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Starting from a Poisson bi-vector P on a given finite-dimensional Poisson manifold (N,P),
Kontsevich’s graph summation formula [1] yields the explicit deformation × 7→ ?~ of
commutative product × in the algebra C∞(N) of smooth functions. The new operation ?~
on the space C∞(N)[[~]] of power series is specified by the Poisson structure on N : namely,
f ?~ g = f × g + const · ~ {f, g}P + o(~) such that all the bi-differential terms at higher
powers of the formal parameter ~ are completely determined by the Poisson bracket { , }P
in the leading deformation term. (In the context of fields and strings, the constant is set to
i/2 so that the parameter ~ is the usual Planck constant.) The deformed product ?~ is no
longer commutative if P 6= 0 but it always stays associative,

(
f ?~ g

)
?~ h

.
= f ?~

(
g ?~ h

)
all f , g, h ∈ C∞(N)[[~]], by virtue of bi-vector’s property [[P ,P ]] = 0 to be Poisson.
In this talk we extend the Poisson set-up and graph summation technique in the defor-
mation × 7→ ?~ to the jet-space (super)geometry of N -valued fields φ ∈ Γ(π) over a base
manifold M in their bundle π and, secondly, of variational Poisson bi-vectors P that
encode the Poisson brackets { , }P on the space of local functionals taking Γ(π) → k. We
explain why an extension of Kontsevich’s graph technique [1] is possible and how it is done
by using the geometry of iterated variations [2]. For instance, we derive the variational

analogue of associative Moyal’s ?-product, f ? g = (f) exp
(←−
∂i · ~P ij · −→∂j

)
(g), in the case

when the coefficients P ij of bi-vector P are constant (hence the identity [[P ,P ]] = 0 holds
trivially). By using several well-known examples of variational Poisson bi-vectors P , we
illustrate the construction of each bi-differential term in ?~ in the general case, i.e., for
Hamiltonian total differential operators with coefficients depending on the fields φ and
their derivatives; we then verify that the noncommutative quantized product ?~ is associa-
tive by virtue of [[P , P ]] = 0. We conclude that the existing instruments for calculation of
variational Poisson structures do in fact specify points in the moduli spaces of deformation
quantizations for field theory models.
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