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Abstract. Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2)C
gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles
in this phase are slender ellipsoids, pierced by a vortex string. We investigate scattering of
monopole with anti-monopole and find that they do not always decay into radiation, contrary
to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances.
We point out that some part of solutions in 1 + 3 dimensions can be mapped exactly onto the
sine-Gordon system in 1+1 dimensions in the first non-trivial order of rigid-body approximation
and we provide analytic formulas for such solutions there.

1. Introduction
Among various topological solitons, magnetic monopoles are one of the most fascinating ones
in high energy physics. If a monopole exists, electric charges in the universe are quantized by
the Dirac’s quantization condition [2]: product of electric charge Qee and magnetic charge Qmg
must be proportional to integers: QeeQmg ∝ n. This implies that a weak electric coupling e
corresponds to a strong magnetic coupling g. This strong-weak coupling duality is a powerful
tool to understand strong coupling physics. Furthermore, monopoles are expected to play an
important role to explain the confinement in QCD. It has been proposed that the vacuum is
in dual color superconductor where magnetic monopoles condense [3, 4, 5]. It is, however,
very difficult to verify this idea, since QCD is strongly coupled at low energies because of the
asymptotic freedom.

In contrast, QCD becomes weakly coupled at high baryon density, and enters into the color-
superconducting phase where di-quarks condense [6, 7]. Then magnetic monopoles should be
confined and color magnetic fields form flux tubes. A distinctive feature of non-Abelian vortex
compared to the usual Nielsen-Olesen Abelian vortex is that the non-Abelian vortex breaks a
non-Abelian global symmetry of the vacuum state and non-Abelian orientational moduli [8, 9, 10]
emerge. This orientational moduli has been found to give a confining state of monopole and
anti-monopole, namely magnetic meson was predicted in high density QCD [11, 12, 13].

If we choose couplings to critical values which enable us to embed the theory into a
supersymmetric one, we can have Bogomolnyi-Prasad-Sommerfield (BPS) solitons [14], which
preserve a part of supersymmetry [15]. The dynamics of slowly moving BPS solitons are
well-approximated by a geodesic motion on the moduli space [16]. This is called the moduli



approximation. Although the moduli approximation is useful, one should note that it can be
applied neither for scattering of BPS solitons with high momentum nor for non-BPS systems.
Among non-BPS solutions, an interesting non-BPS “bound state” of a monopole and an anti-
monopole in the Coulomb phase has been rigorously established [17]. Although these “bound
states” eventually decay due to unstable modes, they can play a significant role in understanding
the dynamics of monopole and anti-monopole system in the Coulomb phase.

If the non-Abelian gauge symmetry is completely broken, we are in the Higgs phase, namely
the non-Abelian superconducting phase. In contrast to the Coulomb phase, monopoles in the
Higgs phase have several distinctive features. Firstly, they are pierced by a vortex string. In
fact, the static BPS monopole in the Higgs phase has been found as a static BPS kink solution
in the 1 + 1-dimensional low-energy effective field theory on the vortex [18]. Secondly, shape of
a monopole is not spherical. There are two fundamental length scales: One is a transverse size
LT of the flux tube and the other is a length LL of the monopole. Since a monopole resides
on a vortex, its shape is generally not spherical depending on the ratio of the two scales. If we
assume

LT � LL, (1)

monopoles are of a slender ellipsoidal shape. This approximation has been used previously [19]
to obtain an effective action of 1/4 BPS non-Abelian monopole-vortex complex. Another work
to obtain effective action of monopole-vortex complex appeared recently [20].

In this work, we will consider a straight vortex string and we study head-on collisions of
monopoles and anti-monopoles. In contrast to lots of studies on scattering of the BPS monopoles,
there is very few studies about the dynamics of BPS monopoles and anti-monopoles, especially
in the Higgs phase. This is mainly due to the inapplicability of the moduli approximation to
the non-BPS monopoles and anti-monopoles system, which necessitates other methods such as
numerical analysis. Instead of numerical methods, we consider a systematic expansion in powers
of the ratio LT/LL of length scales of the model, which allows us to obtain analytic solutions.
At the first order of the expansion, we obtain the rigid-body approximation, where we can
provide analytic solutions, which are very useful to understand the dynamics of monopole and
anti-monopole system. The monopole and anti-monopole dynamics here is essentially 1 + 1-
dimensional. We will observe that a part of the dynamics can be mapped on to the integrable
sine-Gordon model. We provide exact mapping between 1 + 3-dimensional field configurations
of gauge theory and 1 + 1-dimensional field configurations of the sine-Gordon model.

2. Model & topological solitons
Let us consider a U(2)C Yang-Mills-Higgs system

L = Tr

[
− 1

2g2
FµνF

µν +DµH(DµH)† +
1

g2
DµΣDµΣ

]
− V, (2)

V = Tr

[
g2

4

(
HH† − v212

)2
+ (ΣH −HM) (ΣH −HM)†

]
, (3)

where the field strength and the covariant derivatives are defined by

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (4)

DµH = ∂µH + iAµH, (5)

DµΣ = ∂µΣ + i [Aµ,Σ] . (6)

The NF species of Higgs fields in the fundamental representation of the U(2)C gauge group is
denoted by a 2×NF matrix H. We concentrate on NF = 2 case in the following. Another Higgs



field Σ in the adjoint representation of the U(2)C gauge group is denoted by a real 2× 2 matrix.
The quartic scalar coupling is given in terms of the gauge coupling constant g, which allows
our model to be embeded in a supersymmetric theory. The parameter v giving the vacuum
expectation value of the Higgs field H comes from the so-called Fayet-Illiopoulos (FI) parameter
in the supersymmetric context. We assume v > 0 in what follows. We take the mass matrix M
in the following form

M =
m

2
σ3. (7)

Global symmetry of the model depends on the mass parameter m. If m = 0, the flavor symmetry
is SU(2)F. If m 6= 0, the flavor symmetry reduces to U(1)F ⊂ SU(2)F generated by the third
component of SU(2)F. In this work, we consider m 6= 0 case unless stated otherwise.

The vacuum of the model is determined by the condition V = 0:

HH† = v212, Σ = M. (8)

The vacuum manifold is topologically a torus T 2 but we can make U(2)C gauge transformations
to bring the fields to the following representative value

H = v12, Σ = M. (9)

Therefore all the points in the vacuum manifold are physically equivalent, and the vacuum
moduli space consists of only one point. We call this vacuum the color-flavor locking (CFL)
vacuum. The vacuum is in the Higgs phase, where the gauge symmetry is completely broken.

The model (2) admits rich topological excitations; vortex strings and magnetic monopoles.
In the Higgs vacuum, magnetic field can only exist by having an unbroken normal vacuum in
a small neighbourhood of the zero of the Higgs field. Hence magnetic field is squeezed into a
vortex, which we call a vortex string. The vortex string is topologically stable due to a non-trivial
fundamental homotopy group in the massive case

π1(T 2) = Z× Z. (10)

There are two kinds of vortex quantum numbers, corresponding to two kinds of vortex strings,
which we call the N-vortex and S-vortex. A magnetic monopole is a source of the conserved
magnetic fluxes which are squeezed into vortex strings in this Higgs vacuum. Therefore a stable
magnetic monopole is possible only as a composite soliton in the middle of a vortex string, but
cannot exist as an isolated soliton, which can also be understood from the trivial homotopy

π2(T 2) = 0. (11)

In the U(2)C Yang-Mills Higgs theory, solutions for the magnetic monopole pierced by vortex
strings have been found [18, 21], which preserve a quarter of supersymmetry charges when
embedded into the supersymmetric theory.

The total energy E for 1/4 BPS configuration can be written as the sum of two topological
charges representing the monopole energy Mmono and the vortex energy Mvor

E ≥ Mmono +Mvor, (12)

Mmono =
1

g2

∫
d3x Tr[εijk∂i (ΣFjk)], (13)

Mvor = −v2

∫
d3x Tr[F12]. (14)



This bound is saturated when the following BPS equations are satisfied

F12 −D3Σ− g2

2

(
HH† − v12

)
= 0, (15)

F23 −D1Σ = 0, (16)

F31 −D2Σ = 0, (17)

(D1 + iD2)H = 0, (18)

D3H + ΣH −HM = 0. (19)

If we define a 2× 2 matrix field S taking values in GL(2,C) whose elements are functions of
x1,2,3 as

Ā = −iS−1∂̄S, A3 − iΣ = −iS−1∂3S, (20)

we can solve the equations (16) – (19) in terms of a holomorphic matrix H0(z)

H = vS−1(x1, x2, x3)H0(z)eMx3 , (21)

where we have defined

z = x1 + ix2, z̄ = x1 − ix2, ∂ =
∂1 − i∂2

2
, ∂̄ =

∂1 + i∂2

2
, (22)

A =
A1 − iA2

2
, Ā =

A1 + iA2

2
, D =

D1 − iD2

2
, D̄ =

D1 + iD2

2
. (23)

This method to solve the BPS equation is called the moduli matrix formalism [21, 1]. The
following V -transformations leave the physical fields H in Eq. (21) and Ai and Σ in Eq. (20)
unchanged.

S(x1, x2, x3)→ V (z)S(x1, x2, x3), H0(z)→ V (z)H0(z), V (z) ∈ GL(2,C), (24)

where elements of the GL(2,C) matrix V (z) are holomorphic functions in z. Therefore the
moduli space of the monopole vortex complex becomes the moduli matrices divided by the
V -equivalence relation.

The U(2)C gauge transformations act on S−1 from the left as

S−1 → UCS
−1. (25)

By defining U(2)C gauge invariant matrices Ω and Ω0,

Ω = SS†, Ω0 = H0e
2Mx3H†0 , (26)

we can cast the remaining BPS equation (15) into the following master equation

1

g2v2

[
4∂̄
(
∂ΩΩ−1

)
+ ∂3

(
∂3ΩΩ−1

)]
= 12 − Ω0Ω−1. (27)

This master equation should be solved with the boundary condition

Ω→ Ω0 as |~x| → ∞. (28)

The U(2)C gauge invariants Ω and Ω0 are covariant under the V -transformations.



3. Vortex strings
Before describing the monopole-vortex complex, let us first explain a simpler configuration of
vortex strings without monopoles. We have two different types of Abelian vortices. If the
complex zero is placed in the upper-left corner in the moduli matrix we obtain

H0 =

(
z 0
0 1

)
, S =

(
e
ψ(x1,x2)

2 0
0 1

)
eMx3 , (29)

which is called an N-vortex, We find that the master equation for the N-vortex (29) reduces to
the master equation for the Abelian vortex

4

g2v2
∂∂̄ψ = 1− |z|2e−ψ. (30)

This equation has no known analytic solution, but can easily be solved numerically. The
asymptotic behavior for ψ is given by

ψ → log |z|2 + qK0(gv|z|), as |z| → ∞, (31)

where K0 is the modified Bessel function of the second kind and a constant q can be obtained
numerically.

For later convenience, let us decompose the magnetic field F12 in the U(2)C = (U(1)C0 ×
SU(2)C)/Z2 gauge group into the field F 0

12 for the overall U(1)C0 and the field FΣ
12 projected

along the adjoint field Σ (this is identical to the third component U(1)C3 of SU(2)C in the
present case) as

F 0
ij = Tr

[
Fij

12

2

]
, FΣ

ij = Tr

[
Fij

Σ

m

]
. (32)

We will call F 0
12 as Abelian magnetic field and FΣ

12 as non-Abelain magnetic field. Note that these
two magnetic fields are associated with (U(1)C0 × U(1)C3)/Z2 ⊂ U(2)C (asymptotically) which
is not broken by the adjoint scalar field Σ = (m/2)σ3. A linear combination of these U(1) gauge
symmetries is restored inside vortices. Therefore they are precisely the appropriate magnetic
fields to measure the magnetic flux flowing to infinity through vortices. For the N-vortex, we
obtain Abelian and non-Abelian magnetic fields as

F 0
12 = −∂∂̄ψ, FΣ

12 = −∂∂̄ψ. (33)

We see that only the sum F 0
12 + FΣ

12 has nonvanishing magnetic field inside the N-vortex. This
linear combination precisely corresponds to the restored U(1) gauge symmetry inside the N-
vortex.

Another possibility to place the zero of the Higgs field is at the lower-right corner of the
moduli matrix as

H0 =

(
1 0
0 z

)
, S =

(
1 0

0 eψ/2

)
eMx3 , (34)

where ψ is the same function as the N-vortex. We call this the S-vortex. The Abelian F 0
12 and

non-Abelian F 3
12 magnetic fields of the S-vortex is given as

F 0
12 = −∂∂̄ψ, FΣ

12 = +∂∂̄ψ. (35)

We see that only the difference F 0
12 − FΣ

12 has nonvanishing magnetic field inside the S-vortex.
This linear combination is the restored U(1) gauge symmetry inside the S-vortex.



4. Rigid-body approximation
In this section, we consider monopoles in the non-Abelian superconducting phase. We use a
systematic expansion up to the next-to-leading order within an approximation, which we call
the rigid-body approximation. The transverse size of the vortex string LT = 1/(gv) is associated
with a large mass scale gv, and the longitudinal monopole size LL = 1/m is associated with
a small mass scale. Therefore the condition gv � m introduces hierarchal mass scales in the
system: the thin vortex-string is generated at the high energy scale ∼ gv, and the slender
monopole is generated at the lower energy scale ∼ m.

This picture allows us to understand the slender monopole as a kink in the 1+1 dimensional
theory on the vortex world-sheet [18]. Assuming

ε =
m

gv
∼ ∂α
∂i
� 1, (α = 0, 3 and i = 1, 2), (36)

we expand the fields in power series of ε

H = H(0) +H(2) + · · · , (37)

Ai = A
(0)
i +A

(2)
i + · · · , (i = 1, 2), (38)

Aα = A(1)
α +A(3)

α + · · · , (α = 0, 3), (39)

Σ−M = Σ(1) + Σ(3) + · · · , (40)

where the superscript (n) indicates the n-th order in powers of ε. Note that H and Ai start
from the zeroth order because they are nontrivial in the background vortex-string configuration.
On the other hand, since Aα and Σ−M vanish in the background vortex-string configuration,
they start from the first order.

Zero-th order: background vortex string for m = 0 Retaining only the zero-th order fields in
Eqs. (37) – (40), we find the following zero-th order reductions of full equations of motion

2(DzDz̄H
(0) +Dz̄DzH

(0))− g2

2
(H(0)H(0)† − v212)H(0) = 0, (41)

− 4

g2
Dz̄F

(0)
zz̄ + i(H(0)Dz̄H

(0)† −Dz̄H
(0)H(0)†) = 0. (42)

The zero-th order solutions can be compactly expressed in the moduli matrix formalism as

H(0) = vS(0)−1H0(z), Ā(0) = −iS(0)−1∂̄S(0), (43)

with the master equation for the vortex

4

g2v2
∂̄
(
∂Ω(0)Ω(0)−1

)
= 12 − Ω

(0)
0 Ω(0)−1, Ω(0) = S(0)S(0)†, Ω

(0)
0 = H

(0)
0 H

(0)†
0 . (44)

When M = 0, the flavor symmetry is enhanced from U(1)F to SU(2)F and the symmetry
of the vacuum becomes SU(2)C+F. A single vortex spontaneously breaks this symmetry to
U(1)C+F. Therefore, the Nambu-Goldstone zero modes φ appear as a moduli

CP 1 =
SU(2)C+F

U(1)C+F
' S2. (45)

By introducing the moduli parameter φ as an inhomogeneous coordinate of the moduli space
CP 1 ' S2, we can express the generic moduli matrix H0 with the moduli parameter φ ∈ C



as a color-flavor SU(2)C+F rotation of the N-vortex solution together with an accompanying
V -transformation as

H
(0)
0 =

(
z 0
−φ 1

)
= V

(
z 0
0 1

)
U, (46)

S(0) =

(
e
ψ
2 +z|φ|2
1+|φ|2

(e
ψ
2 −z)φ̄

1+|φ|2
−φ 1

)
= V

(
e
ψ
2 0

0 1

)
U, (47)

with

U =
1√

1 + |φ|2

(
1 φ̄
−φ 1

)
∈ SU(2)C+F, (48)

V =
1√

1 + |φ|2

(
1 −φ̄z
0 1 + |φ|2

)
. (49)

Here we need the V -transformation V (z), in order for H
(0)
0 to be a holomorphic function of

the moduli parameter φ. The single vortex solution with the generic moduli φ can be obtained
explicitly by inserting the N-vortex solution ψ into Eqs. (47) and (43).

At the zero-th order in ε � 1, we obtained a moduli parameter φ in Eqs. (48) and (49) as
a constant. However, our approximation allows the weak dependence of φ on x0, x3 from the
beginning. Therefore, we should consider φ(x0, x3) to be a slowly varying function of x0, x3.
Then, the vortex background configuration depends on x0 and x3 only through the moduli field.

H(0)(x1, x2;φ(x0, x3)), A
(0)
i (x1, x2;φ(x0, x3)) (i = 1, 2). (50)

We can determine A
(1)
α and Σ(1) as

A(1)
α = i

[
(δαS

(0)†)S(0)†−1 − S(0)−1δ†αS
(0)
]
, (α = 0, 3), (51)

Σ(1) = M + i
[
(δφS

(0)†)S(0)†−1 − S(0)−1δ†φS
(0)
]
, (52)

with

δα = ∂αφ
δ

δφ
, δ†α = ∂αφ̄

δ

δφ̄
, δφ = −imφ δ

δφ
, δ†φ = imφ̄

δ

δφ̄
. (53)

The remaining task is to look for the appropriate configurations of φ(x0, x3) which minimize

the energy of the solution. To this end, we plug A
(1)
α and Σ(1) into the original Lagrangian (2)

and pick up terms up to the second order in ε. After a tedious calculation, one obtains the
following expression, where the x1,2 and x0,3 dependence are factorized as

L = −v2F12(x1, x2) +
F (x1, x2)

g2
× |∂αφ(x0, x3)|2 −m2|φ(x0, x3)|2

(1 + |φ(x0, x3)|2)2
+O(ε4), (54)

where we ignore unessential total derivative terms. The prefactor in the second term depends
on only x1 and x2 and it is given by

F (x1, x2) = 4∂∂̄ψ(x1, x2). (55)



Hence, in order to minimize the action to the second order, we need to find a stationary point
of

L(2) =
F (x1, x2)

g2
× |∂αφ(x0, x3)|2 −m2|φ(x0, x3)|2

(1 + |φ(x0, x3)|2)2
. (56)

Since the prefactor F (x1, x2) is determined at the zero-th order, our task is basically to solve
the massive non-linear sigma model in two dimensions with the target space CP 1. Note that the
process here is essentially the same as a well known derivation of a low energy effective action
in the moduli approximation. To obtain the effective action, one just needs to integrate the
Lagrangian over x1 and x2. The resulting overall coefficient is 4π =

∫
dx1dx2 F (x1, x2) and thus

Leff =
4π

g2

|∂αφ(x0, x3)|2 −m2|φ(x0, x3)|2
(1 + |φ(x0, x3)|2)2

. (57)

In summary, in order to solve the equations of motion to the first order, we just need to
solve the equations of motion of the effective theory, and to plug the solution φ(x0, x3) into

H(x1, x2;φ(x0, x3)) and A1,2(x1, x2;φ(x0, x3)). The remaining fields A
(1)
0,3(x0, x3) and Σ(1)(x0, x3)

to the first order are obtained through Eqs. (51) and (52).
For later convenience, let us introduce another parametrization of CP 1 in terms of polar

angles 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π as

φ = −eiΦ tan
Θ

2
. (58)

The effective Lagrangian is rewritten as

Leff =
π

g2

[
∂αΘ∂αΘ + sin2 Θ∂αΦ∂αΦ−m2 sin2 Θ

]
. (59)

The scalar potential (πm2/g2) sin2 Θ is minimized at Θ = 0 and Θ = π. Clearly, these correspond
to the N-vortex (φ = 0) and the S-vortex (φ =∞).

4.1. Monopole
We are now ready to reconsider the slender magnetic monopole in the Higgs phase in our rigid-
body approximation. Let us first look for an appropriate moduli configuration which minimizes
the action in 1+3 dimensions by solving the equations of motion in the low energy effective
theory:

∂α∂
αΘ + (m2 − ∂αΦ∂αΦ) sin Θ cos Θ = 0, (60)

∂α
(
sin2 Θ∂αΦ

)
= 0. (61)

Eq. (61) admits a constant solution for Φ, say Φ = η. In this study, we focus our attention to
this class of solutions. Then the equation of motion reduces to the sine-Gordon equation

−Θ′′ +m2 sin Θ cos Θ = 0, (62)

where the prime stands for the derivative in terms of x3. The sine-Gordon model admits non-
trivial topological excitations, kinks. The kinks interpolating Θ = 0 and Θ = π are given
by

Θ = 2 arctan exp
(
±m(x3 −Xm)

)
. (63)



The solution with the plus sign is the kink connecting Θ = 0 at x3 → −∞ and Θ = π at
x3 → +∞, while that with minus sign is the anti-kink which connects Θ = π at x3 → −∞ and
0 at x3 → +∞.

From now on, we consider Xm = η = 0 case for simplicity. Combining this with Eqs. (43),
(46), (47), and (48), we find

H(0)(x1, x2, φ(x3)) = vU †(x3)

(
ze−

ψ
2 0

0 1

)
U(x3), (64)

Ā(0)(x1, x2, φ(x3)) = U †(x3)

(
− i

2 ∂̄ψ 0
0 0

)
U(x3), (65)

with

U(x3) =
1√

1 + |φ(x3)|2

(
1 φ̄(x3)

−φ(x3) 1

)
. (66)

Furthermore, plugging S(0)

S(0) =

(
e
ψ
2 +z|φ|2
1+|φ|2

(e
ψ
2 −z)φ̄

1+|φ|2
−φ 1

)
, φ = − exp(±mx3), (67)

into the solutions A
(1)
α and Σ(1) given in Eqs. (51) and (52), we obtain the induced fields

A3 ' ± im
2

sechmx3 U †(x3)

(
0 1− ze−ψ2

z̄e−
ψ
2 − 1 0

)
U(x3), (68)

Σ ' m

2
sechmx3 U †(x3)

(
∓ sinhmx3 ze−

ψ
2

z̄e−
ψ
2 ± sinhmx3

)
U(x3). (69)

The electric fields are given as:

F 0
12 ' −∂∂̄ψ, F 0

23 ' 0, F 0
31 ' 0, (70)

and the magnetic fields are given as:

BΣ
3 = FΣ

12 ' ±∂∂̄ψ tanhmx3, (71)

BΣ
1 = FΣ

23 ' ±
m

4
∂1(r2e−ψ) sech2mx3, (72)

BΣ
2 = FΣ

31 ' ±
m

4
∂2(r2e−ψ) sech2mx3. (73)

The solution with the lower sign connects the N-vortex as x3 → +∞ and the S-vortex as
x3 → −∞, which is opposite to the configuration with upper sign. The corresponding monopole
has the magnetic field FΣ

ij pointing toward monopole, namely it is an anti-monopole in the Higgs
phase.

Magnetic charges of the above solutions can be easily calculated

Qm =
1

g

∫
d3x div ~BΣ =

1

g

[∫
x3→∞
dx1dx2 (±∂∂̄ψ)−

∫
x3→−∞

dx1dx2 (∓∂∂̄ψ)

]
= ±4π

g
, (74)

where we used
∫
dx1dx2 ∂∂̄ψ = π and r2e−ψ → 1 as r →∞. Here the factor 1/g is needed due

to our notation that the gauge coupling is absorbed in the gauge field, see Eqs. (4) – (6). This
magnetic charge precisely coincides with one of the ’t Hooft-Polyakov monopole in the Coulomb
phase [18].



5. Dynamics of slender monopoles and anti-monopoles
In the following, we make full use of the similarity between our system and the sine-Gordon
model. Let us denote another choice of the range of angles as

Θ̃ ∈ R (mod 2π), Φ̃ ∈ [0, π), (75)

to parametrize the CP 1 moduli φ

φ(x0, x3) = −eiΦ̃(x0,x3) tan
Θ̃(x0, x3)

2
. (76)

The equations of motion for Θ̃, Φ̃ are the same as those for Θ,Φ. Therefore, Φ̃ = const. is a
solution, to which we restrict ourselves in the following. Without loss of generality, the value of
the constant Φ can be chosen as

Φ̃ = 0. (77)

Then the equation of motion for Θ̃ is reduced to

∂α∂
αΘ̃ +m2 sin Θ̃ cos Θ̃ = 0, Θ̃ ∈ R (mod 2π). (78)

This is nothing but the sine-Gordon equation with a periodicity π in 1+1 dimensions.
Now we can compute all field configurations in 1 + 3 dimensions with the help of the sine-

Gordon field Θ̃

F 0
12 = −∂∂̄ψ, F 0

23 = F 0
31 = F 0

01 = F 0
02 = F 0

03 = 0, (79)

and

FΣ
12 = −∂∂̄ψ cos Θ̃, (80)

FΣ
23 =

1

4
∂1(r2e−ψ)∂3Θ̃ sin Θ̃, (81)

FΣ
31 =

1

4
∂2(r2e−ψ)∂3Θ̃ sin Θ̃, (82)

FΣ
01 =

1

4
∂2(r2e−ψ)∂0Θ̃ sin Θ̃, (83)

FΣ
02 = −1

4
∂1(r2e−ψ)∂0Θ̃ sin Θ̃, (84)

FΣ
03 = 0. (85)

Here we define Abelian and non-Abelian electric fields in the same spirit as in Eq. (32)

F 0
0i = Tr

[
F0i

12

2

]
, FΣ

0i = Tr

[
F0i

Σ

m

]
. (86)

Note that the electric field and magnetic field are orthogonal

εijkFΣ
ijF

Σ
0k = 0. (87)

Therefore, there is no energy dissipation.
The Hamiltonian density is decomposed into two parts: the energy density of the rigid vortex-

string H(0)
vortex and that of the dressed monopole H(2)

dress

H = H(0)
vortex +H(2)

dress +O(ε4). (88)



The rigid vortex-string Hamiltonian density does not depend on x0 and x3

H(0)
vortex = Tr

[
1

g2
(F

(0)
12 )2 + (DiH)(0)(DiH)(0)† +

g2

4

(
H(0)H(0)† − v212

)2
]

= Tr

[
1

g2

(
F

(0)
12 −

g2

2

(
H(0)H(0)† − v212

))2

+ 4(D̄H)(0)(D̄H)(0)†

−v2F
(0)
12 + i

{
∂1(H(0)(D2H)(0)†)− ∂2(H(0)(D1H)(0)†)

}]
= 2v2V. (89)

where

V(x1, x2) = ∂∂̄ψ − 4

g2v2
(∂∂̄)2ψ (90)

The dressed Hamiltonian density which depends on x0 and x3 is given by

H(2)
dress = Tr

[
1

g2

{
(F

(1)
23 )2 + (F

(1)
31 )2 + (F

(1)
01 )2 + (F

(1)
02 )2 + (D1Σ(1))2 + (D2Σ(1))2

}
+D0H

(0)(D0H
(0))† +D3H

(0)(D3H
(0))† + (Σ(1)H(0) −H(0)M)(Σ(1)H(0) −H(0)M)†

]
=
V
g2

(
(∂0Θ̃)2 + (∂3Θ̃)2 +m2 sin2 Θ̃

)
, (91)

where we used the master equation (30).
The topological charge density is given as

Qm =
2V
g
∂3Θ̃ sin Θ̃. (92)

From this expression, one can easily compute the magnetic charge as

Qm =

∫
d3x Qm =

2

g

∫
dx1dx2 V

∫
dx3 ∂3Θ̃ sin Θ̃ =

2π

g

[
− cos Θ̃

]x3=+∞

x3=−∞
. (93)

Here we used
∫
dx1dx2∂∂̄ψ = π. As a check, one can compute the energy of the magnetic

monopoles from the solutions given in Eq. (63)

Qm = ±4π

g
. (94)

Similarly, one may introduce a electric charge density by

Qe =
1

g
∂iFΣ

0i . (95)

But this is identically zero for any Θ̃(x0, x3). This matches with a naive intuition that the fixed
azimuthal angle Φ̃ does not generate any electric charges. Note, however, that this does not mean
the electric fields themselves are zeros. One can easily find that rotation of ~EΣ = (FΣ

10, F
Σ
20, F

Σ
30)

are non-zero.

(~∇× ~EΣ)3 = − 4

g2v2
(∂∂̄)2ψ ∂0Θ̃ sin Θ̃. (96)

The other components are of higher order, so we ignore them.



5.1. Two different species of slender monopoles
The zenith angle Θ̃ takes values between 0 and 2π (= R mod 2π), and the sine-Gordon
equation (78) is periodic with a period π. Therefore, there exist two sine-Gordon kinks: the
one interpolates from 0 to π as x3 = −∞ → +∞, and the other interpolates from π to 2π as
x3 = −∞ → +∞. Here we need to pay some attention to our terminology in translating the
sine-Gordon kinks into monopoles in 1 + 3 dimensions. Although these two configurations are
both to be called kinks in the sense of the sine-Gordon model, the former connects the N-vortex
and S-vortex from left to right, while the latter connects them from right to left. Namely, the
former kink is the monopole (denoted as M0) and the latter kink is the anti-monopole (M̄π).
Similarly, the anti-kink interpolating from π to 0 as x3 = −∞ → +∞ is the anti-monopole
(M̄0), while the other anti-kink interpolating from 2π to π as x3 = −∞→ +∞ is the monopole
(Mπ). Correspondence between the sine-Gordon (anti-)kinks and the slender (anti-)monopoles
are depicted in Fig. 1. The configurations are given by

N-vortex

S-vortex

⇥̃

M0M⇡

N-vortex

S-vortex

⇥̃

M̄⇡ M̄0

monopoles anti-monopoles
-30 -20 -10 10 20 30

x
3

Π

2

Π

3 Π

2

2 Π
Q
�

M0 :2arctan@exp@m x3 DD
M0 :2arctan@exp@-m x3 DD
MΠ :2arctan@exp@m x3 DD+Π

MΠ :2arctan@exp@-m x3 DD+Π

Figure 1. Correspondence between the sine-Gordon (anti-)kinks and the slender (anti-)monopoles.

M0 : Θ̃ = 2 arctan exp(mx3) + 2nπ, (97)

M̄0 : Θ̃ = 2 arctan exp(−mx3) + 2nπ, (98)

Mπ : Θ̃ = 2 arctan exp(−mx3) + (2n+ 1)π, (99)

M̄π : Θ̃ = 2 arctan exp(mx3) + (2n+ 1)π, (100)

with n being an integer.

5.2. Magnetic meson
It is well-known that the sine-Gordon model admits a bound state of kink and anti-kink, the
so-called breather solution. In our case, it is nothing but a bound state of the slender monopole
and anti-monopole, which we call the magnetic meson. The configuration is given by

Θ̃(x0, x3) = 2 arctan

(
η sinωx0

cosh ηωx3

)
, η =

√
m2

ω2
− 1, ω < m, (101)

where ω is the frequency and (ηω)−1 = 1/
√
m2 − ω2 is the typical size of the magnetic meson.

The mass of the meson depends on ω as

Mmeson = 2Mmono ×
√

1− ω2

m2
< 2Mmono. (102)

The mass of the mesonic bound state is smaller than the sum of the masses of isolated monopole
and anti-monopole.



We show how the magnetic meson varies in one period T = 2π
ω in Fig. 2. The sources of

outgoing magnetic field are identified as slender monopoles and those of incoming magnetic field
as slender anti-monopoles. It is interesting to observe that the meson is made of M0 and M̄0

at an instance (for example t = T/4), and that it transforms into a different meson made ofMπ

and M̄π at another instance (for example t = 3T/4). In Fig. 2, we also show the topological
charge density Qm given in Eq. (92) together with the energy density of the electric field

E =
1

g2
Tr
[
(F01)2 + (F02)2

]
=

1

g2
|1− z∂ψ|2 e−ψ(∂tΘ̃)2. (103)

As the monopole and anti-monopole approach each other, the magnetic energy density M
decreases and the electric field energy density E grows. At the very instance of collision, the
magnetic energy disappears and is transferred into the electric energy completely. The electric
field is generated by the time variation (decrease) of the magnetic field as monopole and anti-
monopole merge.

5.3. Scattering of the slender monopole and anti-monopole
Let us next study the head-on collision of the slender monopole and anti-monopole. There are
two types of collisions: one type is the collision of M0 and M̄0, (Mπ and M̄π) and the other
type is that of M0 and M̄π (Mπ and M̄0).

Scattering of M0 and M̄0 (Mπ and M̄π) The exact solution for the moduli field for the
collision of a monopole and anti-monopole of the same species (M0 or Mπ) is given by

Θ̃ = 2 arctan

(
sinhmuγx0

u coshmγx3

)
, γ =

1√
1− u2

. (104)

The parameter u corresponds to the velocity of the monopole. However, we should keep in mind
that our approximation holds only for small velocities, that is

u� 1 (γ ' 1). (105)

Since we are using the rigid-body approximation we cannot faithfully describe Lorentz boosted
monopoles. Thus even though we can solve the 1+1-dimensional effective dynamics for arbitrary
velocities, the full 1+3-dimensional dynamics is correctly represented only within the restriction
of Eq. (105). A typical configuration is shown in Fig. 3. The slender magnetic monopole Mπ

comes from the left infinity and the anti-monopole M̄π comes from the right infinity. As they
approach to the collision point, the magnetic energy decreases while the electric energy grows.
After the collision, the magnetic energy grows as the monopole M0 (anti-monopole M̄0) goes
toward the left (right) infinity. Thus we find that the species of the monopole and the anti-
monopole changes after the collision.

Scattering of M0 and M̄π (or Mπ and M̄0) The solution for the scattering of a monopole
and an anti-monopole of different species is given by

Θ̃ = 2 arctan

(
u sinhmγx3

coshmuγx0

)
. (106)

A typical configuration is shown in Fig. 4. In contrast to the previous type of scattering the
species of monopoles (M0 or Mπ) do not change into different species during the collision.
As shown in Fig. 4, the anti-monopole M̄π comes from the left infinity and reflects back toward
the left infinity, while the monopole M0 comes from the right infinity and reflects back toward
the right infinity.



Figure 2. Snapshots of a single period of the magnetic meson. The top is at t = 0 and the bottom is
at t = T − δt with δt = T/16. The left panel shows the magnetic field (FΣ

12, F
Σ
23) by blue streamlines and

the topological charge densities, M = ±0.017, electric energy density, E = 0.012, and the dressed energy
density Hdress = 0.02 by red/green/grey contours. In the right figures, Θ̃(x3, t) is plotted. The curves are
piecewise colored by black, red, blue and green for M0, M̄0, Mπ and M̄π, respectively. We set gv = 1,
m = 1/5 and ω = 1/10. x1 ∈ [−3, 3] and x3 ∈ [−30, 30].



Figure 3. Snapshots (from t = −42 to t = 42 with δt = 6 interval) of scattering of the slender
monopole and anti-monopole. The red/green/gray contours are (M, E ,Hdress) = (±0.017, 0.01, 0.02),
see the caption of Fig. 2 for explanation. We set gv = 1, m = 1/5 and u = 1/10. x1 ∈ [−3, 3] and
x3 ∈ [−30, 30].



Figure 4. Snapshots (from t = −70 to t = 70 with δt = 10 interval) of scattering of the slender
monopole and anti-monopole. The red/gray contours are (M,Hdress) = (±0.017, 0.02). See the caption
of Fig. 2 for explanation. We set gv = 1, m = 1/3 and u = 1/3. x1 ∈ [−3, 3] and x3 ∈ [−30, 30].

6. Conclusion
In this paper we have investigated the low energy dynamics of monopoles and anti-monopoles in
the non-Abelian superconductor. We have restricted ourselves to the parameter region m� gv
where the monopoles are of slender ellipsoidal shape, confined on a vortex string, with the cross-



section comparable to that of the monopole. For that reason, the scattering problem becomes
essentially 1 + 1 dimensional. Indeed, we have found that at least a part of the low energy
dynamics is identical to the sine-Gordon system in 1 + 1 dimensions up to the first order of the
expansion in ε = m/(gv), when {m, ∂0, ∂3} � {gv, ∂1, ∂2} holds. This observation is very useful
because the sine-Gordon system is solvable. In the literature, only the static kink was identified
with the monopole. In this paper, we have dealt with all the sine-Gordon solutions and have
constructed the dictionary with which one can easily translate the dynamics of sine-Gordon
kinks in 1+1 dimensions into the dynamics of monopoles in 1 + 3 dimensions. A surprising fact
is that the monopole and anti-monopole do not always decay into radiation when they make a
head-on collision, although they are not protected by topology. We have studied three concrete
examples: (1) the magnetic meson which is the bound state of the slender monopole and anti-
monopole, (2) the scattering of the monopole and anti-monopole of the same species, and (3) the
scattering of the monopole and anti-monopole of the different species. All these three examples
show that the monopole and anti-monopole do not always annihilate. This observation may be
counter-intuitive and remarkable.
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