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Abstract. Functions of positive type on locally compact abelian groups can be defined as
positive functionals on group algebras, and play a remarkable role in probability theory and
in classical statistical mechanics. By Bochner’s celebrated theorem, indeed, they are Fourier-
Stieltjes transforms of finite positive measures. Hence, a properly normalized nonzero function
of positive type on (the group of translations on) phase space provides a realization of a classical
state, so it may be called a function of classical positive type. A similar result holds in the
quantum setting as well, where a generalized kind of functions of positive type on phase space
— the so-called functions of quantum positive type — are related, via the Fourier-Plancherel
transform, to the Wigner quasi-probability distributions. In this paper, we will argue that, as
in the classical setting, the notion of function of quantum positive type is of a group-theoretical
nature. Exploiting an interesting interplay between functions of classical and quantum positive
type, we will then provide an interesting characterization of a class of semi-groups of operators
that describe the evolution of certain open quantum systems which are of interest in quantum
information science. Finally, a suitable extension of this framework to generalized phase spaces
that are relevant for current applications will be proposed.

1. Introduction
In the standard Hilbert space formulation of quantum mechanics, the physical states are realized
as normalized, positive trace class operators (the so-called density or statistical operators) [1]. In
the — more abstract — algebraic formulation, on the other hand, states can be defined as positive
linear functionals on a C∗-algebra of observables which, by the celebrated Gelfand-Naimark
theorem, will be isomorphic to a C∗-algebra of bounded operators in a Hilbert space [2,3]. This
more abstract approach to physical states allows one, among other things, to encompass in a
unique framework both the quantum and the classical case (i.e., classical statistical mechanics),
where the complex Radon phase-space measures provide a realization of the bounded functionals
on the commutative algebra of continuous complex functions on phase space that vanish at
infinity [4].

More precisely, in this context the classical states are the probability measures on phase space,
while the classical observables are the real functions of the relevant algebra (the selfadjoint part
of the ∗-algebra of observables). Probability measures, being set functions, are often rather
awkward objects to deal with, so it may be convenient to replace them with their Fourier — i.e.,
Fourier-Stieltjes — transforms, which are ‘ordinary’ bounded continuous functions. Actually,
this is a standard technique in probability theory, where the Fourier-Stieltjes transforms of



probability measures are usually called characteristic functions [5].
The Fourier transform is in a natural way a group-theoretical object [6, 7] — clearly, in the

case at hand, the group of phase-space translations is involved — hence it is not surprising that
characteristic functions on phase space admit an intrinsic group-theoretical characterization.
Indeed, by Bochner’s theorem, they coincide with the properly normalized, nonzero (i.e., not
identically zero) continuous functions of positive type on phase space [6, 7]. More generally,
functions of positive type on locally compact groups play a remarkable role in abstract harmonic
analysis [7, 8]. They can be defined as positive functionals on a suitable group algebra.

The circle of ideas between classical and quantum mechanics outlined above becomes even
more intriguing by switching to the phase-space formulation of quantum mechanics [9–20]. In
this approach, the physical states are implemented by quasi -probability distributions — the
Wigner functions — and the Fourier-Plancherel transform of these distributions — the so-called
quantum characteristic functions — turn out to be suitably normalized positive functionals on
a certain noncommutative ∗-algebra of square integrable functions [21]. We will call the positive
functionals on this algebra functions of quantum positive type.

It is known that quantum mechanics on phase space has an underlying group-theoretical
framework [15, 19–21], based on the theory of square integrable representations [22–24]. This
theoretical framework is actually at the root of the notion of function of quantum positive
type [21], and the link — via the Fourier-Plancherel transform — between functions of this
kind and quantum quasi-distributions can be regarded as a quantum version of Bochner’s
theorem [21,25–29].

However, beside these striking analogies between the classical and the quantum setting, it is
worth noting a few significant differences. Indeed, on the one hand, in the classical case there is
a one-to-one correspondence between the physical states and the normalized nonzero functions
of positive type, and it turns out that these functions are continuous (modulo unessential
modifications on sets of zero measure). On the other hand, a nonzero function of quantum
positive type may not be a quantum characteristic function, not even up to normalization,
although the reverse implication is always true; otherwise stated, not every nonzero function
of quantum positive type represents, up to normalization, a quantum state. One can show
that continuity is precisely the condition that allows one to select, up to a positive constant
factor, the quantum characteristic functions among all nonzero functions of quantum positive
type. Moreover, whereas in the classical case functions of positive type are normalized in the
sense of functionals, in the quantum case a different kind of normalization is associated with the
physical states and normalization in the sense of functionals has the meaning of the square root
of purity [30]. Therefore, the two normalization criteria coincide for pure states only.

The peculiar properties of functions of positive type allow one to note an interesting
interplay between classical and quantum states. In fact, probability measures on phase
space are a semigroup, with respect to the convolution product, and, equivalently, the
corresponding functions of positive type form a semigroup with respect to the ordinary point-
wise multiplication. One can prove, moreover, that taking the point-wise product of a function
of positive type on phase space by a continuous function of quantum positive type one gets a
function of the latter type. This result implies that one can obtain a semigroup of operators,
acting on functions of quantum positive type (more precisely, on a Banach space generated by
these functions) — a so-called classical-quantum semigroup [21, 31] — out of a one-parameter
multiplication semigroup of positive definite functions.

A straightforward way to unveil the physical meaning of a classical-quantum semigroup
is to ‘quantize’ it (a group-covariant quantization procedure strictly related to quantization
à la Weyl is involved), i.e., to pass from phase-space functions to Hilbert space operators.
This procedure yields a new semigroup of operators acting in the Banach space of trace class
operators; more precisely, a quantum dynamical semigroup. As is well known, semigroups of



operators of this kind describe the evolution of open quantum systems [32, 33]. The quantized
version of a classical-quantum semigroup belongs, more specifically, to the class of twirling
semigroups [34–37]. Because of the role that they play in quantum information, this type of
twirling semigroups can be called classical-noise semigroups [21, 31].

The paper is organized as follows. In sect. 2, we will introduce the notions of function of
classical and quantum positive type, and we will briefly comment about their physical meaning.
In sect. 3, the interplay between these two kinds of functions of positive type will be analyzed. We
will first show — see subsect. 3.1 — that with every one-parameter multiplication semigroup of
functions of positive type is associated in a natural way a classical-quantum semigroup. Then, in
subsect. 3.2, we will argue that group-covariant quantization/dequantization establishes a precise
relation between functions of quantum positive type and Hilbert space operators. At that point,
we will be able to show that a classical-quantum semigroup is mapped, via quantization, to a
suitable quantum dynamical semigroup; see subsect. 3.3. Finally, in sect. 4, possible extensions
of these results will be proposed.

2. Functions of positive type on phase space
The notion of function of positive type is group-theoretical; hence, we will consider, at first, the
case of an abstract locally compact group G. Let L1(G) be the Banach space of complex (i.e.,
C-valued) functions on G, integrable with respect to a left-invariant Haar measure νG. L1(G)
becomes a Banach ∗-algebra if endowed with the convolution product (·)} (·),

(ϕ1}ϕ2)(g) :=

∫
G
ϕ1(h)ϕ2(h

−1g) dνG(h), (1)

and with the involution I : ϕ 7→ ϕ∗,

ϕ∗(g) := ∆G(g−1)ϕ(g−1), (2)

where ∆G denotes the modular function on G. Functions of positive type can be defined as
(linear) functionals [7, 21].

Definition 1 A function of positive type on G is a positive bounded functional on the Banach
algebra

(
L1(G),}, I

)
, implemented by a function belonging to the Banach space of νG-essentially

bounded functions L∞(G). Otherwise stated, a complex function χ on G is said to be of positive
type if it belongs to L∞(G) and, for every ϕ ∈ L1(G), satisfies the inequality∫

G
χ(g) (ϕ∗}ϕ)(g) dνG(g) ≥ 0. (3)

It turns out that a function of positive type χ ∈ L∞(G) agrees νG-almost everywhere with a
continuous function (it goes without saying that functions agreeing νG-almost everywhere are
identified) and

‖χ‖∞ = χ(e), (4)

where ‖χ‖∞ := νG-ess supg∈G |χ(g)| and χ(e) — with a slight abuse of notation — denotes the
value at the identity e ∈ G of the ‘continuous version’ of χ.

It can be shown, moreover, that for a bounded continuous function χ : G→ C the following
properties are equivalent:

P1) χ is of positive type;

P2) χ satisfies the inequality (3), for all ϕ ∈ Cc(G) (with Cc(G) denoting the linear space of
continuous complex functions on G, with a compact support);



P3) χ satisfies the inequality∫
G

∫
G
χ(g−1h)ϕ(g)ϕ(h) dνG(g)dνG(h) ≥ 0, ∀ϕ ∈ Cc(G); (5)

P4) χ is a positive definite function, i.e., it is such that∑
j,k

χ(g−1j gk) cj ck ≥ 0, (6)

for every finite subset {g1, . . . , gm} of G and arbitrary complex numbers c1, . . . , cm.

We will now consider the case where the group G is abelian (e.g., a vector group). The
Pontryagin dual of G [6, 7] — the group of all irreducible (necessarily one-dimensional) unitary

representations of G, the unitary characters — will be denoted by Ĝ, and CM(Ĝ) will indicate

the Banach space of complex Radon measures on Ĝ. In this case, by Bochner’s theorem, the
previous list of equivalent properties will admit a further entry:

P5) χ is the Fourier-Stieltjes transform of a positive measure µ ∈ CM(Ĝ).

If the positive measure µ ∈ CM(Ĝ) is, in particular, a probability measure, the normalization

condition µ(Ĝ) = 1 translates into the constraint

χ(0) = 1, (7)

for the associated function of positive type (here 0 denotes the identity of the abelian group G).
Clearly, by relation (4), the latter condition is precisely the normalization of χ as a functional
on L1(G). In probability theory, χ is often called the characteristic function of µ [5].

We will now focus on the case where G is the group of translations on the (n+n)-dimensional
phase space — namely, the vector group Rn× Rn. In this case, we will obviously identify the
dual group Ĝ with G itself, and it will be convenient to use the symplectic Fourier transform [13],
instead of the ordinary one.

The physical relevance of functions of positive type is related to the fact that probability
measures on phase space provide a realization of physical states in classical statistical
mechanics [3]. In fact, a classical state can be defined as a normalized positive functional
on the commutative C∗-algebra of (classical) observables. By Gelfand theory — see, e.g., [38]
— such an algebra is isomorphic to an algebra of continuous functions vanishing at infinity.
Therefore, a natural choice is C0(Rn× Rn), the Banach space of continuous complex functions
on Rn×Rn that vanish at infinity, endowed with the point-wise product and with the ordinary
complex conjugation (involution). Clearly, the selfadjoint part C0(Rn × Rn;R) of the whole
algebra — i.e., the real functions — contains the true observables of the theory. The dual space
of C0(Rn × Rn) is the Banach space CM(Rn × Rn) of complex Radon measures on Rn × Rn
and, in particular, the convex set of physical states consists of the probability measures on
Rn× Rn. Moreover, the expectation value of an observable f ∈ C0(Rn× Rn;R) in the state
µ ∈ CM(Rn× Rn) is given by the ‘pairing’

〈f〉µ =

∫
Rn×Rn

f(q, p) dµ(q, p). (8)

As already mentioned, it is often convenient to replace a probability measure µ ∈ CM(Rn×Rn)
(a classical state) with its symplectic Fourier-Stieltjes transform µ̃,

µ̃(q, p) :=

∫
Rn×Rn

eiω((q,p),(q
′,p′)) dµ(q′, p′) (9)



— with ω denoting the standard symplectic form on Rn× Rn:

ω((q, p), (q′, p′)) := (q, p)T Ω(q′, p′) = q · p′ − p · q′, Ω =

(
0n In
−In 0n

)
(10)

— which is a continuous function of positive type on phase space.

Remark 1 As is well known [7], given a unitary representation V of a locally compact group
G and a vector Ψ in the Hilbert space H where V acts, the map

G 3 g 7→ 〈Ψ, V (g)Ψ〉 (11)

is a function of positive type on G. Conversely, every function of positive type on G is of the
form (11), for some unitary representation V and some vector Ψ. Keeping in mind this fact
and considering the case where G = Rn× Rn, it is not surprising that formula (9) admits the
following interesting interpretation. Let p : B → Rn× Rn be the constant Hilbert bundle over
Rn× Rn such that p−1(q, p) = C ≡ Hq,p, for all (q, p) ∈ Rn× Rn. Of course, the direct integral
Hilbert space associated with this Hilbert bundle and with a probability measure µ on Rn×Rn
is given by

H :=

∫ ⊕
Rn×Rn

Hq,p dµ(q, p) = L2(Rn× Rn, µ). (12)

Let V be the unitary representation of Rn× Rn in H defined as a direct integral [39]

V :=

∫ ⊕
Rn×Rn

Vq′,p′ dµ(q′, p′) (13)

of unitary characters
Vq′,p′(q, p)z = ei(q·p

′−p·q′)z, z ∈ C ≡ Hq′,p′ . (14)

We then have that (V (q, p)Φ)(q′, p′) = exp(i(q · p′ − p · q′))Φ(q′, p′) and

µ̃(q, p) = 〈Ψ, V (q, p)Ψ〉, (15)

where the matrix element on the rhs of (15) is computed with respect to the constant function
Ψ ≡ 1 in L2(Rn× Rn, µ).

At this point, before going back to the role of functions of positive type in classical statistical
mechanics, it is worth giving two simple examples. Consider first the Dirac measure δq0,p0
concentrated at (q0, p0) ∈ Rn× Rn. This is a pure — namely, an extremal — classical state.
It is mapped by the symplectic Fourier-Stieltjes transform into the function of positive type
(q, p) 7→ ei(q·p0−p·q0). Actually, every pure state on the C∗-algebra C0(Rn × Rn) is a Dirac
measure, and the associated function of positive type is characterized by the property that the
corresponding unitary representation V — see the rhs of (15) — is irreducible; hence, a unitary
character of the form (14).

Consider next a Gaussian measure γ on Rn× Rn,

dγ(q, p) = π−n det(M)−1/2 exp
(
− (q − q0, p− p0)TM−1(q − q0, p− p0)

)
dnq dnp, (16)

where M is a positive definite, symmetric, 2n× 2n real matrix, the so-called covariance matrix.
The symplectic Fourier-Stieltjes transform of this probability measure is the function of positive
type

(q, p) 7→ γ̃(q, p) = exp
(
− (q, p)T M̃ (q, p)/4 + i (q, p)T Ω(q0, p0)

)
, (17)



where M̃ = −Ω M Ω.
Now, to complete our reasoning recall that the symplectic Fourier transform maps L1(Rn×Rn)

into a dense linear subspace FL1(Rn× Rn) of the Banach space C0(Rn× Rn):

ϕ 7→ ϕ̌, ϕ̌(q, p) :=

∫
Rn×Rn

ϕ(q′, p′) ei(q
′·p−p′·q) dnq′dnp′. (18)

Thus, for every observable f ∈ FL1(Rn× Rn) the expectation value 〈f〉µ admits the following
expression:

〈f〉µ =

∫
Rn×Rn

ϕ(q, p)χ(q, p) dnq dnp =: 〈ϕ, χ〉 , (19)

with ϕ̌ = f and χ = µ̃. Namely, the expectation value 〈f〉µ can be expressed as a pairing 〈ϕ, χ〉
between ϕ ∈ L1(Rn × Rn) and the function of positive type χ ∈ L∞(Rn × Rn), representing
respectively an observable and a state.

Remark 2 The condition that f ∈ FL1(Rn×Rn) be an observable — i.e., f = f — translates
into the condition that ϕ be invariant with respect to the involution of the algebra L1(Rn×Rn):
ϕ = Iϕ; namely, that

ϕ(q, p) = ϕ(−q,−p). (20)

The main ideas underlying the picture sketched above can be condensed as follows:

(i) A function of positive type can be defined, for every locally compact group G, as a positive
functional on the group algebra L1(G), and gives rise to various equivalent characterizations.
In particular, in the case of an abelian group, a nonzero function of positive type can
be characterized, up to normalization, as the Fourier-Stieltjes transform of a probability
measure.

(ii) Therefore, there is a link between the notion of function of positive type and classical
statistical mechanics, where the physical states are realized as probability measures on
phase space, while the observables form the selfadjoint part of the C∗-algebra C0(Rn×Rn).

(iii) Adopting a characteristic function approach, one can replace probability measures with their
Fourier-Stieltjes transforms, i.e., with the corresponding normalized functions of positive
type. The standard algebra of classical observables is then ‘densely’ replaced with the
Banach ∗-algebra L1(Rn× Rn).

(iv) It is worth remarking once again that the positive functionals on the algebra L1(Rn× Rn)
are precisely the Fourier-Stieltjes transform of the positive functionals on the C∗-algebra
C0(Rn× Rn). Hence, in the characteristic function approach L1(Rn× Rn) may be thought
of, directly, as the algebra of physical observables and, in principle, there is no point in
considering a larger algebra (say, the the universal C∗-completion of L1(Rn× Rn)).

The functions of positive type on phase space form a convex cone Pn ≡ P(Rn × Rn) in
L∞(Rn × Rn), and the characteristic functions — i.e., the normalized (nonzero) functions of

positive type — form a convex subset P̆n of Pn. For reasons that will be clear soon, the elements
of Pn will be also called in the following functions of classical positive type.

In fact, a quantum analogue of functions of classical positive type emerges by undertaking
a phase-space approach to quantum mechanics. In particular, among the various phase-space
formalisms proposed in the literature [19, 40–47], we will adopt here the classical approach
developed by Weyl, Wigner, Groenewold and Moyal [9–12] that in the following will be referred
to as the WWGM formulation of quantum mechanics.



A pure state ρ̂ψ = |ψ〉〈ψ|, ψ ∈ L2(Rn), with ‖ψ‖ = 1 — a one-dimensional projection — is
replaced in the WWGM formulation with a function %ψ : Rn×Rn → C defined by the celebrated
classical formula (~ = 1) [10]:

%ψ(q, p) := (2π)−n
∫
Rn

e−ip·x ψ
(
q − x

2

)
ψ
(
q +

x

2

)
dnx. (21)

This definition extends in a natural way to any density operator in L2(Rn) — the associated
phase-space functions are usually called Wigner functions — and then to any trace class operator
(recall that every trace class operator is a linear superposition of four density operators). This
construction gives rise to a complex Banach space of functions which will be denoted by LWn.
The linear space LWn contains a convex cone Wn consisting of those functions that are associated
with positive trace class operators, and Wn contains a convex set W̆n consisting of the Wigner
functions, characterized as those functions in Wn satisfying the normalization condition

lim
r→+∞

∫
|q|2+|p|2<r

%(q, p) dnq dnp = 1 = tr(ρ̂) (22)

— see, e.g., [48] — where we have denoted by % ∈ W̆n the Wigner function associated with the
density operator ρ̂.

We stress that the limit on the lhs of (22) is necessary for taking into account the fact that a
Wigner function % may not be integrable with respect to the Lebesgue measure [48]; accordingly,
although always real, % in general is not a genuine probability distribution, because it may take
both positive and negative values. On the other hand, a Wigner function can be regarded as a
quasi-probability distribution, since one can express the expectation value 〈Â〉ρ̂ = tr(Â ρ̂) of an

observable Â in the state ρ̂ as a ‘classical’ phase-space integral, i.e.,

〈Â〉ρ̂ =

∫
Rn×Rn

α(q, p) %(q, p) dnq dnp, (23)

where α is a real function — or generalized function [49] — suitably associated with the

selfadjoint operator Â.

Remark 3 The characterization of those Wigner functions that are genuine probability
distributions is an interesting problem [50–52]. By results due to Hudson [50] and Littlejohn [51],
the Wigner functions of pure states assuming non-negative values only are those probability
distributions associated with Gaussian measures, see (16), whose covariance matrix M , besides
being a positive definite symmetric matrix, is also symplectic: MTΩ M = M Ω M = Ω.

Similarly to the classical setting, it is often useful to replace a quasi-probability distribution
with its symplectic Fourier transform. In this regard, it is worth recalling that a Wigner function
is always square integrable [19, 20]. Therefore, in this case the natural tool is the (symplectic)

Fourier-Plancherel transform F̂sp , namely, the selfadjoint unitary operator in the Hilbert space

L2(Rn× Rn) determined by

(
F̂spf

)
(q, p) = (2π)−n

∫
Rn×Rn

f(q′, p′) ei(q·p
′−p·q′) dnq′dnp′, (24)

with f ∈ L1(Rn× Rn) ∩ L2(Rn× Rn). The linear space LWn is mapped via F̂sp onto a (dense)

subspace LQn of L2(Rn×Rn) and the convex cone Wn ⊂ LWn is mapped onto Qn ⊂ LQn. Since
every function in LQn agrees almost everywhere with a continuous function, it will be convenient
to regard LQn as a linear space of continuous functions.



As it will be clear soon, the convex cone Qn can indeed be considered as a quantum analogue
of Pn. By this analogy, we will call a function %̃ in Qn, such that

%̃ = (2π)n F̂sp %, (25)

for some quasi-probability distribution % ∈ W̆n, the quantum characteristic function associated
with %. Hence, the quantum characteristic functions form a convex subset Q̆n = (2π)n F̂sp W̆n of
the linear space LQn.

Remark 4 The factor (2π)n in (25) has been fixed in such a way that the quantum characteristic
functions are those functions in Qn satisfying the normalization condition

%̃(0) = 1, (26)

with 0 ≡ (0, 0) denoting the origin in Rn× Rn; compare with (7).

A rather obvious problem arising in the WWGM formulation is to achieve an intrinsic
characterization of the convex set W̆n of quasi-probability distributions or, equivalently, of the
convex set Q̆n of quantum characteristic functions. Analyzing this problem one is lead to the
notion of function of quantum positive type. Indeed, keeping in mind the classical case, it is
natural to consider a suitable ∗-algebra of functions, and then to define the functions of positive
type as positive functionals on this algebra. It is clear, however, that a noncommutative algebra
should be involved in this case.

Recall that the Hilbert space L2(Rn×Rn) becomes a H∗-algebra [20] once endowed with the
twisted convolution (·)~ (·), where

(
A1~A2

)
(q, p) := (2π)−n

∫
Rn×Rn

A1(q
′, p′)A2(q − q′, p− p′) e

i
2
(q·p′−p·q′) dnq′dnp′, (27)

A1,A2 ∈ L2(Rn× Rn), and with the involution J : L2(Rn× Rn) 3 A 7→ A∗,

A∗(q, p) := A(−q,−p). (28)

The involution J acts precisely as in the classical case, compare with (20), but of course in a
different space. An element A of L2(Rn× Rn) such that A = JA is said to be selfadjoint.

To justify our choice of the twisted convolution as the relevant algebra operation, it is worth
anticipating that it can be considered as an expression of the product of Hilbert space operators
in terms of phase-space functions, see subsect. 3.2. A ‘nonlocal’ product of functions of this kind
is often called a star product [19, 20].

We are now ready to give a formal definition of a function of positive type in the quantum
setting. Clearly, the Hilbert space L2(Rn×Rn) is selfdual. Hence, in our approach the functions
of quantum positive type, defined as functionals, are assumed to be square integrable [21]:

Definition 2 A function of quantum positive type on Rn×Rn is a positive bounded functional
on the H∗-algebra

(
L2(Rn× Rn),~, J

)
, implemented by a square integrable function. Otherwise

stated, a complex function Q on Rn× Rn is said to be of quantum positive type if it belongs to
L2(Rn× Rn) and, for every A ∈ L2(Rn× Rn), satisfies the inequality∫

Rn×Rn

Q(q, p) (A∗~A)(q, p) dnq dnp ≥ 0. (29)



As already mentioned, the twisted convolution of functions ‘mimics’ the product of operators,
hence, it is not surprising that one should regard a function Q defined as above as a ‘quantum’
object. Nevertheless, the precise consequences of the previous definition are not immediately
clear. We will now argue that, similarly to the classical setting, a continuous function of quantum
positive type can be characterized by various equivalent properties, and one of these has a precise
physical meaning.

It will be convenient to adopt the following concise notation: we set z ≡ (q, p) ∈ Rn× Rn,
dz ≡ dnq dnp and, for the symplectic form, ω(z ,z′) ≡ ω((q, p), (q′, p′)) = q · p′ − p · q′.

One can prove the following facts; see [21] and references therein. If a continuous function
Q is of quantum positive type, then it is bounded and

‖Q‖∞ = Q(0). (30)

This relation is the quantum analogue of (4). For a continuous function Q : Rn× Rn → C the
following properties are equivalent:

Q1) Q is of quantum positive type;

Q2) Q satisfies the inequality (29), for all A ∈ Cc(Rn× Rn);

Q3) Q satisfies the inequality∫
Rn×Rn

∫
Rn×Rn

Q(z − z′)A(z′)A(z) eiω(z
′,z)/2 dz dz′ ≥ 0, ∀A ∈ Cc(Rn× Rn); (31)

Q4) Q is a quantum positive definite function, i.e.,∑
j,k

Q(zk − zj ) eiω(zj ,zk)/2 cj ck ≥ 0, (32)

for every finite subset {z1, . . . , zm} of Rn× Rn and arbitrary complex numbers c1, . . . , cm;

Q5) Q is contained in the convex cone Qn ⊂ LQn, i.e., it is a non-negative real multiple of the
Fourier-Plancherel transform of a quasi-probability distribution.

The equivalence between the first and the last property is a quantum version of Bochner’s
theorem [21,25–29]. By this equivalence, Qn can be regarded as the set of continuous functions of
quantum positive type, and LQn as the complex vector space generated by linear superpositions
of functions of this kind. By (26) and (30), the convex set Q̆n of quantum characteristic functions
coincides with the set of those continuous functions of quantum positive type normalized in such
a way that

‖Q‖∞ = Q(0) = 1. (33)

One can show moreover — see subsect. 3.2 — that the norm of every Q ∈ Q̆n, regarded as a
functional (i.e., as an element of L2(Rn× Rn)), verifies the inequality

‖Q‖2 ≤ 1, (34)

for a suitable normalization of the Haar measure (a multiple of the Lebesgue measure on Rn×Rn).
Indeed, in subsect. 3.2 it will be argued that the square of ‖Q‖2 is nothing but the purity of
the density operator associated with Q. Therefore, the inequality (34) is saturated if and only
if the state associated with Q is pure.

Remark 5 The analogy with the classical setting cannot be pushed too far. On the one hand,
a function of positive type on a locally compact group is automatically continuous (modulo
modifications on νG-null sets). On the other hand, a function of quantum positive type Q is not,
in general, a continuous function, and continuity, together with the normalization condition (33),
must be imposed in order to select the quantum characteristic functions. Moreover, the
normalization of Q as a functional in general differs from (33) (its normalization as a state).



Remark 6 A comparison of relations (3), (5) and (6) with relations (29), (31) and (32), shows
the central role played by the function (Rn× Rn) × (Rn× Rn) 3 (z, z′) 7→ exp(iω(z, z′)/2). Of
course, this is the non-exact T-multiplier, for the abelian group Rn× Rn, associated with the
Weyl system and with the canonical commutation relations (expressed in the Weyl form) [53].
Accordingly, whereas an ordinary function of positive type on the vector group Rk is defined for
every k = 1, 2, . . ., the quantum notion of function of positive type involves the symplectic form
ω — namely, a non-degenerate skew-symmetric bilinear form; hence, in this case the dimension
k of the vector group must be even.

3. Interplay between classical and quantum
The notion of function of positive type on phase space — classical and quantum — allows one
to note a remarkable interplay between classical and quantum states. To clarify this point, we
first recall that the convolution µ1}µ2 of two positive measures µ1, µ2 ∈ CM(G) on a locally
compact group G — defined by

(µ1}µ2)(E ) :=

∫
G

∫
G
κE (gh) dµ1(g)dµ2(h), (35)

where κE is the characteristic function of a Borel set E ⊂ G — is again a positive measure
in CM(G) (a probability measure if µ1, µ2 are normalized) [7]. The convex subset of CM(G)
formed by the probability measures, endowed with convolution, becomes a semigroup, whose
identity is δe (the Dirac measure at the identity e of G). Assuming now that G is abelian, the
convolution of two probability measures is mapped, via the Fourier-Stieltjes transform, to the
point-wise multiplication of the corresponding characteristic functions [6]. Hence, by Bochner’s
theorem, the point-wise product χ1 χ2 of two (normalized) continuous functions of positive type
χ1 and χ2 on G is a (normalized) continuous function of positive type too. In particular, in the

case where G = Rn× Rn, the set P̆n of normalized functions of classical positive type, endowed
with the point-wise product, is a semigroup, the identity being the constant function χ ≡ 1.

3.1. Classical-quantum semigroups
As we have seen, point-wise multiplication is a legitimate operation between functions of classical
positive type. What happens if one multiplies a function of classical positive type by a continuous
function of quantum positive type? The answer is contained in the following result [21]:

Theorem 1 The point-wise product χQ of a function χ ∈ Pn by a function Q ∈ Qn is contained
in Qn. In particular, if χ and Q are normalized, χQ belongs to Q̆n.

This result, which may be regarded at first sight as a mere mathematical curiosity, actually
establishes a link between the notion of function of positive type and the theory of open quantum
systems. Consider, indeed, a set {χt}t∈R+ of normalized continuous functions of positive type
on Rn× Rn such that

χt χs = χt+s, ∀t, s ≥ 0, χ0 ≡ 1, (36)

where χt χs is again a point-wise product; namely, a (one-parameter) multiplication semigroup
of functions of positive type. One should also assume continuity, with respect to a suitable
topology on P̆n [21], for the homomorphism R+ 3 t 7→ χt ∈ P̆n. One-parameter semigroups of
this kind can be classified because they are related, via the Fourier-Stieltjes transform, with the
convolution semigroups of probability measures on Rn× Rn [34, 54].

Observe now that for every function of positive type χ ∈ P̆n one can define a linear operator
Ĉχ in L2(Rn× Rn) by setting (

Ĉχ f
)
(q, p) := χ(q, p)f(q, p). (37)



It is clear that Ĉχ is a (well defined) bounded operator because χ is a bounded continuous
function. It will be shown — see Remark 8 below — that it maps the convex cone of functions
of quantum positive type into itself. For every multiplication semigroup of functions of positive
type {χt}t∈R+ ⊂ P̆n and for every t ≥ 0, one can set(

Ĉt f
)
(q, p) ≡

(
Ĉχt f

)
(q, p) := χt(q, p)f(q, p), f ∈ L2(Rn× Rn). (38)

The set {Ĉt}t∈R+ is a (one-parameter) semigroup of operators [55]:

(i) Ĉt Ĉs = Ĉt+s, t, s ≥ 0;

(ii) Ĉ0 = I (with I denoting the identity operator).

We will call the semigroups of operators {Ĉt}t∈R+ a classical-quantum semigroup.
Taking into account the contents Theorem 1, we will now consider a natural restriction of

the semigroup of operators {Ĉt}t∈R+ to a linear subspace of L2(Rn×Rn). In fact, as mentioned
in sect. 2, one can extend the convex cone Qn of continuous functions of quantum positive type
on Rn×Rn, by taking (complex) linear superpositions, to a dense subspace LQn of L2(Rn×Rn).
Since the point-wise product of a continuous function of classical positive type by a continuous
function quantum positive type is again a function of the latter type, a semigroup of operators
{Ct}t∈R+ in LQn is defined by setting(

CtQ
)
(q, p) := χt(q, p)Q(q, p), Q ∈ LQn. (39)

Note that here Q, with a slight abuse with respect to our previous convention, denotes a linear
superposition of four functions of quantum positive type, namely, Q = Q1 − Q2 + i(Q3 − Q4),

with Q1, . . . ,Q4 ∈ Qn. Obviously, by construction we have that CtQn ⊂ Qn and Ct Q̆n ⊂ Q̆n.
Thus, it is now clear that the semigroup of operators {Ct}t∈R+ — which will be called a proper

classical-quantum semigroup — maps the convex set of quantum characteristic functions into
itself. Nevertheless, the precise connection with the theory of open quantum systems needs to
be further clarified. It will be unveiled by means of a suitable quantization procedure mapping
phase-space functions to Hilbert space operators.

3.2. Group-theoretical quantization/dequantization
The procedure that allows one to associate with a Hilbert space operator a phase-space function
(e.g., a Wigner function) involves a suitable dequantization map. Of course the reverse arrow is a
quantization map, which transforms functions into operators. By these maps, one is able to set a
(at least implicit) correspondence between the product of operators and a star product [19,20,56]
of functions — the twisted convolution (27), in the case where quantum characteristic functions
are involved. The star product is an essential ingredient for a self-consistent formulation of
quantum mechanics in terms of phase-space functions, together with the related notion of
function of quantum positive type. Our aim, now, is to briefly illustrate the meaning of this
notion in terms of Hilbert space operators. As a byproduct, we will be able to highlight the
precise connection of classical-quantum semigroups with quantum dynamical semigroups.

A fundamental tool for constructing a pair of ‘group-covariant’ quantization/dequantization
maps is a square integrable (in general, projective) representation U of a locally compact group
G in a Hilbert space H; see [15,23,24]. One may think of H as the Hilbert space of a quantum-
mechanical system and of G as a symmetry group. Let B2(H) be the Hilbert space of Hilbert-
Schmidt operators in H. The representation U allows one to define the dequantization map as a
linear isometry D : B2(H)→ L2(G), see [15,19,20]. If the group G is unimodular and ρ̂ ∈ B2(H)
is a trace class operator, the function D ρ̂ associated with ρ̂ is of the simple form

(D ρ̂)(g) = d−1U tr(U(g)∗ρ̂), (40)



where dU > 0 is a constant which depends on U and on the normalization of the Haar measure
on G. The quantization map Q associated with U is nothing but the adjoint of the map
D ; i.e., it is the partial isometry Q defined by Q := D∗ : L2(G) → B2(H). It is clear that
Ker(Q) = Ran(D)⊥ (in general, the closed subspace Ker(Q) of L2(G) is not trivial). The star
product associated with U is then defined implicitly by

f1 ?f2 := D((Qf1)(Qf2)), f1, f2 ∈ L2(G), (41)

were (Qf1)(Qf2) is the ordinary composition of the operators Qf1 and Qf2. Note that for a
pair of functions belonging to Ran(D) the star product can be thought of as the dequantized
version of the product of operators. Explicit formulae for the star products are derived in [20].

Let now G be, in particular, the group Rn×Rn of phase-space translations (see [19,20] for the
details). In this case, H = L2(Rn), L2(G) = L2(Rn× Rn) ≡ L2(Rn× Rn, (2π)−ndnq dnp;C) (the
Haar measure is normalized in such a way that dU = 1 in (40)) and the representation U is a Weyl
system [20, 53], namely, U(q, p) := exp(i(p · q̂ − q · p̂)), where q̂ = (q̂1, . . . , q̂n), p̂ = (p̂1, . . . , p̂n),
with q̂j , p̂j denoting the standard j-th coordinate position and momentum operators in L2(Rn).
The Weyl system U is a square integrable, genuinely projective representation,

U(q + q̃, p+ p̃) = m(q, p ; q̃, p̃)U(q, p)U(q̃, p̃), m(q, p ; q̃, p̃) ∈ T, (42)

where the (non-exact) multiplier m is of the form m(q, p ; q̃, p̃) := exp(i(q · p̃− p · q̃)/2). It turns
out that for every density operator ρ̂ in L2(Rn) the function D ρ̂ = tr(U(·)∗ρ̂) coincides with the
quantum characteristic function %̃ defined by (25), where % is the Wigner distribution associated

with ρ̂; see [15, 19, 20]. Thus, as F̂sp = F̂∗sp, we have that % = (2π)−n F̂sp D ρ̂, and quantization à
la Weyl is obtained composing Q = D∗ with the symplectic Fourier-Plancherel operator.

Moreover, the following facts hold [19,20]:

• Ran(D) = L2(Rn× Rn), so that in this case the partial isometries Q and D are actually
unitary operators. The unitary operator Q intertwines the involution J : A 7→ A∗ in
L2(Rn× Rn), defined by (28), with the adjoining map Â 7→ Â∗ in B2(L2(Rn)), i.e.,

Q JA = (QA)∗, ∀A ∈ L2(Rn× Rn). (43)

• The star product (41) is implemented by the twisted convolution, see (27).

Taking into account these points and the contents of sect. 2, one can also argue that

• Translated in terms of Hilbert space operators, the quantum positivity condition (29)

amounts to requiring that B̂ = QQ ∈ B2(L2(Rn)) satisfies the inequality tr(B̂ Â∗Â) ≥ 0,

for all Â ∈ B2(L2(Rn)); hence, equivalently, that B̂ ≥ 0.

• For the linear space LQn and for the convex cone Qn ⊂ LQn, we have that

LQn = D B1(L2(Rn)) and Qn = D B1(L2(Rn))+, (44)

where B1(L2(Rn)) is the Banach space of trace class operators in L2(Rn) and B1(L2(Rn))+

the convex cone of positive trace class operators. It is clear, moreover, that for every
ρ̂ ∈ B1(L2(Rn))+, ‖D ρ̂‖∞ = (D ρ̂)(0) = tr(ρ̂).

• It follows that the unitary operator Q = D∗ maps a function of quantum positive type
into a positive Hilbert-Schmidt operator and a continuous function of quantum positive
type into a positive trace class operator (in particular, a normalized continuous function of
quantum positive type into a density operator). By (43), a function of quantum positive
type Q is selfadjoint: Q = JQ.



• For every density operator ρ̂ in L2(Rn), denoting by ‖ · ‖2 the norm of the Hilbert space

L2(Rn× Rn, (2π)−ndnq dnp;C), we have that ‖D ρ̂‖2 =
√

tr(ρ̂2) ≤ 1. Hence, as mentioned
in sect. 2 (see (34)), with a suitable choice of the Haar measure the norm, as a functional, of
a normalized continuous function of quantum positive type coincides with the square root
of the purity of the associated state.

Remark 7 Taking into account the previous facts, the contents of Theorem 1 can be slightly
extended by including the following assertion: for every χ ∈ Pn and for every function of
quantum positive type Q in L2(Rn × Rn) (not necessarily contained in Qn) the point-wise
product χQ is again function of the latter type. We now give a sketch of the proof. Let us
set Â ≡ QQ ∈ B2(L2(Rn)), Â ≥ 0. Assuming that Â /∈ B1(L2(Rn))+ (i.e., Q /∈ Qn), consider

the (necessarily infinite) spectral decomposition Â =
∑

j αj Π̂j — where α1 > α2 > · · · > 0

and Π̂j is a (finite rank) projection operator — which converges in the Hilbert-Schmidt

norm. Then, the sequence {Qm}m∈N, with Qm ≡ D (
∑m

j=1 αj Π̂j), is contained in Qn and

Qm → Q in L2(Rn × Rn). Therefore, we have that {χQm}m∈N ⊂ Qn, χQm → χQ and
0 ≤

∫
(χQm)(q, p) (A∗~A)(q, p) dnq dnp→

∫
(χQ)(q, p) (A∗~A)(q, p) dnq dnp.

Remark 8 By Remark 7, as anticipated in subsect. 3.1, for every function of positive type
χ ∈ P̆n the bounded operator Ĉχ defined by (37) maps the convex cone of functions of quantum
positive type into itself, and obviously the same property holds for each member of the semigroup
of operators {Ĉt}t∈R+ defined by (38).

3.3. Unveiling the physical meaning of classical-quantum semigroups
We are now ready to unveil the physical meaning of a classical-quantum semigroup. Observe
that with the projective representation U is associated an isometric representation U ∨U of the
group Rn× Rn acting in the Banach space B1(L2(Rn)); i.e.,

U ∨U(q, p) ρ̂ := U(q, p) ρ̂ U(q, p)∗, ∀ ρ̂ ∈ B1(L2(Rn)). (45)

This is, of course, the canonical symmetry action of the group of phase-space translations on
trace class operators, according to Wigner’s theorem on symmetry transformations. Given a
convolution semigroup {µt}t∈R+ of probability measures on Rn×Rn, one can define a semigroup
of operators {µt[U ∨U ]}t∈R+ in B1(L2(Rn)) by setting

µt[U ∨U ] ρ̂ :=

∫
Rn×Rn

U ∨U(q, p) ρ̂ dµt(q, p). (46)

It can be shown that the twirling semigroup {µt[U ∨U ]}t∈R+ is a quantum dynamical semigroup
(namely, a completely positive, trace-preserving semigroup of operators in B1(L2(Rn)));
see [34–37]. More specifically, {µt[U ∨U ]}t∈R+ belongs to the class of classical-noise semigroups;
see [31] and references therein. The following result [21] establishes a precise connection between
the semigroup of operators (46) and a classical-quantum semigroup:

Theorem 2 Let {χt}t∈R+ be the one-parameter multiplication semigroup of functions of positive
type related, via the symplectic Fourier-Stieltjes transform, to the convolution semigroup of
probability measures {µt}t∈R+ — namely, χt(q, p) =

∫
exp(i(q · p′ − p · q′)) dµt(q

′, p′) — and
let {Ct}t∈R+ be the proper classical-quantum semigroup associated with {χt}t∈R+, see (39).
Then, the unitary operator Q intertwines the semigroup of operators {Ct}t∈R+ with the quantum
dynamical semigroup {µt[U ∨U ]}t∈R+; i.e., for every Q ∈ LQn, we have:

Q CtQ = µt[U ∨U ] QQ, ∀t ≥ 0. (47)



Remark 9 The isometric representation U ∨U in B1(L2(Rn)) admits a natural extension to
a unitary representation in B2(L2(Rn)). By this extension, one can define a new semigroup
of operators in the Hilbert space B2(L2(Rn)) acting in a way completely analogous to (46).
The new semigroup of operators is unitarily equivalent, via the dequantization map D , to the
classical-quantum semigroup {Ĉt}t∈R+ in L2(Rn× Rn).

4. . . . and beyond
Functions of positive type on phase space play a remarkable role in classical statistical mechanics
and in the WWGM formulation of quantum mechanics since they are related to probability
measures and to quasi-probability distributions. Both the ‘classical’ and the ‘quantum’ functions
of positive type admit a simple and elegant group-theoretical characterization as positive
functionals on suitable group algebras. In the classical case, on the one hand, the standard
commutative convolution algebra

(
L1(Rn×Rn),}, I

)
is involved, and continuity of the associated

positive type functions is a byproduct of their definition. On the other hand, the continuous
functions of quantum positive type — equivalently, the non-negative real multiples of those
functions representing physical states (the quantum characteristic functions) — are embedded
in the convex cone of positive functionals on the twisted convolution algebra

(
L2(Rn×Rn),~, J

)
.

As we have seen, this embedding corresponds to the natural inclusion of the positive trace class
operators in the positive Hilbert-Schmidt operators. It is also worth observing that the physically
relevant normalization condition for the continuous functions of quantum positive type differs,
in general, from their normalization as functionals; the coincidence of the two normalization
criteria is indeed a distinguishing feature of the pure states.

It is clear that in the group-theoretical approach to quantization/dequantization outlined in
subsect. 3.2 a natural problem is to achieve a generalized notion of function of positive type,
suitable for an extension of the results valid for the group of translations on phase space to other
groups. Consider, e.g., the case of a unimodular locally compact group G admitting a square
integrable projective representation U , with multiplier m. It can be shown that, for every pair
of functions f1, f2 living in the range of the dequantization map D (associated with U), and for
a suitable normalization of the Haar measure νG, the star product (41) can be expressed as a
m-twisted convolution product [20]:

(f1 ?f2)(g) =

∫
G
f1(h)f2(h

−1g)m(h, h−1g) dνG(h). (48)

Of course, this is a natural generalization of the standard twisted convolution (27). One can
define a notion of function of positive type relatively to the algebra structure determined by this
star product. Note, however, that in general the closed subspace Ran(D)⊥ = Ker(Q) of L2(G)
is not trivial, and this aspect has to be taken into account when formulating the positivity
condition. Another nontrivial aspect is related to the characterization of those functions of
positive type (in the aforementioned generalized sense) that represent quantum states. The case
of non-unimodular groups presents further delicate aspects, due to more complicated expressions
of quantization/dequantization maps and of the associated star products [20], and the case of
certain semidirect product groups that do not admit square integrable representations (e.g., the
Poincaré group) entails other intricacies [64]. These natural developments of our work will be
analyzed in detail elsewhere. Let us only mention, here, that an interesting and reasonably
simple case is that of a group of the form G = A × Â, where A is a locally compact abelian
group and Â its Pontryagin dual. Like Rn×Rn, also A× Â may be thought of, simultaneously,
as a (generalized) phase space and as the group of translations on this space. Actually, phase
spaces of this sort — where A is, e.g., a cyclic groups or a finite field — and the associated
representations of quantum states are of current interest in quantum information, quantum
tomography etc.; see [57–63] and further references therein.



In this circle of ideas is also inscribed the notion of classical-quantum semigroup. We have
first introduced this notion in [31], with the aim of highlighting connections with other classes of
semigroups of operators and with quantum information science. Then, in [21] we have studied
the link of classical-quantum semigroups with functions of positive type on phase space. As
shown in subsect. 3.3, by quantizing a classical-quantum semigroup one obtains a twirling
semigroup, generated in a natural way by a a Weyl system and by a convolution semigroup on
the vector group Rn×Rn. Actually, every pair formed by a projective representation of a locally
compact group and by a convolution semigroup of probability measures on that group gives
rise in a natural way to a twirling semigroup [34–36]. Thus, it would be interesting to study

the construction — e.g., for groups of the form G = A × Â — of suitable classical-quantum
semigroups, a further development of our work that we plan to pursue.
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