relation holds

fX̂ = ((Re f)X + (Imf)X )̂ , (3.3)

and, moreover, if f is leafwise holomorphic, then the leafwise Cauchy-Riemann equations imply

X(Re f) = (JFX)(Imf) , (JFX)(Re f) = −X(Imf) , X̂f = X(Re f) + iX(Imf). (3.4)

Now, for every real tangent space along the leaves T(z,x),RF , (z, x) ∈ M , we can choose an
adapted orthonormal (real) frame {ea, JFea}, a ∈ {1, . . . ,m} in Γ(TF), such that

g(ea, eb) = δab , g(JFea, JFeb) = −δab , g(ea, JFeb) = 0 , a, b ∈ {1, . . . ,m}. (3.5)

Then, we obtain an adapted leafwise complex frame {êa}, a ∈ {1, . . . ,m}, for Γ(T 1,0
(z,x)F), where

êa = (1/2)(ea − iJFea) for which ĝ(êa, êb) = (1/2)δab.

Let ∇ and ∇̂ be the leafwise Levi-Civita connections of the leafwise anti-Kählerian metric g
and of the leafwise holomorphic Riemannian metric ĝ, respectively. We also consider the leafwise
Ricci tensor fields associated to the leafwise metrics g and ĝ, respectively, given by

Ric(g)(X,Y ) = Tr{Z 7→ R(Z,X)Y } and Ric(ĝ)(X̂, Ŷ ) = Tr{Ẑ 7→ R̂(Ẑ, X̂)Ŷ }, (3.6)

and let us denote by Q and Q̂ be the associated leafwise Ricci operators, given by

g(QX,Y ) = Ric(g)(X,Y ) and ĝ(Q̂X̂, Ŷ ) = Ric(ĝ)(X̂, Ŷ ). (3.7)

Following step by step the construction from the case of Kähler-Norden manifolds (see [21]), we
have the following result which relates the leafwise Ricci tensors Ric(g) and Ric(ĝ).

Proposition 3.1. The leafwise Ricci tensors Ric(g), Ric(ĝ) and the leafwise Ricci operators Q,

Q̂ satisfy the following relations

Ric(g)(JFX,Y ) = Ric(g)(X,JFY ) , Ric(g)(JFX, JFY ) = −Ric(g)(X,Y ) , QJF = JFQ (3.8)

and

Ric(ĝ)(X̂, Ŷ ) =
1

2
(Ric(g)(X,Y )− iRic(g)(X,JFY )) , Q̂X̂ = Q̂X. (3.9)

The first relation of (3.9) leads to the announced result, that is

Theorem 3.1. Let us suppose that g is a leafwise anti-Kählerian metric on (M,F , JF ), that
is (M,F , JF ) is endowed with a leafwise holomorphic Riemannian metric ĝ ≡ (ĝab(z, x)),
a, b ∈ {1, . . . ,m} and with a real leafwise metric g ≡ (gαβ(u, x)), α, β ∈ {1, . . . , 2m} given
by g = 2Re ĝ. Then, the leafwise holomorphic metric ĝ is Einstein with the real constant λ if
and only if the real leafwise metric g is Einstein with the same constant.



Remark 3.1. We notice that starting from the original leafwise anti-Kählerian metric g
on (M,F , JF ), the real leafwise twin metric g̃ = h can be considered, that is h(X,Y ) :=
(g ◦ JF )(X,Y ) = g(JFX,Y ), for every X,Y ∈ Γ(TF). We find

h(X,Y ) = 2Imĝ(X̂, Ŷ ) , ∀X,Y ∈ Γ(TF). (3.10)

Moreover, if we denote by∇ the covariant differentiation of the Levi-Civita connection associated
to the leafwise anti-Kählerian metric g, then we have

∇h = ∇g ◦ JF + g ◦ ∇JF = 0. (3.11)

The above relation says that, the leafwise Levi-Civita connection of g coincides with the leafwise
Levi-Civita connection of h, thus they have the same real and complex leafwise Riemann and
Ricci tensors (see also the discussion from the previous section). In the real case only one of two
leafwise twin metrics can be Einsteinian. In the complex case the Einstein condition Ric(ĝ) = λĝ

implies Ric(ĥ) = iλĥ, that is, both leafwise holomorphic metrics ĝ and ĥ are Einstein metrics
at the same time. We can conclude that the leafwise metric h is an Einstein metric with an
imaginary cosmological constant.

Finally, we notice that if the leafwise holomorphic metric ĝ is Einstein with complex constant
λ̂, that is

Ric(ĝ) = λ̂ĝ, λ̂ ∈ C, (3.12)

then, similarly to the Kähler-Norden manifolds case (see [19]), we can describe the following
generalization of Theorem 3.1.

Theorem 3.2. The leafwise holomorphic Riemannian metric ĝ on (M,F , JF ) is leafwise

holomorphic Einstein with complex constant λ̂ = λ1 + iλ2 if and only if

Ric(g)(X,Y ) = λ1g(X,Y ) + λ2g(X, JFY ). (3.13)

Moreover, in the formula (3.13), we have λ1 = K/2m and λ2 = −K∗/2m, where K = TrQ and
K∗ = Tr(JFQ).
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