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Abstract. The conditions for the existence of (polynomial in the velocities) contact
symmetries of constrained systems that are described by quadratic Lagrangians is presented.
These Lagrangians mainly appear in mini-superspace reductions of gravitational plus matter
actions. In the literature, one usually adopts a gauge condition (mostly for the lapse N) prior
to searching for symmetries. This, however, is an unnecessary restriction which may lead to a
loss of symmetries and consequently to the respective integrals of motion. A generalization of
the usual procedure rests in the identification of the lapse function N as an equivalent degree
of freedom and the according extension of the infinitesimal generator. As a result, conformal
Killing tensors (with appropriate conformal factors) can define integrals of motion (instead of
just Killing tensors used in the regular gauge fixed case). Additionally, rheonomic integrals of
motion - whose existence is unique in this type of singular systems - of various orders in the
momenta can be constructed. An example of a relativistic particle in a pp-wave space-time
and under the influence of a quadratic potential is illustrated.

1. Introduction
Symmetries have always played a fundamental role in physical theories. In recent years there
exists an increased interest on the subject of Noether point and/or generalized symmetries of
physical systems and their geometric nature [1]-[7].

In general, one can discern two approaches regarding the treatment of symmetries in mini-
superspace systems: The first entails an a priori fixation of the gauge (usualy N = 1) at the
Lagrangian level and the treatment of the ensuing system as if it were regular ([8]-[12]). The
second method ([6], [7], [13], [14]) utilizes the gauge invariance of parametrization invariant
systems, resulting in the emergence of larger symmetry groups.

The general form of a mini-superspace Lagrangian is

L =
1

2N
Gµν(q)q̇µq̇ν −NV (q), µ, ν = 1, ..., d, det(Gµν) 6= 0 (1.1)

where qµ(t) and N(t) are the d+ 1 degrees of freedom of the system while the dot symbolizes
the total time derivative d

dt . The Lagrangian denoted by (1.1) is singular, due to the quadratic



constraint equation for N ( ∂L∂N = 0). This constraint can be used to generalize what is
considered as an integral of motion, since the time derivative of such a quantity need not
be strictly zero, but just a multiple of the constraint.

Let us first review some basic facts from the theory of symmetries of the action for regular
systems [16]. A contact transformation whose infinitesimal generator is X = Ξκ(t, q, q̇) ∂

∂qκ ,
constitutes a symmetry of the action if the condition

pr(1)X(L) =
dF

dt
(1.2)

is satisfied, where pr(1)X is the first prolongation of the generator (that expresses the change
induced by X in the velocities q̇’s) and F (t, q, q̇) a gauge function. Given the form of the
generator, a conserved quantity can be constructed as Ξκ ∂L∂qκ − F .

For singular systems it has been shown [6] that the form of X should include dependence
in N , since the latter is also a degree of freedom for the system. Thus, one is led to consider

X = Ξκ(t,N, q, q̇)
∂

∂qκ
+ Ω(t,N, q, q̇)

∂

∂N
. (1.3)

Notice that when the additional term Ω(t,N, q, q̇) ∂
∂N is acting on the Lagrangian through

(1.2), creates a multiple of the quadratic constraint. Thus, (1.2) becomes an equation that
holds modulo the constraint.

2. General results for polynomial in the velocities contact symmetries
In our case we shall restrict ourselves to the consideration of symmetries with corresponding
generators polynomial in the velocities. This means that Ξκ in (1.3) is taken as

Ξκ = ξκ(t,N, q) + Sκα1
(t,N, q)q̇α1 + ...+ Sκα1...αn(t,N, q)q̇α1 ...q̇αn . (2.1)

This automatically restricts the forms of Ω(t,N, q, q̇) and F (t,N, q, q̇). The first has to be
polynomial of first order in Ṅ and of n order in q̇’s, while the second of zero order in Ṅ and
of n+ 1 order in q̇’s. However, the existence of the gauge function can be proven to be trivial
[7], so we won’t refer to it any longer.

The procedure in order to derive the symmetry generator in these cases is the following: After
the application of the symmetry criterion (1.2), the coefficients of terms involving velocities
Ṅ and q̇µ of various orders are gathered and set to zero. By solving these partial differential
equations, the general form for the symmetry generator is obtained:

X =

(
ξκ(q) +

1

N
Sκα1

(q)q̇α1 +
1

N2
Sκα1α2

(q)q̇α1 q̇α2 + ...+
1

Nn
Sκα1...αn(q)q̇α1 ...q̇αn

)
∂

∂qκ

−
(
N

V
ξ̃σV,σ +

2V ,σ

V
Sσα1 q̇

α1 +
n+ 1

Nn−1
V ,σ

V
Sσα1...αn q̇

α1 ...q̇αn
)

∂

∂N

together with the subsequent conditions:

LξGµν = −
LξV
V

Gµν (2.2a)

S(µα1;ν) = −V
,σ

V
Sσ(α1

Gµν), ... , S(µα1...αn;ν) = −n+ 1

2

V ,σ

V
Sσ(α1...αnGµν). (2.2b)



From the derived symmetry generator, one can construct integrals of motion of several orders
in the momenta. It is clear that equations (2.2) already contain the possibility of ξ (the S’s)
being a Killing field (Killing tensors) of the metric and the potential (Sσα1...αnV,σ = 0), which
are of course the known cases of symmetries for regular systems. Equations (2.2) indicate that
the situation in constraint systems is more general. What is more, it can be easily verified that
for systems described by (1.1), rheonomic integrals of motion (conserved quantities that have
an explicit time dependence) can also be constructed by any conformal Killing field of Gµν [6].
If there is a conformal Killing vector ξ(q) that satisfies

LξGµν = ω(q)Gµν (2.3)

then the quantity

Q̃ = ξαpα +

∫
N(t) (ω(q(t)) + f(q(t)))V (q(t))dt, (2.4)

where f =
LξV
V , is an integral of motion of the system, since

dQ

dt
=
∂Q

∂t
+ {Q,H} = ω(q)H ≈ 0. (2.5)

In the case where ω = −f the integral of motion is autonomous and one returns to the case
described by (2.2a).

An analogous construction can be made for any conformal Killing tensor of arbitrary order.
Let us suppose that

S(κα1...αn;µ) =
1

2
ω(α1...αnGµν) (2.6)

then one can we can consider the quantity

Q̃ = Sκα1...αnpκpα1 ...pαn +

∫
N (ωα1...αn + (n+ 1)fα1...αn)V

∂L

∂q̇α1
...

∂L

∂q̇αn
dt (2.7)

where everything inside the integral is to be regarded strictly as a function of time and fα1...αn

is an n-rank tensor defined as

fα1...αn = Sκα1...αn
V,κ
V
. (2.8)

It is easy to check that, in the same manner as previously, the time derivative of Q̃ results in

dQ̃

dt
= Nωα1...αnpα1 ...pαnH ≈ 0 (2.9)

and thus Q̃ is a rheonomic integral of motion due to the constraint.
Now we have all the tools necessary to apply into a simple example that illustrates the

significance of this generalization.

3. Example: A particle in a curved space-time under the influence of a quadratic
potential
We have already mentioned that Lagrangians of the form (1.1) are mainly encountered in
cosmology. However, here we shall consider an example of a relativistic particle moving in a
type Biv pp-wave space-time described by the line element

ds2 = −2dvdu− 2

z2
du2 + dx2 + dy2 (3.1)



under the influence of a quadratic potential of the form V (u) = µ
2u

2. In the case where µ > 0
the latter can be considered to represent an oscillator in the u direction. The space-time
described by (3.1) has been examined in [17] with respect to its conformal algebra and its
Killing tensors.

By using (1.1), the Lagrangian of the system reads

L =
1

N

(
−u̇ v̇ − u̇2

z2
+

1

2
ẏ2 +

1

2
ż2
)
−N µu2

2
(3.2)

and, as we can observe, it possesses five degrees of freedom. However, due to its constrained
nature, four of them can be expressed as functions of the fifth on the solution space.

There exist three vector fields satisfying condition (2.2a) (which in this case happen also to
be Killing fields of both the metric Gµν and the potential V (u)). At the same time, there also
exists a homothetic vector of both the metric and the potential. With their help the following
four linear integrals of motion can be written:

Q1 = − u̇
N
, Q2 =

ẏ

N
, Q3 =

u ẏ

N
− y u̇

N
(3.3a)

Qh = −2u u̇

N z2
− u v̇

N
+
y ẏ

2N
+

z ż

2N
+

3

2
µ

∫
N u2 dt. (3.3b)

that consequently define the equations Qi = κi and Qh = κh.
It can also be verified that there exist seven second rank non reducible conformal Killing

tensors satisfying criterion (2.2b), all of which, albeit one, are also Killing tensors for the
space-time under consideration. In our example we are going to make use of the following two

Sµν1 =


− 8
u2z2µ2

4
u2µ2

0 0
4

u2µ2
0 0 0

0 0 − 4
u2µ2

0

0 0 0 − 4
u2µ2

 , Sµν2 =


8

z2µ2
0 0 0

0 0 0 0
0 0 0 0
0 0 0 4

µ2

 ,

with Sµν1 being a proper CKT. Thus, we are supplemented with two additional quadratic in
the momenta integrals of motion Q4 = Sµν1 pµpν = κ4 and Q5 = Sµν2 pµpν = κ5. We can now
proceed with the derivation of the solution.

3.1. Case κ1 6= 0 and κ5 6= 0
In order to completely integrate the equations, we choose to write N(t) = ḟ(t), where f(t) is
considered to be a non-constant (scalar under time re-parameterizations) function. We first
integrate equations Q1 = κ1 and Q2 = κ2 with respect to u(t) and y(t) respectively, and get

u(t) = cu − κ1 f(t) and y(t) = cy + κ2 f(t) (3.4)

where cu and cy are constants of integration. With the help of the first, equation Q5 = κ5,
yields the following quartet of solutions

z(t) = z±±(t) = ±
√
±4 cz κ25 µ

4 f(t) + 4 c2z κ
2
5 µ

4 + κ25 µ
4 f(t)2 + 32κ21

2
√
κ5 µ

, (3.5)



where cz is a constant of integration; of course we must also require κ5 6= 0 (the case κ5 = 0
leads to a complex solution). At this point, equation Q4 = κ4 can be integrated to give

v(t) = v±(t) =cv −
f(t)

(
3
(
µ2
(
c2uκ4 + κ5

)
+ 4κ22

)
− 3cuκ1κ4µ

2f(t) + κ21κ4µ
2f(t)2

)
24κ1

+
√

2 tan−1
(
κ5µ

2(f(t)± 2cz)

4
√

2κ1

)
,

(3.6)

with cv being constant and κ1 6= 0; the plus sign v+(t) corresponds to solutions z = z++(t) and
z = z−+(t), while the minus v−(t) is for the cases z = z−−(t) and z = z+−(t).

By using the solutions (3.4), (3.5) and (3.6) in equation Qh = κh we see that, in order
for Qh to be constant for any function f(t), one needs to set κ4 = 4

µ . It is easy to check
that substitution of the same solutions in the equations of motion together with the constraint
κ4 = 4

µ satisfies the system. It is noteworthy that, we were able to obtain the general solution
without even turning to the Euler-Lagrange equations of the system.

3.2. Case κ1 = 0
Equations Q1 = 0, Q2 = κ2 and Q5 = κ5 lead to the same result with (3.4) and (3.5) by simply
setting κ1 = 0. One can check that all the other equations regarding autonomous integrals of
motion reduce to relations between constants. However, the one defined by the rheonomous
integral of motion Qh = κh yields, upon integration,

v(t) = v±(t) = cv +

1
2f(t)2

(
12c2uµ+ 4κ22 + |κ5|µ2

)
+ 2f(t)

(
2cyκ2 ± cz

√
|κ5|µ− 4κh

)
8cu

, (3.7)

where the v+(t) corresponds to z+(t), while v−(t) to z−(t) and of course in each case cu 6= 0
(the subcase where cu = 0 will be explored later on).

At this point we have used all equations available by the integrals of motion, substitution
of their solutions into the Euler - Lagrange equations yields the constraint relation between

constants κ5 = −4(c2uµ+κ22)
µ2

.

As we previously remarked, apart from this solution we must also check the case where
cu = 0. The application of the relations (3.4) and (3.5) under the condition κ1 = 0, leads to

the observation that Qh is constant for every f(t), if and only if κ5 = −4κ22
µ2

. Substitution of

all these results into the equations of motion leads to a final ordinary differential equation for
v(t) that by integration yields

v(t) = c1f(t) + c2 (3.8)

and thus, we have obtained the complete solution space.

4. Discussion
In this work we have considered, polynomial in the velocities, contact variational symmetries
of the action. We derived that, for constrained systems described by (1.1), the infinitesimal
criterion (1.2) allows for more symmetries than in the case of regular systems. The main reason
for this result is the consideration of gauge invariance not as a redundant degree of freedom
that must be fixed out, but rather as an essential part of the system under consideration.

The existence of the constraint gives rise to larger symmetry groups. Of course, this does
not mean that one must never choose a gauge. The optimum procedure would be to first



calculate all symmetries and then apply any gauge fixing, if necessary, in order to simplify the
equations. The important thing is not to do so prior to the determination of the integrals of
motion, since their existence may depend on the constraint itself.

In order to exhibit the importance of the method, we examined an example of motion of
a relativistic particle in a curved space-time. Due to the consideration of conformal Killing
tensors instead of just Killing, we were able to obtain the general solution with no need of
gauge fixing and without even using the equations of motion themselves.
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