A microscopic theory of the neutron

J.X. Zheng-Johansson

Inst of Fundamental Physics Research IOFPR, Svartar, Nykoping Sweden jxzj100a@gmail.com

A microscopic theory of the neutron, which consists in a neutron model constructed based on key relevant experimental observations, and the first principles solutions for the basic properties of the model neutron, is developed within a framework consistent with the Standard Model. The neutron is proposed to be composed of an electron e and a proton pthat are separated at a distance $r_1 \sim 10^{-18}$ m, and are in relative orbital angular motion and Thomas precession highly relativistically, with their reduced mass moving along a quantised l = 1th circular orbit of radius r_1 about their instantaneous mass centre. The associated rotational energy flux or vortex has a spin angular momentum $\frac{1}{2}\hbar$ and is identifiable as a (confined) antineutrino. The particles e, p are attracted with one another predominantly by a central magnetic force produced as result of the particles' relative orbital, precessional and intrinsic angular motions. The interaction force (resembling the weak force), potential (resembling the Higgs' field), and a corresponding excitation Hamiltonian (H_I) , among others, are derived based directly on first principles laws of electromagnetism, quantum mechanics and relativistic mechanics within a unified framework. In particular, the equation for $\frac{4}{3}\pi r_1^3 H_I$, which is directly comparable with the Fermi constant G_F , is predicted as $G_F = \frac{4}{3}\pi r_1^3 H_I = A_o C_{01}/\gamma_e \gamma_p$, where $A_o = e^2 \hbar^2/12\pi\epsilon_0 m_e^0 m_p^0 c^2$, m_e^0 , m_p^0 are the *e*, *p* rest masses, C_{01} is a geometric factor, and γ_e , γ_p are the Lorentz factors. Quantitative solution for a stationary meta-stable neutron is found to exist at the extremal point $r_{1m} = 2.513 \times 10^{-18} \,\mathrm{m}$, at which the G_F is a minimum (whence the neutron lifetime is a maximum) and is equal to the experimental value. Solutions for the neutron spin $(\frac{1}{2})$, apparent magnetic moment, and the intermediate vector boson masses are also given in this paper.