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Abstract. We consider a space with canonical noncommutativity of coordinates. The problem
of rotational symmetry breaking is studied in this space. To preserve the rotational symmetry
we consider the generalization of constant matrix of noncommutativity to a tensor defined with
the help of additional coordinates governed by a rotationally symmetric system. The properties
of physical systems are examined in the rotationally invariant space with noncommutativity
of coordinates. Namely, we consider an effect of coordinate noncommutativity on the energy
levels of the hydrogen atom in the rotationally invariant noncommutative space. The motion
of a particle in the uniform field is also studied in the noncommutative space with preserved
rotational symmetry. On the basis of exact calculations we show that there is an effect of
coordinate noncommutativity on the mass of a particle and conclude that noncommutativity
causes the anisotropy of mass.

1. Introduction

A lot of attention has been devoted recently to studies of properties of physical systems in
a noncommutative space. The idea of noncommutative structure of space was suggested by
Heisenberg. Later, Snyder formalized the idea in his paper [1]. In recent years, the interest
in noncommutativity is motivated by the development of String Theory and Quantum Gravity
(see, for instance, [2, 3]).

Different problems have been studied in a space with canonical noncommutativity of
coordinates

[Xi,Xj ] = ih̄θij, (1)

[Xi, Pj ] = ih̄δij , (2)

[Pi, Pj ] = 0, (3)

where θij is a constant antisymmetric matrix. Among them the hydrogen atom [4–11], the
Landau problem (see, for instance, [12–16]), quantum mechanical system in a central potential
[17], classical particle in a gravitational potential [18, 19], system of particles in a gravitational
field [20], motion of a body in a gravitational field and the equivalence principle [21] and many
others.

It is important to note that in the case of canonical noncommutativity of coordinates (1) there
is a problem of rotational symmetry breaking [4, 22]. So, in order to preserve the symmetry



different classes of noncommutative algebras were considered (see, for example, [23, 24] and
references therein).

In previous paper [23] in order to construct rotationally invariant noncommutative algebra we
considered the generalization of the constant matrix θij to a tensor. We proposed to construct
the tensor in the following form

θij =
l0
h̄
εijkak, (4)

where l0 is a constant with the dimension of length and ai are additional coordinates which are
governed by a rotationally symmetric system. For simplicity, we suppose that coordinates ai are
governed by the harmonic oscillator

Hosc =
(pa)2

2mosc

+
moscω

2a2

2
. (5)

It is generally believed that the parameter of noncommutativity of coordinates is of the order
of the Planck scale. So, we put

√

h̄

mω
= lP , (6)

where lP is the Planck length. We also consider the case when the frequency of harmonic
oscillator is very large. Therefore, the distance between the energy levels of harmonic oscillator
tends to infinity. So, harmonic oscillator put into the ground state remains in it.

We would like to note that coordinates ai can be treated as some internal coordinates of a
particle. Quantum fluctuations of these coordinates lead effectively to a non-point-like particle,
size of which is of the order of the Planck scale.

So, the rotationally invariant noncommutative algebra reads

[Xi,Xj ] = iεijkl0ak, (7)

[Xi, Pj ] = ih̄δij , (8)

[Pi, Pj ] = 0. (9)

The coordinates ai and momenta pai satisfy the ordinary commutation relations [ai, aj ] = 0,
[ai, p

a
j ] = ih̄δij , [pai , p

a
j ] = 0. Also, ai commute with Xi and Pi. As a consequence, tensor

of noncommutativity θij given by (4) commutes with Xi and Pi too. Therefore, Xi, Pi

and θij satisfy the same commutation relations as in the case of the canonical version of
noncommutativity. Besides, noncommutative algebra (7)-(9) is manifestly rotationally invariant.

It is worth noting that the rotational symmetry is preserved in the case of another way
of generalization of the tensor of noncommutativity θij = α(aibj − ajbi)/h̄ where ai, bi are
additional coordinates governed by a rotationally symmetric system and α is a dimensionless
constant [23]. In previous papers [23, 25] we studied the hydrogen atom in the rotationally
invariant noncommutative space [Xi,Xj ] = iα(aibj − ajbi), [Xi, Pj ] = ih̄δij , [Pi, Pj ] = 0.

In this paper we consider physical systems in rotationally invariant space with
noncommutativity of coordinates (7). We study the motion of a particle in the uniform field in
the space. On the basis of exact calculations we show that there is an effect of noncommutativity
of coordinates on the mass of a particle and noncommutativity causes the anisotropy of mass.
Also we consider the hydrogen atom in rotationally invariant noncommutative space (7)-(9) and
study the effect of coordinate noncommutativity on the energy levels of the atom.

The paper is organized as follows. In Section 2, we consider the energy levels of the
hydrogen atom in rotationally invariant noncommutative space (7)-(9). In Section 3, the motion
of a particle in the uniform field in rotationally invariant noncommutative space is studied.
Conclusions are presented in Section 4.



2. Energy levels of hydrogen atom in noncommutative space with preserved

rotational symmetry

Let us consider the hydrogen atom in noncommutative space (7)-(9). The Hamiltonian of the
hydrogen atom reads

Hh =
P 2

2M
− e2

R
, (10)

where R =
√

∑

iX
2
i and Xi satisfy (7).

Because of definition of the tensor of noncommutativity (4) in rotationally invariant
noncommutative space we have to take into account additional terms that correspond to the
harmonic oscillator (5). Therefore, we consider the total Hamiltonian as follows

H = Hh +Hosc. (11)

Let us use the following representation

Xi = xi −
1

2
θijpj, (12)

Pi = pi, (13)

where θij is given by (4). Coordinates xi and momenta pi satisfy the ordinary commutation
relations

[xi, xj ] = 0, (14)

[pi, pj ] = 0, (15)

[xi, pj ] = ih̄δij , (16)

and commute with ai, p
a
i , namely [xi, aj ] = 0, [xi, p

a
j ] = 0, [pi, aj ] = 0, [pi, p

a
j ] = 0. It is worth

mentioning that coordinates Xi do not commute with paj . Taking into account (4) and (12), the
coordinates Xi can be written as follows

Xi = xi +
l0
2h̄

[a× p]i. (17)

Therefore, we have

[Xi, p
a
j ] = iεijk

l0
2
pk. (18)

Let us write the expansion for H up to the second order in θ = l0a/h̄. Using (17), we have

R =

√

∑

i

X2
i =

√

r2 − l0
h̄
(a · L) + l20

4h̄2
[a× p]2, (19)

with r =
√

∑

i x
2
i and L = [r× p]. It is important to note that the operators under the square

root do not commute. Therefore, the expansion for R can be written as follows

R = r − l0
2h̄r

(a · L)− l20
8h̄2r3

(a · L)2 + l20
16h̄2

(

1

r
[a× p]2 + [a× p]2

1

r
+ a2f(r)

)

, (20)



where f(r) is unknown function. Squaring left- and right-hand sides of equation (20) we obtain

h̄2

r4
[a× r]2 − ra2f(r) = 0. (21)

Finally, from (21) we have

a2f(r) =
h̄2

r5
[a× r]2. (22)

So, using (20) and (22), it is easy to write expansion for the inverse distance R−1

1

R
=

1

r
+

l0
2h̄r3

(a · L) + 3l20
8h̄2r5

(a · L)2 − l20
16h̄2

(

1

r2
[a× p]2

1

r
+

1

r
[a× p]2

1

r2
+
h̄2

r7
[a× r]2

)

. (23)

Therefore, the Hamiltonian (11) can be rewritten as follows

H = H0 + V, (24)

with

H0 = H
(0)
h +Hosc. (25)

Here H
(0)
h = p2

2M − e2

r
is the Hamiltonian of the hydrogen atom in the ordinary space and

perturbation V caused by the noncommutativity of coordinates is given by

V = − l0e
2

2h̄r3
(a · L)− 3l20e

2

8h̄2r5
(a · L)2 + l20e

2

16h̄2

(

1

r2
[a× p]2

1

r
+

1

r
[a× p]2

1

r2
+
h̄2

r7
[a× r]2

)

. (26)

Let us find the corrections to the energy levels of the hydrogen atom caused by the

noncommutativity of coordinates (7). Note that H
(0)
h commutes with Hosc. So, the eigenvalues

and the eigenstates which correspond to H0 (25) read

E
(0)
n,{na} = − e2

2aBn2
+ h̄ω

(

na1 + na2 + na3 +
3

2

)

, (27)

ψ
(0)
n,l,m,{na} = ψn,l,mψ

a
na

1 ,n
a

2 ,n
a

3
, (28)

where ψn,l,m are the eigenfunctions of the hydrogen atom in the ordinary space, ψa
na

1 ,n
a

2 ,n
a

3
are

the eigenfunctions of three-dimensional harmonic oscillator, and aB is the Bohr radius. In the
case when harmonic oscillator is in the ground state, according to the perturbation theory, in
the first order in V we have

∆E
(1)
n,l = 〈ψ(0)

n,l,m,{0}|V |ψ(0)
n,l,m,{0}〉 =

= − h̄
2e2〈θ2〉
a5Bn

5

(

1

6l(l + 1)(2l + 1)
− 6n2 − 2l(l + 1)

3l(l + 1)(2l + 1)(2l + 3)(2l − 1)
+

+
5n2 − 3l(l + 1) + 1

2(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)
− 5

6

5n2 − 3l(l + 1) + 1

l(l + 1)(l + 2)(2l + 1)(2l + 3)(l − 1)(2l − 1)

)

, (29)



where 〈θ2〉 is given by

〈θ2〉 = l20
h̄2

〈ψa
0,0,0|a2|ψa

0,0,0〉 =
3l20
2h̄

(

1

mω

)

=
3

2

(

l0lP
h̄

)2

. (30)

The details of calculation of the corresponding integrals can be found in our previous paper [23].
In the second order of the perturbation theory we obtain

∆E
(2)
n,l,m,{0} =

∑

n′,l′,m′,{na}

∣

∣

∣

〈

ψ
(0)
n′,l′,m′,{na} |V |ψ(0)

n,l,m,{0}

〉∣

∣

∣

2

E
(0)
n −E

(0)
n′ − h̄ω(na1 + na2 + na3)

, (31)

here the set of numbers n′, l′, m′, {na} does not coincide with the set n, l, m, {0}, and

E
(0)
n = −e2/(2aBn2) is the unperturbed energy of the hydrogen atom. Note that matrix elements

〈

ψ
(0)
n′,l′,m′,{na} |V |ψ(0)

n,l,m,{0}

〉

do not depend on ω because of our assumption (6). We consider the

frequency of the harmonic oscillator ω to be very large. In the case of ω → ∞ we have

lim
ω→∞

∆E
(2)
n,l,m,{0} = 0. (32)

So, we obtain the following corrections up to the second order in the parameter of
noncommutativity

∆En,l = ∆E
(1)
n,l . (33)

It is worth noting that in the case of l = 0 or l = 1 corrections (33) are divergent. In order
to find corrections to the ns energy levels let us write the perturbation V in the following form

V = −e
2

R
+
e2

r
= − e2

√

r2 − l0
h̄
(a · L) + l20

4h̄2 [a× p]2
+
e2

r
. (34)

Consequently for the corrections to the ns energy levels we have

∆Ens =

〈

ψ
(0)
n,0,0,{0}

∣

∣

∣

∣

∣

∣

∣

∣

e2

r
− e2
√

r2 − l0
h̄
(a · L) + l20

4h̄2 [a× p]2

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(0)
n,0,0,{0}

〉

. (35)

It is important that (a · L) commutes with [a × p]2 and r2. Also, it can be shown that

(a · L)ψ(0)
n,0,0,{0} = 0. So, the corrections (35) can be written as follows

∆Ens =

〈

ψ
(0)
n,0,0,{0}

∣

∣

∣

∣

∣

∣

∣

∣

e2

r
− e2
√

r2 +
l20
4h̄2 [a× p]2

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(0)
n,0,0,{0}

〉

=
χ2e2

aB
Ins(χ), (36)

where we use the following notation

Ins(χ) =

∫

da′ψ̃a
0,0,0(a

′)

∫

dr′ψ̃n,0,0(χr
′)

(

1

r′
− 1
√

(r′)2 + [a′ × p′]2

)

ψ̃n,0,0(χr
′)ψ̃a

0,0,0(a
′), (37)



with

χ =

√

l0lP
2a2B

. (38)

Here ψ̃n,0,0(χr
′) =

√

1
πn5 e

−χr
′

n L1
n−1

(

2χr′

n

)

are the dimensionless eigenfunctions of the hydrogen

atom, L1
n−1

(

2χr′

n

)

are the generalized Laguerre polynomials, ψ̃a
0,0,0(a

′) = π−
3
4 e−

(a′)2

2 are

the dimensionless eigenfunctions corresponding to the harmonic oscillator, a′ = a/lP and
r′ = r

√
2/
√
l0lP .

It is important to mention that in the case of χ = 0 integral (37) has a finite value. Therefore,
for χ→ 0 the asymptotic of ∆Ens can be written as follows

∆Ens =
χ2e2

aB
Ins(0). (39)

In order to find Ins(0), let us first consider the following integral

Ins(χ,a
′) =

∫

dr′ψ̃n,0,0(χr
′)

(

1

r′
− 1
√

(r′)2 + [a′ × p′]2

)

ψ̃n,0,0(χr
′). (40)

In the case of χ = 0 the integral reads

Ins(0,a
′) ≃ 1.72

πa′

4n3
, (41)

here a′ = |a′|. The details of calculation of integral (41) can be found in our previous paper [25].
It is clear that

Ins(0) = 〈Ins(0,a′)〉a′ , (42)

where 〈...〉a′ denotes 〈ψ̃a
0,0,0(a

′)|...|ψ̃a
0,0,0(a

′)〉. So, taking into account (38), (39), (41), (42) and
returning to a = lPa

′, the leading term in the asymptotic expansion of the corrections to the ns
energy levels over the small parameter of noncommutativity reads

∆Ens ≃ 1.72
h̄〈θ〉πe2
8a3Bn

3
, (43)

where

〈θ〉 = l0
h̄
〈ψa

0,0,0|
√

∑

i

a2i |ψa
0,0,0〉 =

2l0lP√
πh̄

. (44)

Note that corrections to the ns energy levels (43) are proportional to 〈θ〉. In the case of l > 1
we found that corrections (33) are proportional to 〈θ2〉. So, we can conclude that ns energy
levels are more sensitive to the noncommutativity of coordinates (7).



3. A particle in the uniform field in rotationally invariant noncommutative space

Let us consider the motion of a particle in the uniform field in rotationally invariant
noncommutative space (7)-(9). In the case when the field is pointed in the X3 direction and is
characterized by the factor κ the Hamiltonian of the particle reads

Hp =
P 2

2m
+ κX3, (45)

where m is the mass of a particle. For example, in a particular case of motion of a charged
particle q in the uniform electric field E directed along the X3 axis, we have κ = qE. In the
case of motion of a particle of mass m in the uniform gravitational field g directed along the X3

axis factor κ reads κ = −mg.
Taking into account the additional terms which correspond to the harmonic oscillator (5), we

have

H = Hp +Hosc =
P 2

2m
+ κX3 +

(pa)2

2mosc

+
moscω

2a2

2
. (46)

It is convenient to use representation (12), (13). Therefore, we can write Hamiltonian (46)
in the following form

H =
p2

2m
+ κx3 +

κl0
2h̄

(a1p2 − a2p1) +
(pa)2

2mosc

+
moscω

2a2

2
. (47)

After algebraic transformations, Hamiltonian (47) can be rewritten as

H =

(

1− κ2l20m

4h̄2ω2mosc

)

p21
2m

+

(

1− κ2l20m

4h̄2ω2mosc

)

p22
2m

+
p23
2m

+ κx3 +
(pa)2

2mosc

+
moscω

2

2

(

a1 +
κl0

2h̄ω2mosc

p2

)2

+
moscω

2

2

(

a2 −
κl0

2h̄ω2mosc

p1

)2

+
moscω

2a23
2

. (48)

So, we can represent Hamiltonian (48) as follows

H = H̃p + H̃osc. (49)

Here we use the notations

H̃p =
p21

2meff

+
p22

2meff

+
p23
2m

+ κx3, (50)

where meff is an effective mass which is defined as

meff = m

(

1− κ2l20m

4h̄2ω2mosc

)−1

, (51)

and

H̃osc =
(pa)2

2mosc

+
moscω

2q2

2
. (52)

The components of q read

q1 = a1 +
κl0

2h̄ω2mosc

p2, (53)

q2 = a2 −
κl0

2h̄ω2mosc

p1, (54)

q3 = a3. (55)



It is worth mentioning that qi satisfy the ordinary commutation relations

[qi, qj] = 0, (56)

[qi, p
a
j ] = ih̄δij . (57)

Therefore, Hamiltonian H̃osc corresponds to the tree-dimensional harmonic oscillator in
the ordinary space. Also the following commutation relations are satisfied [qi, xj ] =
−iεij3κl0/(2moscω

2), [qi, pj ] = 0.
It is important to note that

H̃1 =
p21

2meff

, (58)

H̃2 =
p22

2meff

, (59)

H̃3 =
p23
2m

+ κx3, (60)

and H̃osc which is given by (52) commute with each other. The eigenfunctions of H =
H̃1 + H̃2 + H̃3 + H̃osc (49) can be written as follows

ψ(x, q̃) = Ceik1x1eik2x2ψ(3)(x3)ψ
q̃(q̃). (61)

where C is a constant, k1 and k2 are the components of the wave vector corresponding to the
free motion of a particle in the perpendicular directions to the field direction, ψ(3)(x3) are well
known eigenfunctions of H̃3 which correspond to the motion of a particle in the field direction and
can be written in terms of the Airy function, and ψq̃(q̃) are eigenfunctions of tree-dimensional
harmonic oscillator with parameters mosc and ω. The components of q̃ are the following

q̃1 = a1 +
κl0k2

2ω2mosc

, (62)

q̃2 = a2 −
κl0k1

2ω2mosc

, (63)

q̃3 = a3. (64)

The eigenvalues of H (49) read

E =
h̄2k21
2meff

+
h̄2k22
2meff

+E3 +
1

2
h̄ω, (65)

where E3 corresponds to the motion of a particle in the field direction. Here we take into account
that the harmonic oscillator is in the ground state.

So, from (65) and (51) we can conclude that there is an effect of noncommutativity (7) on the
mass of a particle in the uniform field. Note that the motion of a particle in the field direction
described by H̃3 (60) is the same as in the ordinary space. Noncommutativity has an effect on
the motion of a particle in perpendicular directions to the direction of uniform field (see first
two terms in (65)). So, noncommutativity of coordinates (7) causes the anisotropy of mass.

In this Section we have considered large but finite limit for ω. Note that in the limit ω → ∞
effect of noncommutativity on the mass of a particle tends to zero.

It is worth mention that because of the rotationally invariance obtained results can be easy
generalized to the case of an arbitrary direction of the uniform field.



4. Conclusion

In this paper we have studied physical systems in rotationally invariant space with
noncommutativity of coordinates. We have considered rotationally invariant noncommutative
algebra (7)-(9) proposed in [23]. The algebra is constructed with the help of generalization of
constant matrix of noncommutativity to the tensor defined by additional coordinates which are
governed by harmonic oscillator.

The hydrogen atom has been considered in rotationally invariant noncommutative space
(7)-(9). We have studied the corrections to the energy levels of the atom caused by the
noncommutativity of coordinates (7). We have found that corrections to the ns energy levels
(43) are proportional to 〈θ〉, whereas the corrections to the energy levels with l > 1 (33) are
proportional to 〈θ2〉. Therefore, we have concluded that ns energy levels are more sensitive
to the noncommutativity of coordinates (7). The motion of a particle in the uniform field in
rotationally invariant noncommutative space (7)-(9) has been also examined. On the basis of
exact calculations we have concluded that there is an effect of coordinate noncommutativity on
the mass of a particle. The motion of a particle in the perpendicular to the field directions
can be described with the help of effective mass whereas the motion of a particle in the field
direction is the same as in the ordinary space. So, noncommutativity of coordinates (7) causes
the anisotropy of mass.
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