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I wish to thank Wolfgang Steiner and Ondřej Turek who are co-authors of two papers and I am
indebted to all mathematicians that inspired me or gave me some useful hints, in particular, to
Christiane Frougny, Jean-Louis Verger-Gaugry, Julien Bernat, and Srečko Brlek.
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Preface

This thesis has been prepared within the scope of a joint research program “Co-tutelle Interna-
tionale de Thèse” between two universities: Czech Technical University in Prague and University
Paris Diderot - Paris 7. In order to acquit a claim of “Co-tutelle” Agreement, the abstract is
written in English and in French.

Abstract

The set of β-integers Zβ is a generalization of the set Z of ordinary integers. Zβ consists of real
numbers which are polynomial in β when expanded in the base β using the well-known greedy
algorithm. As every suitable generalization, β-integers coincide with integers for β being an
integer base. Nevertheless, the situation changes significantly if β 6∈ Z. In this case, the set
Zβ is not periodic any more and it conserves only partially properties of integers: Zβ has no
accumulation points, the distances between consecutive elements of Zβ are bounded by 1, Zβ is
self-similar with self-similarity factor β, and is not invariant under translation.

There are several fields of application of this interesting alternative of ordinary integers:
modeling of quasicrystals, random number generators, non-standard wavelet analysis, or theory
of discrete Schrödinger operators with aperiodic potentials.

The content of this work may be divided into three essential parts:

1. Combinatorics on words with emphasis on infinite words coding β-integers

2. Arithmetics of β-integers

3. Application of β-integers in physics

Let us point out several contributions based on results of this thesis that have been published
or submitted to referred journals during the last three years:

(I) L’. B., Complexity for infinite words associated with quadratic non-simple Parry numbers,
Journal of Geometry and Symmetry in Physics 7 (2006), 1–11

(II) L’. B., Z. Masáková, Palindromic complexity of infinite words associated with non-simple
Parry numbers, to appear in RAIRO - Theor. Inform. Appl. (2008)

(III) L’. B., E. Pelantová, W. Steiner, Sequences with constant number of return words, to
appear in Monatshefte für Mathematik (2007)

(IV) L’. B., Return words and recurrence function of a class of infinite words, Acta Polytechnica
47 (2007), 15–19

(V) L’. B., E. Pelantová, A note on symmetries in the Rauzy graph and factor frequencies,
submitted to Theoret. Comput. Sci. (2007)
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(VI) L’. B., E. Pelantová, O. Turek, Combinatorial and arithmetical properties of infinite words
associated with quadratic non-simple Parry numbers, RAIRO - Theor. Inform. Appl. 41
(2007), 123–136

(VII) L’. B., J.-P. Gazeau, E. Pelantová, Asymptotic behavior of beta-integers, submitted to
Letters in Mathematical Physics (2008)

In the sequel, we give some primary ideas of the content and the structure of the thesis
and underline the most important results. If the results have been published, we refer to the
corresponding paper in the above list.

A brief history of quasicrystals and their most common mathematical models are described
in the introductory chapter 1. We introduce ibidem numeration systems with non-integer bases
together with a few words on positional numeration systems in general. Finally, the role of β-
integers as one-dimensional models of quasicrystals and as coordinate labels of β-lattices (more
dimensional models of quasicrystals) is highlighted.

Chapter 2 is preliminary and includes all underlying definitions from the field of β-numeration
and from combinatorics on words. Particularly important is the coding of non-negative β-
integers, realizing only a finite number of distances between consecutive elements, with letters.
Such numbers β are called Parry numbers and the associated infinite word is denoted uβ. Results
concerning combinatorics on words uβ may be then reformulated in terms of β-integers: the
number of local configurations of Zβ is described by means of the factor complexity of uβ, the
number of mirror symmetrical local configurations is linked with the palindromic complexity of
uβ, the densities of local configurations in the whole one-dimensional space are related to the
factor frequencies of uβ, etc.

Chapter 3 deals with factor complexity which indicates how many different factors of a fixed
length an infinite word contains. We provide a summary of known results on the complexity
of some selected infinite words and classes of words – Thue-Morse word, period doubling word,
Rote word, a palindromeless reversal closed word, infinite words associated with simple and
non-simple Parry numbers – with an eye illustrating the characteristics and methods studied in
the sequel on this “sample”. As a new result, we describe the factor complexity of uβ
associated with a quadratic non-simple Parry number (I).

In Chapter 4, we deal with another type of complexity – palindromic complexity – which
describes how rich an infinite word is in palindromes of a fixed length. We recall the palindromic
complexity of words in our illustrative sample. Newly, we deduce an exact formula for
the palindromic complexity of uβ associated with a quadratic non-simple Parry
number (II).

In Chapter 5, we reopen the investigation of palindromes. An interesting task is to compare
two measures of the variety of palindromes in an infinite word: palindromic complexity – we
call the words with maximal palindromic complexity opulent in palindromes – and the degree of
saturation of the prefixes of an infinite word by palindromes – we say that an infinite word is full
if all its prefixes contain the maximal possible number of palindromes. It is a recent result [25]
that these two notions – opulent and full – coincide for uniformly recurrent infinite words. We
derive a new elegant and short proof of a slightly stronger result – the equivalence
of fullness and opulence for infinite words with language closed under reversal.

In Chapter 6, we study return words in infinite words – a return word of a factor is any word
we read between two consecutive occurrences of the factor in the corresponding infinite word.
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The study of return words is initiated by the description of some simple ideas facilitating
the task. As a practical application of these useful rules, we determine the return words
of factors of several infinite words in our illustrative sample. Furthermore, an insight into
the characterization of infinite words with a constant number of return words for
every factor is offered (III). The last topic linked with return words is the study of recurrence
function which to every n associates the minimal length R(n), provided it exists, such that every
segment of length R(n) of the infinite word in question contains all factors of length n. We
derive the recurrence function of uβ associated with a quadratic non-simple Parry
number (IV).

Chapter 7 is devoted to the study of factor frequencies. It demonstrates the visualizing
power of Rauzy graphs. With the help of Rauzy graphs, we deduce for infinite words
whose language is closed under reversal, or, eventually, under another symmetry,
a suitable upper bound in terms of factor complexity on the number of factor
frequencies (V). We manifest the accuracy of the obtained upper bound on several classes
of infinite words. Furthermore, we suggest a method, based on a meticulous inspection of the
evolution of Rauzy graphs, enabling to describe the set of factor frequencies for every fixed
length. This method provides explicit descriptions while so far known methods lead only to
recurrent formulae. As an illustration, we derive the factor frequencies of uβ associated
with a quadratic non-simple Parry number and of the palindromeless reversal closed
word.

In Chapter 8, an almost untutored topic of balances is inspected. An infinite word over the
alphabet {a, b} is called c-balanced if for any couple of its factors of the same length, the number
of a’s contained in these factors differs at most by c. We find the optimal balance bound
on uβ associated with a quadratic non-simple Parry number (VI).

Chapter 9 is a smooth passage from combinatorics on words to arithmetics. The chapter
pursues two goals. First, we determine the maximal number L⊕(β) of β-fractional
positions, in case of β being a quadratic non-simple Parry number, which may arise
as a result of addition of two β-integers, provided the β-expansion of the sum is finite. Second,
we point out to which extent arithmetics can serve combinatorics and vice versa. In particular,
we stress the closeness of the balance property and the upper and lower bounds on
L⊕(β) for uβ associated with a quadratic non-simple Parry number (VI).

Chapter 10 offers also a smooth transition, this time from mathematics to physics. In view of
the quasiperiodic distribution of β-integers on the real line, it is natural to investigate how much
the set Zβ = {bn | n ∈ Z} differs from the set Z of ordinary integers, according to the nature of
β. Parry numbers give rise to β-integers which realize only a finite number of distances between
consecutive elements and so appear as the most comparable to ordinary integers. We find
a simple formula for the constant cβ such that bn ∼ cβn in case of Parry numbers β.
In addition, we prove for a class of Pisot numbers that the sequence (bn − cβn) is
bounded (VII).

Chapter 11 is devoted to Schrödinger operators with aperiodic potentials. We sum up the
needed notions from functional analysis in Appendix A. We recall an extensively studied concept
– discrete Schrödinger operators with potentials modeled by infinite aperiodic words. Putting
together several methods relying on combinatorial properties, we deduce for which Parry num-
bers β, the corresponding Schrödinger operator with potential generated by uβ has purely singu-
lar continuous spectrum. In such cases, the infinite word uβ is a suitable model of the potential
in a quasicrystalline material.
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In Chapter 12, we focus on diffraction on quasicrystals. We summarize the necessary mathe-
matical background in Appendix B. We ask the following question: “For which β does the
set Zβ serve as a suitable one-dimensional model for quasicrystals?” Combining results from
divers papers, we answer this question partially and we indicate how the results from Chapter 10
concerning asymptotic behavior might be used in order to describe diffraction spectra of Zβ.

Résumé

L’ensemble de β-entiers Zβ représente une généralisation de l’ensemble des entiers ordinaires. Zβ
consiste des nombres réels dont le développement en base β, obtenu par l’algorithme glouton, est
un polŷnome en β, autrement dit, la partie fractionnaire du développement en base β est nulle.
Comme toute généralisation appropriée, les β-entiers cöıncident avec les entiers pour une base
β entière. Par contre, la situation change considérablement si β 6∈ Z. Dans ce cas, l’ensemble
Zβ n’est plus périodique et ne garde les propriétés des entiers que partiellement: Zβ ne contient
pas de points d’accumulation, les distances entre les éléments consécutifs de Zβ sont bornées
par 1, Zβ est autosimilaire – β étant un facteur d’autosimilarité – Zβ n’est pas invariant sous la
translation.

Il y a plusieurs domaines d’application de cette alternative aux entiers ordinaires: modélisation
mathématique des quasicristaux, générateurs de nombres aléatoires, analyse en ondelettes non-
standard ou théorie des opérateurs de Schrödinger discrets avec potentiels apériodiques.

Le contenu de ce travail peut être divisé en trois parties essentielles:

1. Combinatoire des mots infinis associés aux β-entiers

2. Arithmétique des β-entiers

3. Application des β-entiers en physique

Soulignons les contributions basées sur les résultats de cette thèse qui ont été publiées ou
soumises aux journaux avec arbitrage durant les trois dernières années:

(I) L’. B., Complexity for infinite words associated with quadratic non-simple Parry numbers,
Journal of Geometry and Symmetry in Physics 7 (2006), 1–11

(II) L’. B., Z. Masáková, Palindromic complexity of infinite words associated with non-simple
Parry numbers, à parâıtre dans RAIRO Theor. Inform. Appl. (2008)

(III) L’. B., E. Pelantová, W. Steiner, Sequences with constant number of return words, à parâıtre
dans Monatshefte für Mathematik (2007)

(IV) L’. B., Return words and recurrence function of a class of infinite words, Acta Polytechnica
47 (2007), 15–19

(V) L’. B., E. Pelantová, A note on symmetries in the Rauzy graph and factor frequencies,
soumis à Theoret. Comput. Sci. (2007)

(VI) L’. B., E. Pelantová, O. Turek, Combinatorial and arithmetical properties of infinite words
associated with quadratic non-simple Parry numbers, RAIRO - Theor. Inform. Appl. 41
(2007), 123–136
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(VII) L’. B., J.-P. Gazeau, E. Pelantová, Asymptotic behavior of beta-integers, soumis à Letters
in Mathematical Physics (2008)

Dans ce qui suit, nous esquissons le contenu et la structure de la thèse et nous soulignons
les résultats les plus importants. Dans le cas des résultats déjà publiés, le numéro de l’article
correspondant dans la liste ci-dessus est rappelé.

L’histoire des quasicristaux en abrégé et leur modèles mathématiques les plus employés sont
décrits dans le premier chapitre. Les systèmes de numération aux bases non-entières sont alors
introduits. Finalement, le rôle des β-entiers comme modèles des quasicristaux unidimensionnels
de même que comme coordonnées de modèles multidimensionnels – β-réseaux – est mis en
évidence.

Le chapitre 2 est préliminaire et inclut toutes les définitions fondamentales concernant les
domaines de β-numération et de combinatoire des mots infinis. D’une importance particulière est
le codage par lettres des β-entiers non-négatifs qui ne possèdent qu’un nombre fini de distances
entre leurs éléments consécutifs. Un tel nombre β est appelé nombre de Parry et les mots infinis
associés aux nombres de Parry sont notés uβ. Les résultats concernant la combinatoire des mots
uβ peuvent être reformulés en termes de β-entiers: le nombre de configurations locales de Zβ
est décrit par l’intermédiare de la complexité de uβ, le nombre de configurations locales stables
sous la symétrie miroir est lié à la complexité palindromique de uβ, les densités de configurations
locales dans l’espace total sont en relation avec les fréquences des facteurs de uβ.

Le chapitre 3 concerne la complexité des facteurs d’un mot infini qui indique le nombre
de facteurs de chaque longueur contenus dans le mot infini en question. Nous fournissons un
sommaire de résultats sur la complexité de certains mots infinis et de certaines classes de mots
infinis – le mot de Thue-Morse, le mot associé à la suite dite doublement de période, le mot
de Rote, un mot pauvre en palindromes stable sous la symétrie miroir, les mots infinis associés
aux nombres de Parry simples et non-simples. Cet échantillon nous servira dans les chapitres
suivants d’illustration des propriétés étudiées. Un nouveau résultat est la dérivation de la
complexité du mot uβ associé aux nombres de Parry quadratiques non-simples (I).

Dans le chapitre 4, nous traitons un autre type de complexité – la complexité palindromique
– qui décrit combien un mot infini est riche en palindromes de chaque longueur. Nous rappelons
la complexité palindromique des mots de notre échantillon illustratif. Nous déduisons une
nouvelle formule explicite de la complexité palindromique du mot uβ associé aux
nombres de Parry quadratiques non-simples (II).

Dans le chapitre 5, nous retournons à l’étude des palindromes. Une tâche intéressante est
de comparer deux mesures de variété de palindromes dans un mot infini: la complexité palin-
dromique – les mots dont la complexité palindromique est maximale sont appelés opulents en
palindromes – et le degré de saturation de préfixes d’un mot infini en palindromes – un mot infini
est dit plein si tous ses préfixes contiennent le nombre maximal de palindromes. Un résultat
récent [25] établit que les deux notions – opulent en palindromes et plein – cöıncident pour
les mots infinis uniformément récurrents. Nous présentons une nouvelle démonstration,
courte et élégante, d’un résultat légèrement plus puissant – l’équivalence entre
plénitude et opulence pour les mots infinis dont le langage est stable sous la symétrie
miroir.

Le chapitre 6 est consacré à l’étude des mots de retour dans les mots infinis – un mot de
retour d’un facteur est chaque mot lu entre des occurrences consécutives de ce facteur dans
le mot infini en question. L’étude des mots de retour est entamée par une description de
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quelques idées simples qui facilitent la tâche. Comme application pratique de ces règles
utiles, nous déterminons les mots de retour de facteur de quelques mots infinis dans
notre échantillon illustratif. On donne ensuite la caractérisation des mots infinis ayant
un nombre constant de mots de retour de chaque facteur (III). Le dernier sujet lié
aux mots de retour est l’étude de la fonction de récurrence qui associe à chaque n la longueur
minimale R(n), à condition qu’elle existe, telle que chaque segment de longueur R(n) du mot
infini en question contient tous les facteurs de longueur n. Nous dérivons la fonction de
récurrence du mot uβ associé aux nombres de Parry quadratiques non-simples (IV).

Le chapitre 7 se concentre sur les fréquences des facteurs d’un mot infini. Il illustre la
puissance de visualisation offerte par les graphes de Rauzy. A l’aide des graphes de Rauzy,
nous obtenons pour les mots infinis dont le langage est stable sous la symétrie
miroir, ou, eventuellement, sous une autre symétrie, une borne optimale pour le
nombre de fréquences des facteurs en termes de la complexité des facteurs. (V).
Nous montrons la précision de cette borne sur plusieurs classes de mots infinis. De plus, nous
proposons une méthode basée sur un examen attentif de l’évolution des graphes de Rauzy qui
permet de décrire l’ensemble des fréquences des facteurs pour chaque longueur. Cette méthode
fournit une description explicite tandis que les méthodes précédentes ne donnent que des for-
mules récurrentes. Comme illustration, nous dérivons les fréquences des facteurs du mot
uβ associé aux nombres de Parry quadratiques non-simples et du mot pauvre en
palindromes stable sous la symétrie miroir.

Dans le chapitre 8, nous examinons la notion presque inexplorée d’équilibre. Un mot infini sur
l’alphabet {a, b} est appelé c-équilibré si, pour chaque paire de ses facteurs de même longueur,
le nombre de lettres a contenus dans ces facteurs diffère au plus de c. Nous trouvons la
borne optimale à c telle que le mot uβ associé aux nombres de Parry quadratiques
non-simples (VI) est c-équilibré.

Le chapitre 9 est un passage en douceur entre la combinatoire des mots infinis et l’arithmétique.
Le chapitre poursuit deux buts. Premièrement, nous déterminons le nombre maximal
L⊕(β) de positions β-fractionnaires, dans la cas où β est un nombre de Parry quadra-
tique non-simple, qui peut apparâıtre à la suite de l’addition de deux β-entiers, à condition que
la β-expansion de la somme soit finie. Deuxièmement, nous soulignons comment l’arithmétique
peut servir à la combinatoire et vice versa. Particulièrement, nous mettons en évidence la
proximité de l’équilibre et des bornes supérieure et inférieure de L⊕(β) pour le mot
uβ associé aux nombres de Parry quadratiques non-simples (VI).

Le chapitre 10 offre aussi une transition en douceur, cette fois entre les mathématiques et
la physique. En vue de la distribution quasipériodique des β-entiers sur la droite réelle, il est
naturel de chercher jusqu’à quel point les ensembles Zβ = {bn | n ∈ Z} et Z se ressemblent,
par rapport à la nature de β. Les nombre de Parry produisent des β-entiers qui ne possèdent
qu’un nombre fini de distances entre les éléments consecutifs et alors apparâıssent comme les
plus comparables aux entiers. Nous déduisons une formule simple pour la constante cβ
telle que bn ∼ cβn dans le cas d’un nombre de Parry β. De plus, nous montrons pour
une classe de nombres de Pisot que la séquence (bn − cβn) est bornée (VII).

Le chapitre 11 est dédié aux opérateurs de Schrödinger avec potentiels apériodiques. Les
notions nécessaires de l’analyse fonctionnelle sont récapitulées dans l’appendice A. Nous rap-
pelons un concept extensivement étudié – les opérateurs de Schrödinger discrets avec potentiels
provenant des mots apériodiques. Combinant plusieurs méthodes fondées sur les propriétés com-
binatoires, nous caractérisons les nombres de Parry β pour lesquels l’opérateur de Schrödinger
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dont le potentiel est généré par uβ a un spectre purement singulier continu. Dans de tels cas, le
mot infini uβ sert de modèle convenable pour le potentiel dans un matériau quasicristallin.

Dans le chapitre 12, nous étudions la diffraction sur les quasicristaux. La base mathématique
est résumée dans l’appendice B. Nous posons la question suivante: “Pour quels β l’ensemble
Zβ, sert-il de modèle unidimensionnel convenable pour les quasicristaux?” Reliant les résultats
de divers articles, nous répondons à cette question partiellement. Finalement, nous indiqueons
comment les résultats du chapitre 10 concernant le comportement asymptotique peuvent aider
à décrire le spectrum de diffraction de Zβ.
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Chapter 1

Introduction

1.1 Quasicrystals – a surprise for crystallographers

Crystals have been admired for their perfect geometrical forms for ages. The observed regular
external form made the 19th century savants postulate a regular internal structure generated by
a simple repetition of a single motive. Crystals, or ordered solids, were then understood as being
periodic arrangements of atoms. In the language of mathematics, an ideal crystal is defined as
a finite union of translated copies of the same lattice. Given an arbitrary basis (x1, x2, ..., xd) in
Rd, the set L ⊂ Rd of all integer combinations of the given system, i.e., defined by

L =
{ d∑

i=1

aixi
∣∣ ai ∈ Z for all i ∈ {1, 2, ..., d}

}
,

is called a lattice in Rd with basis (x1, x2, ..., xd). Besides translational symmetry, another ob-
served remarkable property of crystals is their rotational symmetry. However, lattice theory
implies that any periodic planar (2-dimensional) or space (3-dimensional) structure admits neit-
her rotational symmetries of order greater than 6 nor 5-fold rotational symmetry.
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Fig. 1.1: (a) The rotation angle cannot be less than π/3. (b) The rotation angle cannot be 2π/5.

Let us assume that there exists a planar set that is equal to a finite union of translated copies
of the same lattice and that is invariant under N -fold rotation. There is obviously a minimal
distance between its points – rotation centers. Let x and y be rotation centers such that their
distance is minimal, say d = |x−y|. The counterclockwise rotation through 2π/N radians about
x carries y to another rotation center y′ so that |y− y′| ≥ d. This is possible only if N ≤ 6. (See
Figure 1.1 (a).) If N = 5, then |y−y′| > d, but another problem arises. Since y is also a rotation
center, the clockwise rotation about this point must carry x to another rotation center x′. But
|x′ − y′| < d. (See Figure 1.1 (b).) The same argument is valid in 3-dimensional space since
every rotation is a rotation of a plane about an orthogonal axis.
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As a by-product of the previous explication, we conclude that any uniformly discrete planar
set cannot have more than one center of N -fold rotational symmetry with N = 5 or N > 6.

Systematic studies on crystalline materials started at the beginning of the 19th century and
achieved classification of crystals into 32 symmetry classes with respect to external symmetries
(Hessel, 1830), 14 fundamental space lattices (Bravais, 1850), and 230 space groups – symmet-
rical possibilities of point configurations in the space so that their neighborhoods are identical
(Fedorov, Schoenflies, 1891). A new experimental tool – X-rays – provided by Röntgen in 1895,
together with the discovery of diffraction of X-rays by crystals due to an experiment by von Laue
in 1912, caused a breakthrough in the study of crystals and gave birth to solid state physics.
Until the 80’s, crystallographers believed that translational symmetry (periodic internal confi-
guration) is a synonym of a diffraction image consisting of sharp bright spots, also called Bragg
peaks.

In 1984, crystallographers were stunned by the discovery of “a metallic phase with long-
range orientational order and no translational symmetry” announced by Shechtman et al. [102],
where long-range orientational order is such an order of an atomic configuration that produces
a diffraction image consisting of Bragg peaks. The material in question was an alloy of aluminium
and manganese, produced from a melt by a rapid cooling technique. Its diffraction image was
characterized by

• a diffraction pattern like a dense constellation of more-or-less bright Bragg peaks, which
is an indication of long-range orientational order,

• a spatial organization of Bragg peaks obeying 5- or 10-fold rotational symmetries, at least
locally, which indicates a sort of icosahedral organization in real space with an axis of
5-fold rotational symmetry (incompatible with periodicity!),

• a spatial organization of Bragg peaks obeying specific scale invariance, more precisely,
self-similar with a factor equal to some power of the so-called golden mean or golden ratio

τ which is the larger root of the equation x2 − x− 1 = 0, i.e., τ = 1+
√

2
5 , and is manifestly

consistent with 5-fold and 10-fold rotational symmetry since τ = 2cos 2π
10 .

In other words, Shechtman’s discovery shows that periodicity is not synonymous with long-
range order. This phenomenon was soon reproduced in many laboratories and it became clear
that aperiodic crystals are not rare, but, on the contrary, widespread.

Such materials were baptized quasicrystals. Since a meaningful definition of a crystal should
comprise quasicrystals as a particular case, the definition based on periodicity was not any longer
sufficient. The International Union of Crystallography adopted in 1992 the following definition
of a crystal. A crystal is any structure possessing long-range order, i.e., whose atomic configu-
ration produces a diffraction image consisting of Bragg peaks. Up to now, there is no generally
accepted definition of a crystal, respectively a quasicrystal, which would satisfy a mathemati-
cian. For a nice review on the history of crystallography consult Senechal [101].

1.2 Mathematical models of quasicrystals

The only broadly acknowledged concept of a set modeling atomic positions in any matter is
a Delone set. A set Λ ⊂ Rd is called Delone if it satisfies two conditions:
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Uniform discreteness

There exists r > 0 such that |x − y| > r for any x, y ∈ Λ, x 6= y. This condition assures
that Λ has no accumulation points.

Relative density

There exists R > 0 such that any ball B(x,R) of radius R centered at the point x fulfils
B(x,R)∩Λ 6= ∅ for any x ∈ Rd. This condition means that Λ does not contain unbounded
gaps.

Delone sets may serve as models for a broad range of structures, from highly amorphous to highly
symmetrical. Consequently, additional conditions are imposed on the Delone sets intended for
modeling crystals. Thanks to the simplicity of its definition and the richness of structures it
provides, Meyer set introduced by Meyer in [87] is a natural concept of crystalline models. It
imposes geometrical restrictions on interatomic positions. We say that a Delone set Λ ⊂ Rd is
Meyer if there exists a finite set F ⊂ Rd such that

Λ − Λ ⊂ Λ + F.

Lagarias in [75] proved that a Meyer set Λ can be equivalently defined as a Delone set satisfying
that the set of all relative positions of its points, i.e., Λ − Λ, is also a Delone set. It is readily
seen that any lattice L in Rd is a Meyer set since L − L ⊂ L. An ideal crystal Λ is likewise
a Meyer set since if Λ = L+ S, where S is a finite set of translations, then Λ − Λ ⊂ Λ − S. In
other words, a Meyer set is a generalization of an ideal crystal.

Let us mention other physically reasonable conditions usually required from a Delone set Λ
modeling a crystal.

Finite local complexity

It follows from a minimum energy argument that the number of various neighborhoods
of points (atoms) in a Delone set must be finite. This requirement is formalized in the
notion of finite local complexity: For every fixed radius r, the number of configurations of
points from Λ contained in any ball of radius r is finite, i.e., #(Λ − Λ) ∩ B(0, r) < ∞.
Remark that as an immediate consequence of the definition, every Meyer set has finite
local complexity.

Repetitivity

Another logic requirement on the model of a crystal is that every configuration of points
repeats in the modeling set infinitely many times. It refers to repetitivity: Every finite
configuration of points in Λ occurs in Λ infinitely many times, and, moreover, points of
occurrences of this configuration form themselves a Delone set.

Self-similarity

A set Λ is self-similar if βΛ ⊂ Λ for some scaling factor β ∈ R. Lattices are self-similar for
every integer scaling factor. All up to now observed quasicrystals have been self-similar for
an irrational scaling factor. More precisely, the involved irrationals related to the so-far
observed crystallographically forbidden rotational symmetries are the following cyclotomic
algebraic integers:

• τ = 1+
√

5
2 = 2cos 2π

10 , τ
2 = 3+

√
5

2 = 1 + 2 cos 2π
10 (5- and 10-fold rotational symmetry),

• 1 +
√

2 = 2 cos 2π
8 (8-fold rotational symmetry),
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• 2 +
√

3 = 2 cos 2π
12 (12-fold rotational symmetry).

All these self-similarity factors are unitary Pisot numbers, i.e., algebraic integers larger
than 1 all of whose conjugates are in modulus less than 1.

If a Meyer set is self-similar, then every its self-similarity factor must be a Pisot or a Salem
number [75] (an algebraic integer > 1 all of whose conjugates are in modulus ≤ 1 and at
least one of them has modulus equal to 1).

Fig. 1.2: Illustration of Penrose tiling.

The first model of quasicrystals – Penrose tiling – was known already a decade before the
discovery of quasicrystals. It is an aperiodic tiling – filing without gaps and overlaps the whole
plane – whose vertices form a repetitive Meyer set with patterns of any size obeying 10-fold
rotational symmetry and whose diffraction image is made of Bragg peaks and exhibits global
10-fold rotational symmetry. In its simplest form, as illustrated in Figure 1.2, it consists of 36-
and 72-degree rhombi, say A and B, with “matching rules” forcing the rhombi to line up against
each other only in certain patterns. Penrose tiling is closely related to the golden mean τ . Not
only τ2 is its self-similarity factor, but τ also equals to the ratio of the area of B to the area of
A and to the ratio of their frequencies of occurrences.

1.3 Cut-and-project sets

A rich class of Meyer sets can be obtained by the so-called cut-and-project method. Roughly
speaking, one projects points of a higher dimensional lattice to a lower dimensional subspace and
then chooses projections which have their projection to the complementary subspace in a given
bounded region. The obtained set is called cut-and-project set; it was originally introduced by
Meyer [88] under the name model set.

Before providing a general definition, let us mention a one-dimensional example of a cut-and-
project set which is usually presented as a toy geometrical model of quasicrystals, introduced
by Levine and Steinhardt in [82]. Consider a semi-open stripe B obtained by translating the
unit square through the square lattice Z2 along the straight line V1 of slope 1

τ
. V1 is referred

to as the physical space. Then project on V1, along a straight line V2 perpendicular to V1, the
lattice points lying in B. Note that the latter points belong to a unique path made of horizontal
segments (their projection is denoted by A and its length is τ√

τ2+1
) and vertical segments (their

projection is denoted by B and its length is 1√
τ2+1

). The resulting both-sided sequence of points

lying in V1 form a Fibonacci cut-and-project set, which is made of the projected paths and reads:
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Fig. 1.3: Construction of a Fibonacci C&P set.

. . . BAABABAABA . . . . Note that a short link B is never adjacent to another B whereas two
adjacent long links A can occur. V2 is called the internal space, and B ∩ V2 is the acceptance
window or the atomic surface. The construction is illustrated in Figure 1.3.

The same Fibonacci cut-and-project set may be obtained through a purely algebraic proce-
dure. Let us first consider the so-called extension ring of the algebraic integer τ

Z[τ ] = {m+ nτ | m,n ∈ Z} = Z + Zτ.

Z[τ ] can be obtained as the projection onto V1 along V2 of the whole square lattice Z2, provided
the set of projected points is multiplied by the scaling factor

√
τ2 + 1. There exists in this type

of a ring an algebraic conjugation, called Galois automorphism, and defined by

x = m+ nτ → x′ = m+ nτ ′,

where τ ′ = −1
τ

= 1−
√

5
2 is the other root of the golden mean equation x2 − x − 1 = 0. Then

define the point set Σ(Ω) using an internal sieving rule in the ring Z[τ ] itself

Σ(Ω) = {m+ nτ ∈ Z[τ ] | x′ = m− n 1
τ
∈ Ω}.

The Fibonacci cut-and-project set constructed previously is precisely the set Σ(Ω) with Ω =
[−τ, 0) rescaled by 1√

1+τ2
.

Let us provide the promised more general definition of a cut-and-project set. Let V1, V2 be
proper subspaces of Rd such that V1 ⊕ V2 = Rd. Let π1 : Rd → V1 be the projector onto V1

along V2 and π2 : Rd → V2 the projector onto V2 along V1. Keeping this notation, we have the
following definitions.

A cut-and-project scheme is a triplet (V1, V2, L), where L is a lattice in Rd and L is required to
be in a general position; that is, the restriction π1 to L is an injection and π2(L) is dense in V2.
The situation is depicted below.
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Rd�V1

- V2
π1 π2

Let (V1, V2, L) be a cut-and-project scheme and let Ω ⊂ V2 such that Ω is bounded, Ω◦ 6= ∅, and
Ω◦ = Ω. Then the set

Σ(Ω) := {π1(x) | x ∈ L, π2(x) ∈ Ω}
is called a cut-and-project set (in the sequel referred to as C&P set) with the acceptance win-
dow Ω. The space V1 is usually called the physical space and V2 the internal space.

Cut-and-project sets are aperiodic Meyer sets, and, under an additional condition that the
boundary of the acceptance window has an empty intersection with π2(L), the set Σ(Ω) is
repetitive. In addition, if Λ is a Meyer set, then there exist a C&P set Σ(Ω) and a finite set F
such that Λ ⊂ Σ(Ω) + F (proved by Lagarias in [76]).

A nice example of a C&P scheme providing a rich class of C&P sets with 5-fold rotational
symmetry has been introduced by Moody and Patera in [89]. The lattice L, known under
the notation A4, is a subset of R4 (it is known that 4 is the minimal dimension of a space
containing a lattice with 5-fold rotational symmetry). The orientation of the basis lattice vectors
is characterized by the so-called coxeter graph, plotted below.

A4 ≡ α1 α2 α3 α4

If the vertices αi and αj are connected with an edge, then the 4-dimensional vectors αi
and αj form an angle of π/3, otherwise, they are orthogonal. Both the physical space V1 and
the internal space V2 are 2-dimensional and they are chosen so that the C&P set has 10-fold
rotational symmetry if and only if the acceptance window Ω exhibits 10-fold rotational symmetry.
In Figure 1.4, the corresponding C&P set for a circular window Ω is illustrated.

Fig. 1.4: A planar C&P set with 10-fold rotational symmetry.

De Bruijn proved that Penrose tilings may be obtained as two-dimensional projections from
a five-dimensional cubic lattice.

Hereafter, we restrict ourselves to one-dimensional models of quasicrystals. It is evidently
pointless to speak about rotational symmetries - that led to the discovery of quasicrystals - on
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one-dimensional structures. Nevertheless, every C&P set is a union of one-dimensional C&P
sets. In fact, every straight line containing at least two points of a higher-dimensional C&P set
contains infinitely many of them, and they form a one-dimensional C&P set. This fact justifies
the importance of one-dimensional models.

Self-similarity is well understood for one-dimensional C&P sets. A one-dimensional C&P
sequence Σǫ,η(Ω) = {m + nη ∈ Z[η] | x′ = m + nǫ ∈ Ω} is self-similar if and only if ǫ is
a quadratic algebraic number, η is its conjugate, and the closure Ω of Ω contains the origin;
moreover, if β is a self-similar factor of Σǫ,ǫ′(Ω), then β is a quadratic Pisot number in Q[ǫ], as
shown by Gazeau, Masáková, and Pelantová in [61].

Moreover, one-dimensional C&P sets have only two or three distinct distances between neigh-
boring points. Thus, if we associate with different distances different letters, we obtain an ape-
riodic both-sided infinite word over a 2- or 3-letter alphabet. The infinite word matching with
the Fibonacci C&P sequence is illustrated in Figure 1.3, provided the letter A is identified with
the distance A = τ√

1+τ2
and the letter B with the distance B = 1√

1+τ2
.

A great number of properties of one-dimensional C&P sets depend only on the associated
infinite word, say u, and not on the distances between neighbors – the number of local configu-
rations of atoms is described by the factor complexity of u, the number of mirror symmetrical
local configurations is linked with the palindromic complexity of u, the repetitions of local confi-
gurations are in relation with the return words of factors of u, an equable distribution of atoms is
pertinent to the balance property of u, or the densities of local configurations in the whole one-
dimensional space are related to the factor frequencies in u. In addition, under some very general
condition [61], an infinite both-sided word corresponding to a self-similar C&P set may be easily
generated, namely it is a fixed point of a nontrivial morphism, or it is a letter-to-letter image
of such a fixed point. Hence, combinatorics on words deepens the insight into one-dimensional
aperiodic structures.

1.4 Beta-integers and beta-lattices

In this thesis, as the title prompts, the main focus is consecrated to β-integers, another one-
dimensional structure modeling, under certain additional conditions, quasicrystals. Let us briefly
explain where this interesting structure comes from.

The need of an efficient manipulation of real numbers in computers has incited an extensive
study of various numeration systems. Roughly speaking, numeration systems are algorithmic
ways of coding numbers, usually with a finite number of symbols. In the particular case of
positional numeration systems, numbers are represented by means of an ordered set of symbols
where the value of a symbol depends on its position.

Preponderant positional numeration systems are those ones with an integer base q > 1.
Provided no representation ends in (q − 1)ω, every non-negative real number x can be uniquely
expressed in such a system as

x =

k∑

i=−∞
aiq

i with ai ∈ {0, 1, . . . , q − 1}.

The principle role in our every-day life plays the decimal numeration system (base 10), the
historical reason being obvious – we have 10 fingers. Computers are based on the binary nu-
meration system (base 2), and the way we measure time and angles is probably a reminder of
the Babylonian sexagesimal system (base 60).

In order to describe β-integers, we need to generalize the positional numeration system
with an integer base – we allow any real number β > 1 to be the base of the numeration
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system in question. Such a generalized numeration system was introduced and studied by
Rényi [98] who showed that any real non-negative number may be represented in the base β
with integer coefficients belonging to the interval [0, β). A particular representation – the β-
expansion – is obtained using the so-called greedy algorithm. As every suitable generalization,
such a numeration system coincides with an integer base numeration system for β being an
integer. Nevertheless, for a non-integer base β, the numeration system changes dramatically
and new phenomena appear.

The first remarkable difference is that there might exist several representations of a number
over the same set of coefficients. As indicated already by the adjective greedy describing the
algorithm, the β-expansion is the greatest one among all representations of the same number in
the base β with respect to the radix order.

Natural questions to ask are:
“Do we get, adding two numbers with a finite β-expansion, again a number with a finite β-
expansion?” “If yes, how long may be the β-fractional part of the sum?”

If, for a fixed β, the response to the first question is affirmative, we say that the base β satisfies
the finiteness property. An algebraic description of numbers fulfilling the finiteness property is an
unsolved problem. It is however known, thanks to Frougny and Solomyak [56], that β satisfying
this property is necessarily a Pisot number, which points out again the importance of this class
of algebraic numbers.

An analogous role in numeration systems with irrational bases as integers play in numeration
systems with integer bases is played by the set Zβ of real numbers which are polynomial in β
when expanded in the base β, baptized β-integers. Of course, they coincide with integers,
Zβ = Z, for β ∈ N. The situation changes significantly if β 6∈ N. In this case, the set Zβ
is not equidistant any more and it conserves only partially properties of integers: Zβ has no
accumulation points, the distances between consecutive elements of Zβ are bounded, Zβ is self-
similar with self-similarity factor β, and not invariant under translation. For β being a Pisot
number, Zβ forms a Meyer set (proved by Burd́ık et al. in [26]).

It is possible to define more dimensional structures based on Zβ. A beta-lattice Λβ ⊂ Rd

based on Zβ is defined in the following way

Λβ =
{ d∑

i=1

aixi | ai ∈ Zβ for all i ∈ {1, 2, . . . , d}
}
,

where (x1, x2, . . . , xd) is a basis of Rd. An illustration of a two-dimensional τ -lattice is provided
in Figure 1.5. Beta-lattices form a subset of a more general frame of quasilattices

Λβ ⊂
{ d∑

i=1

aixi | ai ∈ Z[β] for all i ∈ {1, 2, . . . , d}
}
.

Pisot cyclotomic quasilattices, i.e., based on a Pisot number β lying in the ring Z[ρ] generated
by a cyclotomic number ρ = 2cos 2π

n
, are particularly convenient to work with because they

inherit the corresponding rotational symmetries. If β is a Pisot number, then not only Zβ is
a Meyer set, but also the associated β-lattice Λβ forms a Meyer set.

β-lattices Λβ are self-similar sets with self-similarity factor β and Zβ is exactly the counting
system with origin, i.e., the numerical frame in which we should think about structural properties
of Λβ , the same as the first crystallographers did with lattices and ordinary integers. As a matter
of fact, the sets Zβ are natural candidates for labeling quasicrystalline nodes in 1, 2, and 3
dimensions, and also the Bragg peaks in related diffraction patterns (see Figure 1.5).
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Fig. 1.5: Illustration of a τ -lattice in R2 with base
(
(1, 0), (cos π5 , sin

π
5 )
)
, labeling a two-

dimensional quasicrystal.

Besides the above presented application of β-integers in the theory of quasicrystals, the
necessity, or, at least, the opportunity to use this interesting alternative of ordinary integers
appears in several other fields.

Aperiodicity of Zβ may be for instance used for improving the properties of random num-
ber generators, studied by Guimond et al. in [64]. The usual numerical generation raises the
standard problems of finite computer precision. The possibility to generate β-integers, for a par-
ticular class of β, using substitutions circumvents such difficulties; the set is then generated with
absolute precision by a symbolic method.

Another domain of application is non-standard wavelet analysis making use of self-similarity
of Zβ (developed by Anderle and El-Kharrat in [5]).

A large number of mathematical physicists are interested in discrete Schrödinger operators
with aperiodic potentials. Such potentials may be modeled by infinite words coding Zβ.

9



Chapter 2

Preliminaries

This chapter includes all underlying definitions from the field of β-numeration. The fundamental
notion of β-integers is introduced, basic arithmetical and geometrical properties of the set Zβ of
β-integers are summarized, and, with fundamentals from combinatorics on words at hand, Zβ
having only a finite number of distances between neighboring points (in this case, β is called
a Parry number) is coded by infinite words uβ and elementary combinatorial properties of these
words are resumed. In the background of combinatorics on words, we provide definitions of all
characteristics we intend to study in the sequel. Last but not least, the preliminary chapter
describes Sturmian words. These words deserve attention since it was the Fibonacci word,
a notorious word belonging to this class, that served as a first and so far most studied one-
dimensional model of quasicrystals. In addition, thanks to their minimal complexity among
aperiodic words, Sturmian words are “uncrowned kings of the realm of combinatorics on words”
– every phenomenon is usually first studied for them. We keep in the following chapters this
tradition; we sum up first what is known in the case of Sturmian words for every investigated
combinatorial characteristics.

We denote in what follows the set of complex numbers by C, of real numbers by R, of rational
numbers by Q, of integers by Z, of positive integers by N, and of non-negative integers by N0.

2.1 Beta-numeration and beta-integers

We present elementary notions related to β-numeration. For more details consult Chapter 7 in
the Lothaire book [84] as well as references therein.

2.1.1 Beta-representation

Let β > 1 and x ≥ 0 be real numbers. Any convergent series of the form

x =

k∑

i=−∞
xiβ

i,

where xi ∈ N0 and xk 6= 0, is called a β-representation of x. Just as it is usual for the decimal
numeration system, we denote the β-representation of x by

xkxk−1 · · · x0 • x−1 · · · if k ≥ 0,

and
0 • 0 · · · 0︸ ︷︷ ︸
(−1−k) times

xkxk−1 · · · otherwise.
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If a β-representation ends in infinitely many zeroes, it is said to be finite and the ending zeroes
are omitted. The most usual base β for representations of real numbers is the integer base.
It is well-known that, in this case, every x ≥ 0 has a β-representation. If we admit only
{0, 1, . . . , β − 1} as the set of coefficients and if we avoid the suffix (β − 1)ω , where ω signifies
an infinite repetition, then there exists a unique β-representation of every x; it is called the
standard β-representation. For β = 10, it is the usual decimal representation, and, for β = 2,
the binary representation. Even if β is not an integer, every positive number x has at least one
β-representation. This representation can be obtained by the following greedy algorithm:

1. Find k ∈ Z such that βk ≤ x < βk+1 and put xk := ⌊ x
βk ⌋ and rk := { x

βk }, where ⌊x⌋
denotes the lower integer part and {x} = x− ⌊x⌋ denotes the fractional part of x.

2. For i < k, put xi := ⌊βri+1⌋ and ri := {βri+1}.

2.1.2 Beta-expansion

The representation of a positive number x in a base β obtained by the greedy algorithm is
called the β-expansion of x and the coefficients of the β-expansion clearly satisfy: xk 6= 0 and
xi ∈ N0 ∩ [0, β) for all i ≤ k. We use the notation 〈x〉β for the β-expansion of x. For β
being an integer, the β-expansion coincides with the standard β-representation. In order to
explain what makes the β-expansion special among many β-representations of every positive
real number, it is necessary to introduce the radix order on the set of β-representations. A β-
representation xk · · · x0•x−1 · · · is greater with respect to the radix order than a β-representation
yl · · · y0 • y−1 · · · if

1. either k > l,

2. or k = l and xj > yj for j = max{i ≤ k
∣∣ xi 6= yi}, in other words, xk · · · x0x−1 · · · is

lexicographically greater than yk · · · y0y−1 · · · .

The greedy algorithm implies that, among β-representations, the β-expansion is the largest
according to the radix order. Let us append that the radix order corresponds to the ordering
of real numbers: For all x, y ∈ [0,+∞), the inequality x < y holds if and only if 〈x〉β is smaller
than 〈y〉β according to the radix order.

Example 2.1.1. Let β be equal to the golden mean τ = 1+
√

5
2 , which has been brought to the

attention of the reader already in the introduction. We recall that τ is the larger root of the poly-
nomial x2−x−1. Applying the greedy algorithm, we get for instance the following τ -expansions:

〈
√

5−1
2 〉

τ
= 0 • 1, 〈3+

√
5

2 〉
τ

= 100•, 〈5+3
√

5
10 〉

τ
= 1 • (0001)ω · · · . Other τ -representations of 5+3

√
5

10
are for example 1 • 00(0011)ω or 0 • (1100)ω .

An immediate consequence of the definition of the β-expansion is the following equivalence:

〈x〉β = xk · · · x1x0 • x−1 · · · ⇔ 〈x
β
〉
β

= xk · · · x1 • x0x−1 · · ·

Accordingly, it suffices to restrict the considerations to the interval [0, 1) in order to determine
the β-expansions of all real non-negative numbers.
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2.1.3 Rényi expansion of unity

The β-expansion of numbers from the interval [0, 1) can be obtained by means of an extensively
studied transformation Tβ : [0, 1] → [0, 1) defined by

Tβ(x) = {βx}. (2.1)

It is easy to verify that for every x ∈ [0, 1), it holds 〈x〉β = 0 • x−1x−2 · · · if and only if

x−i = ⌊βT i−1
β (x)⌋. (2.2)

For x = 1, the formula from (2.2) does not provide the β-expansion of 1 for the simple fact that
〈1〉β = 1•, however, it defines a powerful tool – the Rényi expansion of unity (introduced by
Rényi in [98]). Let us slightly modify the notation of coefficients: we write ti instead of x−i.
The Rényi expansion of unity in a base β > 1 is then defined as

dβ(1) = t1t2t3 · · · , where ti := ⌊βT i−1
β (1)⌋. (2.3)

Every number β > 1 is characterized by its Rényi expansion of unity. Note that t1 = ⌊β⌋ ≥ 1.
Contrariwise, not every sequence of non-negative integers is equal to dβ(1) for some β. Parry
resolved this problem in his paper [92]: A sequence (ti)i≥1, ti ∈ N0, is the Rényi expansion of
unity for some number β > 1 if and only if it satisfies

tjtj+1tj+2 · · · ≺ t1t2t3 · · · for every j > 1, (2.4)

where ≺ stands for ‘strictly lexicographically smaller’. It follows, in particular, that the Rényi
expansion of unity is never purely periodic, i.e., dβ(1) is never of the form (t1t2 · · · tm)ω. Parry
has moreover shown that the Rényi expansion of unity enables us to decide whether a given
β-representation of x is its β-expansion or not. For this purpose, we define the infinite Rényi
expansion of unity (it is the largest infinite β-representation of 1 with respect to the radix order)
by

d∗β(1) =

{
dβ(1) if dβ(1) is infinite,
(t1t2 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm with tm 6= 0.

(2.5)

Proposition 2.1.2 (Parry condition). Let d∗β(1) be the infinite Rényi expansion of unity in

a base β > 1. Let
∑k

i=−∞ xiβ
i be a β-representation of a non-negative number x. Then∑k

i=−∞ xiβ
i is the β-expansion of x if and only if

xixi−1 · · · ≺ d∗β(1) for all i ≤ k. (2.6)

Example 2.1.3. For β = τ = 1+
√

5
2 , the Rényi expansion of unity is dτ (1) = 11. Then,

d∗τ (1) = (10)ω, and, according to the Parry condition, any sequence of coefficients in {0, 1},
which does not end in (10)ω and which does not contain the block 11, is the τ -expansion of
a non-negative real number.

2.1.4 Algebraic numbers: Pisot, Perron, Parry numbers

An algebraic number β is a root of a monic polynomial with rational coefficients. An algebraic
integer β is a root of a monic polynomial with integer coefficients. Among such polynomials,
the polynomial with the smallest degree n is called the minimal polynomial of β; the algebraic
number β is then said to be of order n. The other roots β(2), . . . , β(n) of the minimal polynomial
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are mutually distinct and are called conjugates of β. The minimal subfield of C containing β
and Q is

Q(β) = {a0 + a1β + · · · + an−1β
n−1 | ai ∈ Q}.

For any j ∈ {2, . . . , n}, the map σj : Q(β) → Q(β(j)), defined for any polynomial g with rational
coefficients by

σj(g(β)) = g(β(j)),

is an isomorphism. In the case of a quadratic algebraic number β, the conjugate of β is denoted
β′, and, instead of σ2(x), we write x′ for any x ∈ Q(β).

In the field of numeration, several classes of algebraic numbers are intensively studied. Let
us introduce them and reveal the relation among them.

According to the properties of its conjugates, an algebraic integer β > 1 is called:

• a Pisot number if all its conjugates have modulus less than one,

• a Perron number if all its conjugates have modulus less than β.

In the sequel, particular attention is paid to real numbers β > 1 having an eventually periodic
Rényi expansion of unity, i.e., dβ(1) = t1 . . . tm(tm+1 . . . tm+r)

ω for some m, r ∈ N0, called Parry
numbers. For every Parry number β, it is easy to recover, from the eventual periodicity of dβ(1),
a monic polynomial with integer coefficients having β as a root, i.e., β is an algebraic integer.
Let us point out that this so-called Parry polynomial is not necessarily the minimal polynomial
of β. Notice that if β is a Parry number and β 6∈ N, then β is necessarily irrational. (Rational
numbers are not algebraic integers.)

It is difficult to characterize Parry numbers in the language of algebraic number theory.
Only some partial results concerning algebraic characterization of Parry numbers are known, in
particular,

Pisot numbers ⊂ Parry numbers ⊂ Perron numbers,

where the first inclusion is proved in [18] and the second one in [84].

2.1.5 Definition of beta-integers

If x =
∑k

i=−∞ xiβ
i is the β-expansion of a non-negative number x, then

∑−1
i=−∞ xiβ

i is called
the β-fractional part of x. Let us list some important notions adherent to β-expansions:

• Non-negative numbers x with vanishing β-fractional part are called non-negative β-integers,
formally,

Z+
β := {x ≥ 0

∣∣ 〈x〉β = xkxk−1 · · · x0•}.

• The set of β-integers is then defined by

Zβ :=
(
−Z+

β

)
∪ Z+

β .

• All real numbers x such that the β-expansion of |x| is finite form the set Fin(β). Formally,

Fin(β) :=
⋃

n∈N0

1

βn
Zβ.

• For any x ∈ Fin(β), we denote by fpβ(x) the length of its fractional part, i.e.,

fpβ(x) = min{l ∈ N0

∣∣ βlx ∈ Zβ}.
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As already mentioned, the radix order on the set of β-representations corresponds to the natural
order on the set of non-negative real numbers. Consequently, there exists a strictly increasing
sequence (bn)

∞
n=0 such that

b0 = 0 and {bn
∣∣ n ∈ N0} = Z+

β . (2.7)

2.1.6 Arithmetical properties of beta-integers

If β is an integer, then, clearly, Zβ = Z, and, moreover, Zβ and Fin(β) are closed under addition
and multiplication. If β 6∈ N, then the sets Z and Zβ do not coincide any more and are very
different from the arithmetical point of view; in particular, Zβ is not closed under addition and
multiplication for any β 6∈ N.

Example 2.1.4. For every β > 1, ⌊β⌋ is a β-integer. However, if β 6∈ N, let us show that
⌊β⌋ + 1 is not a β-integer. Clearly, there exists k ∈ N such that βk < ⌊β⌋ + 1 < βk+1.
Since 1 > ⌊β⌋ + 1 − βk > 0, we find i ∈ N satisfying 〈⌊β⌋ + 1〉β = xk . . . x0 • x−1x−2 · · · =
10 . . . 0 • 0 . . . 0x−i . . . , where x−i 6= 0.

Even worse, for β 6∈ N, the set Fin(β) need not be closed under addition and multiplication,
neither. The characterization of those β for which this pathological situation does not appear
is so far an unsolved and probably very hard problem. Mathematically, one wants to describe
β for which the set Fin(β) is a subring of R. Frougny and Solomyak have shown in [56] that
a necessary condition for this so-called finiteness property is that β is a Pisot number. Some
sufficient conditions can be found in [2, 56, 68].

If the sum or the product of two β-integers has a finite β-expansion, one can naturally ask
how long the β-fractional part of the result is. The following notion is meaningful even for a base
β such that the sum of two β-integers does not have always a finite β-expansion.

• L⊕(β) := min{L ∈ N0

∣∣ x, y ∈ Zβ, x+ y ∈ Fin(β) =⇒ fpβ(x+ y) ≤ L}.

• L⊗(β) := min{L ∈ N0

∣∣ x, y ∈ Zβ, xy ∈ Fin(β) =⇒ fpβ(xy) ≤ L}.

If the argument of the minimum is an empty set, we set L⊕(β) := ∞ or L⊗(β) := ∞. The task
to determine the set of numbers β for which L⊕(β) and L⊗(β) are finite is still not fully solved.
Some important steps in this direction are the results (proved in [56], [65], respectively) stating
that L⊕(β) and L⊗(β) are finite for Pisot numbers β. More recently, Bernat in [13] improved
the previous results by showing that the sets L⊕(β) and L⊗(β) are finite for Perron numbers β.

2.1.7 Geometrical properties of beta-integers

Since Zβ = Z for β ∈ N, the distance between the neighboring elements of Zβ is always 1. The
situation changes dramatically if β 6∈ N. In this case, the number of different distances between
neighboring elements of Zβ is at least 2 and the set Zβ keeps only partially the resemblance to
Z:

1. Zβ has no accumulation points.

2. Zβ is relatively dense ; the distances between consecutive β-integers are bounded by 1.

3. Zβ is self-similar, by virtue of the inclusion βZβ ⊂ Zβ.

4. Zβ is not invariant under translation; in other words, Zβ is aperiodic.
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5. Zβ forms a Meyer set if β is a Pisot number, i.e., Zβ −Zβ ⊂ Zβ +F for a finite set F ⊂ R

(proved by Burd́ık et al. in [26]).

Thurston [105] has shown that distances between neighbors of Zβ form the set {∆k

∣∣ k ∈ N0},
where

∆k :=

∞∑

i=1

ti+k
βi

. (2.8)

It is evident that the set {∆k

∣∣ k ∈ N0} is finite if and only if dβ(1) is eventually periodic. If the
number of distances of neighbors in Zβ is finite, we can associate with every distance a letter.
Thus, we obtain an infinite word uβ coding Z+

β , as indicated in Example 2.1.5, and the study of
combinatorial properties of this word can be then interpreted in the framework of Zβ.

Example 2.1.5. Let dβ(1) = 31ω. It is a well defined Rényi expansion of unity. From the
equality 1 = 3

β
+
∑

i≥2
1
βi , we deduce that β = 2 +

√
2. According to the formula (2.8), we learn

that the distances between neighboring β-integers take two values: ∆0 = 1 and ∆1 = 1
β−1 =√

2− 1. Applying the Parry condition (2.6), we learn that the first fifteen smallest non-negative
β-integers and their β-expansions are the following:

〈0〉β = 0• 〈1〉β = 1• 〈2〉β = 2•
〈3〉β = 3• 〈2 +

√
2〉β = 10• 〈3 +

√
2〉β = 11•

〈4 +
√

2〉β = 12• 〈5 +
√

2〉β = 13• 〈4 + 2
√

2〉β = 20•
〈5 + 2

√
2〉β = 21• 〈6 + 2

√
2〉β = 22• 〈7 + 2

√
2〉β = 23•

〈6 + 3
√

2〉β = 30• 〈7 + 3
√

2〉β = 31• 〈6 + 4
√

2〉β = 100•

Associating ∆0 → 0 and ∆1 → 1, we get an infinite word uβ illustrated in Figure 2.1.

0 1 2
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2 +
√

2

3 +
√

2

4 +
√

2

5 +
√

2

4 + 2
√

2

5 + 2
√

2

6 + 2
√

2

7 + 2
√

2

6 + 3
√

2

7 + 3
√

2

6 + 4
√

2

?
0

?
0

?
0

?
1

?
0

?
0

?
0

?
1

?
0

?
0

?
0

?
1

?
0

?
1

uβ = 000100010001010001000100010100010001000101000101 . . .

Fig. 2.1: Illustration of the coding of distances in Zβ resulting in an infinite word uβ.

2.2 Combinatorics on words

We introduce here basic terms and all combinatorial characteristics we intend to study in the
following chapters. A comprehensive survey from various points of view – general, algebraic,
applied combinatorics on words – is provided in the Lothaire books [83], [84], [85].

2.2.1 Finite words

An alphabet A is a finite set of symbols, called letters. A finite sequence of letters forms a word.
Let us equip the set of all words A∗ over the alphabet A with a binary operation - concatenation
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– defined, for any two words, as

(w1, w2, . . . , wn)(v1, v2, . . . , vm) = (w1, w2, . . . , wn, v1, v2, . . . , vm).

Obviously, concatenation is an associative operation, we may thus use the notation w1w2 . . . wn
instead of (w1, w2, . . . , wn) for finite words. The empty sequence of letters, called the empty
word ε, plays the role of a neutral element in A∗. Consequently, A∗ equipped with the operation
of concatenation turns out to be a monoid. The length of a word w is the number of letters
contained in w and is denoted by |w|, while |w|a denotes the number of occurrences of a letter
a ∈ A in the word w. Therefore, |w| =

∑
a∈A |w|a. The length of the empty word is zero.

2.2.2 Infinite words

Analogously as in the case of finite words, we denote by AN0 the set of right-sided infinite words
over the alphabet A, i.e., sequences of letters of A indexed by non-negative integers, and by AZ

the set of both-sided infinite words over A, i.e., sequences of letters of A indexed by integers.
Concatenation is well defined also for wu, where w ∈ A∗ and u ∈ AN0 . The concatenation of k
words w ∈ A∗ is denoted by wk, the concatenation of infinitely many words w by wω. In the
sequel, we focus on right-sided infinite words u = u0u1u2.... We call them infinite words for
short, while both-sided infinite words are called biinfinite.

An essential notion in the context of infinite words is periodicity. An infinite word u is said
to be eventually periodic if there exist finite words v,w such that u = vwω. We call u purely
periodic if v = ε. An infinite word which is not eventually periodic is called aperiodic.

Let us introduce usual topology induced by the following metric on A∗ ∪ AN0. Let u, u′ be
two words (finite or infinite) in A∗ ∪ AN0, u 6= u′. If one of them is finite, take any symbol, say
△, which is not contained in the alphabet A, and extend the word by △ω to the right. If both
of the words u, u′ are finite, take two distinct symbols out of the alphabet A for their extension
to the right. Then the distance of u = u0u1 . . . and u′ = u′0u

′
1 . . . is defined by

d(u, u′) = (1 + inf{k ≥ 0
∣∣ uk 6= u′k})−1. (2.9)

We put d(u, u) = 0. Briefly speaking, two words are close to each other if they share a long
“prefix” (defined in the next section).

Example: For words u = (01)ω , u′ = 01010, u′′ = 01011, the distances are as follows

d(u, u′) =
1

6
, d(u, u′′) =

1

5
, d(u′, u′′) =

1

5
.

The space A∗ ∪AN0 equipped with the metric d is known to be a complete and compact metric
space (see [84]).

2.2.3 Language

From now on, if an infinite word u is defined over an alphabet A, then take it that every letter
from A occurs in u.

We are given a word u over an alphabet A. A finite word w is called a factor (or a subword)
of a word u (finite or infinite) if there exist a finite word w(1) and a word w(2) (finite or infinite)
such that u = w(1)ww(2). The factor w(1) is a prefix of u (a proper prefix if u 6= w(1)) and w(2)

is a suffix of u (a proper suffix if u 6= w(2)).
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In general, a language is any subset of A∗. The language L(u) (often denoted also F (u) in the
literature) of a word u (finite or infinite) over A is the set of all factors of u. Such languages are
factorial, i.e., L(u) contains with every element w also all factors of w. A remarkable property
of the languages of infinite words is that every factor is extendable to the right. In other words,
for every factor w, one can find at least one letter a ∈ A such that wa belongs to L(u). However,
there exist infinite words with prefixes not extendable to the left.

2.2.4 Recurrence

Infinite words whose every factor is extendable to the left are called recurrent. Let us mention
two other equivalent definitions of recurrence. An infinite word u is recurrent if each of its
factors occurs at least twice, or, equivalently, if each of its factors occurs infinitely many times
in u. An infinite word u is uniformly recurrent if for any n ∈ N, there exists R ∈ N such that
any subword of u of length R contains all factors of length n. Evidently, the number R depends
on n; the minimal such value is denoted R(n).

The language of a uniformly recurrent word u is minimal in a certain sense: If the language
of an infinite word v satisfies L(v) ⊂ L(u), then necessarily L(v) = L(u). In the theory of
dynamical systems, the uniform recurrence of an infinite word is equivalent with the minimality
of the associated dynamical system (consult Queffélec [95]).

A subclass of uniformly recurrent words is formed by linearly recurrent words. An infinite
uniformly recurrent word u is said to be linearly recurrent if there exists a positive constant K
such that R(n) ≤ Kn for every n ∈ N; u is then often called linearly recurrent with constant K.

2.2.5 Return words

Roughly speaking, for a given factor w of an infinite word u, a return word of w is any segment
between two successive occurrences of the factor w. A precise definition follows. Let w be
a factor of an infinite word u = u0u1u2 . . . . An integer j is called an occurrence of w in u if w is
a prefix of ujuj+1 . . . . Let j, k, j < k, be two successive occurrences of w. Then ujuj+1 . . . uk−1

is a return word of w. The set of all return words of w is denoted by Ret(w),

Ret(w) = {ujuj+1 . . . uk−1 | j, k being successive occurrences of w in u}. (2.10)

If v is a return word of w, then the word vw is called a complete return word of w.

Example: For the infinite word u = (010)ω , the sets of return words of letters are Ret(0) =
{0, 01}, Ret(1) = {100}, and any factor of length greater than 1 has only one return word.

A return word of a factor may be shorter than the factor itself, e.g., Ret(010010) = 010.

It is not difficult to see that an infinite recurrent word is uniformly recurrent if and only if the
set of return words of any of its factors is finite. If the infinite word u is moreover linearly
recurrent with constant K (defined in Section 2.2.4), then, for every factor w of u, the number
of return words of w fulfills #Ret(w) ≤ (K − 1)K2 (consult Durand [45]).

It is readily seen that infinite recurrent words are either purely periodic or aperiodic. The
number of return words of factors of a recurrent purely periodic word u can be easily determined.
If we denote its minimal period v, i.e., u = vω, then #Ret(w) = 1 for every w ∈ L(u) with
|w| ≥ |v|. Return words in aperiodic recurrent words is the object of our further study.
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2.2.6 Factor frequency

A natural question to ask is how often a factor w occurs in a given infinite word u. We say that
a number ρ(w) is the (factor) frequency of w (in u) if for every k ∈ N0, it holds

lim
n→∞

#{occurrences of w in uk . . . uk+n−1}
n

= ρ(w). (2.11)

Quite usual, however weaker, is the definition of factor frequency ρ(w) considering occurrences
of w exclusively in the prefixes of u. Durand in [46] has proved that factor frequencies of linearly
recurrent words exist.

It is easy to determine factor frequencies in purely periodic words. Let u = vω, where v is
chosen to be minimal. Then, clearly, for every n ≥ |v|, the set of frequencies of factors of length
n has only one element 1

|v| .

2.2.7 Balance property

To express the degree of variability in an infinite word u, the balance property serves as a suitable
tool; in particular, to measure the distribution of letters. We say that an infinite word u over
A is c-balanced, if for every a ∈ A and for every pair of factors w, ŵ of u of the same length
|w| = |ŵ|, we have ||w|a − |ŵ|a| ≤ c. Note that in the case of a binary alphabet, say A = {0, 1},
this condition may be rewritten in a simpler way: an infinite word u is c-balanced, if for every
pair of factors w, ŵ of u with |w| = |ŵ|, we have ||w|0 − |ŵ|0| ≤ c. We call 1-balanced words
simply balanced.

2.2.8 Factor complexity

Another measure of variability of local configurations in an infinite word u is provided by its
factor complexity. Let us denote by Ln(u) the set of factors of length n of the infinite word u.
Then, the factor complexity (or complexity) of u is a function Cu : N0 → N which associates to
every n the number of different factors of length n of the infinite word u, i.e.,

Cu(n) = #Ln(u). (2.12)

We often omit the index u and write C instead of Cu, provided no confusion is likely.
Let us stress a close link between periodicity and complexity. The complexity of eventually

periodic words is bounded (as shown by Hedlund and Morse [66]). On the other hand, if there
exists n ∈ N such that Cu(n) ≤ n, then the complexity is bounded and the infinite word u is
eventually periodic. In consequence, the complexity of aperiodic words satisfies C(n) ≥ n + 1
for all n ∈ N0. The aperiodic words with the lowest possible complexity (C(n) = n + 1 for
all n ∈ N0) are called Sturmian. These words are binary since C(1) = 2. Sturmian words are
important for many reasons. We devote them entirely Section 2.4.

2.2.9 Special factors

Let w be a factor of an infinite word u over A. We say that a ∈ A is a right extension of w in u
if wa belongs to L(u). We denote by Rext(w) the set of all right extensions of w in u, i.e.,

Rext(w) = {a ∈ A
∣∣ wa ∈ L(u)}. (2.13)

If #Rext(w) ≥ 2, then the factor w is called right special (RS for short). Analogously, we define
left extensions, Lext(w), left special factors (LS factors). Moreover, we say that a factor w is
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bispecial (BS) if w is LS and RS. Sometimes, we also call a factor special if it is LS or RS. Using
this notation, it is possible to express Ln+1(u) by means of factors of length n

Ln+1(u) =
⋃

w∈Ln(u)

{
wa
∣∣ a ∈ Rext(w)

}
=

⋃

w∈Ln(u)

{
aw
∣∣ a ∈ Lext(w)

}
. (2.14)

The following proposition presents a well-known formula due to Cassaigne [27] for the first
difference of complexity ∆C(n) = C(n+ 1)−C(n) of an infinite word u, based on the description
of RS, respectively LS factors of length n. It is a direct consequence of Equation (2.14).

Proposition 2.2.1. Let u be an infinite recurrent word, then, for all n ∈ N0, the first difference
of complexity has the following form

∆C(n) =
∑

w∈Ln(u) RS

(
#Rext(w) − 1

)
=

∑

w∈Ln(u) LS

(
#Lext(w) − 1

)
. (2.15)

Remark 2.2.2. If u is not a recurrent word, then there exists an integer n ∈ N such that
every prefix of u of length ≥ n occurs only once in u; we say that the prefix is unioccurrent.
Observing the extensibility of factors of u to the left, we see that each LS factor w contributes to
the complexity growth by #Lext(w) − 1, while the unioccurrent prefix decreases the complexity
by 1. To sum up, the following formula is valid

∆C(n) =
∑

w∈Ln(u) LS

(
#Lext(w) − 1

)
− #{v ∈ Ln(u)

∣∣ v is a unioccurrent prefix of u}.

2.2.10 Palindromes

The mirror map associates with every word w = w1w2 . . . wn ∈ A∗ its reversal w = wn . . . w2w1.
A palindrome is then a word which is invariant under this map. Evidently, not every word v is
a palindrome, nevertheless, any v is a prefix of a palindrome. The shortest such palindrome is
called the right palindromic closure of v and is denoted by v(+).

Example: (010)(+) = 010, (0100)(+) = 010010, (11110)(+) = 111101111.

In resemblance to the set Ln(u) of factors of length n and the factor complexity Cu(n) of an
infinite word u, let us denote by Paln(u) the set of palindromes of length n contained in u and
let us define the palindromic complexity of u as a function Pu : N0 → N0 associating to every n
the number of different palindromes of length n contained in the infinite word u, i.e.,

Pu(n) = #Paln(u). (2.16)

Similarly as for the factor complexity, we usually replace Pu by P for the palindromic complexity.
In case of uniformly recurrent words, only languages closed under reversal may have infinitely

many distinct palindromes. Formally, a language L(u) is closed under reversal, if for every factor,
also its reversal belongs to L(u).

Proposition 2.2.3. Let u be an infinite uniformly recurrent word. If the language L(u) contains,
for every N ∈ N, a palindrome of length n > N , then L(u) is closed under reversal.

Proof. For any factor w of the uniformly recurrent word u, any palindrome of length greater
than R(|w|) (defined in Section 2.2.4) contains w, and, consequently, contains also w.

The opposite implication is not true. Berstel et al. in [16] have constructed an infinite
uniformly recurrent word such that its language is closed under reversal, however, contains only
a finite number of palindromes. The precise definition and the description of its complexity can
be found in Section 3.3.5; this word occurs in several other chapters as an illustrating example
of the studied characteristics.
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2.2.11 Fullness

Besides the study of the palindromic complexity, another interesting problem is to determine the
number of palindromes in finite words. Droubay, Justin, and Pirillo have opened this question
in [43]. They proved the following proposition.

Proposition 2.2.4. For every finite word v, the number of different palindromes P (v) (including
the empty word) contained in v is at most |v| + 1.

Proof. Take an arbitrary palindrome v′ contained in v = v1 . . . vn and find its first occurrence k
in v. Then v′ is the longest palindromic suffix of v1 . . . vk+|v′|−1, otherwise k would not be the
first occurrence of v′ in v. Consequently,

P (v) = #{v′
∣∣ v′ is the longest palindromic suffix of v1 . . . vl, 1 ≤ l ≤ n} ≤ n+ 1. (2.17)

This result inspired the introduction and the study of the following notions. The difference
between |v|+1 and the number of palindromes in a word v is called the defect of v. Keeping the
terminology introduced by Brlek et al. in [23], we call a finite word v containing the maximal
possible number |v| + 1 of palindromes full.

Example: The word v = 01001010 is full since it contains 9 palindromes: ε, 0, 1, 00, 010, 101,
1001, 01010, 010010, while the word v′ = 11001011 is not full because the set of its palindromic

factors is {ε, 0, 1, 00, 11, 010, 101, 1001}, thus the defect of v′ is 1.

The notion of fullness of finite words may be generalized to infinite words. An infinite word is
called full if all its prefixes are full. (Glen et al. [62] use the term rich in palindromes, for both
finite and infinite full words). Let us remark that the set of full infinite words does not change
if, for the definition, we take into account all factors instead of prefixes; in [43], it is shown that
if an infinite word is full, then all its factors are full. Obviously, a full infinite word contains
infinitely many palindromes. According to Proposition 2.2.3, the language of a full uniformly
recurrent infinite word is closed under reversal.

The notion of defect may be generalized to infinite words. The defect D(u) of an infinite word
u is equal to the maximal defect of factors of u. In fact, this definition may be simplified observing
that if w is a factor of a word v, then D(w) ≤ D(v); thus D(u) = sup{D(w)|w is a prefix of u}.
With this notion, finite or infinite full words are exactly those ones with zero defects.

2.2.12 Rauzy graphs

Rauzy graphs and factor complexity

Rauzy graphs (also called factor graphs) represent a great visualizing tool for languages of infinite
words. The Rauzy graph Γn (of order n) of an infinite word u is a directed graph whose set of
vertices is Ln(u) and set of edges is Ln+1(u). An edge e = w0w1 . . . wn−1wn starts in the vertex
w = w0w1 . . . wn−1 and ends in the vertex v = w1 . . . wn−1wn, as illustrated in Figure 2.2.

In Figure 2.3, the Rauzy graphs of the lowest orders of a Sturmian word are represented.
It follows from the definition that the number of edges starting in a vertex w ∈ Ln(u) equals
#Rext(w) and the number of edges ending in w is equal to #Lext(w). If we sum up, for every
vertex, the number of all edges ending in this vertex, we obtain the total number of edges in Γn,
thus

C(n+ 1) = #Ln+1(u) =
∑

w∈Ln(u)

#Lext(w).
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w = w0w1 . . . wn−1 v = w1 . . . wn−1wne = w0w1 . . . wn−1wn

Fig. 2.2: Incidence relation between an edge and vertices in a Rauzy graph.

Subtracting C(n), i.e., the number of vertices in Γn, we get the formula for the first difference
of complexity, valid for both recurrent and non-recurrent infinite words,

∆C(n) =
∑

w∈Ln(u)

(#Lext(w) − 1).

It is obvious that the Rauzy graphs of an infinite word u are strongly connected if and only if
u is a recurrent word. (A directed graph is strongly connected if for every pair of vertices w, v,
there exists a directed path starting in w and ending in v.)

Γ1 1

0

Γ2

01 10

00

Γ3 101

010

100 001

Γ4 0101 1010

0010 0100

1001

Fig. 2.3: Illustration of the Rauzy graphs of order 1, 2, 3, and 4 of uβ coding β-integers Zβ for
β being the simplest possible quadratic non-simple Parry unit, i.e., dβ(1) = 21ω. For β being
a unit, uβ is known to be a Sturmian word. To construct the graphs, it is necessary to know
that L5(uβ) = {00100, 00101, 01001, 01010, 10010, 10100}.

Kirchhoff’s law in Rauzy graphs

Assume that the frequencies of all factors of u exist. We can label every edge e in the Rauzy graph
Γn of u by the frequency ρ(e). Such a graph is then called a labeled Rauzy graph. Frequencies
in a Rauzy graph obey a similar law as current in a circuit. It follows from the definition of
frequency that the frequency of a vertex w in Γn is equal to the sum of the frequencies of the
edges starting in w, or, by symmetry, to the sum of the frequencies of the edges ending in w.
Let us formalize this observation.

Lemma 2.2.5 (Kirchhoff’s law). Let w be a factor of an infinite word u, then

ρ(w) =
∑

a∈Lext(w)

ρ(aw) =
∑

a∈Rext(w)

ρ(wa).

Consequently, if we assume that each factor is extendable to the left, i.e., that u is recurrent,
then, for any factor w ∈ L(u) which is neither LS nor RS, both the frequency of the unique
edge starting in w and the frequency of the unique edge ending in w is equal to ρ(w). Formally
rewritten, this observation has the following reading.

Corollary 2.2.6. Let u be an infinite recurrent word and let w ∈ L(u) be neither LS nor RS.
Then ρ(w) = ρ(aw) = ρ(wb), where a stands for the unique left extension of w and b for its
unique right extension.
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Reduced Rauzy graphs

As already mentioned, recurrent words are either purely periodic or aperiodic. The factor
frequencies of purely periodic words have been described in Section 2.2.6. From now on, we
consider exclusively aperiodic recurrent infinite words.

Let us explain how labeled Rauzy graphs may be reduced in order to facilitate the study of
frequencies. Assume again that the infinite word u is recurrent and that the frequencies of all
factors of L(u) exist. Then the set of frequencies of factors in Ln+1(u) corresponds to the set of
edge labels in Γn.

A simple path f in Γn is a factor of u of length at least n+ 1 such that the only special (RS
or LS) factors of length n occurring in f are its prefix and its suffix of length n. If w is the
prefix of f of length n and v is the suffix of f of length n, we say that the simple path f starts
in w and ends in v. We put the label of the simple path equal to the frequency ρ(f) of f . It is
not difficult to see that for every factor w of an infinite aperiodic word, there exists a unique
shortest BS factor containing w. Therefore, any edge e of Γn is a subword of a unique simple
path f in Γn. Applying finitely many times Corollary 2.2.6, it follows that e and f have the
same label, ρ(e) = ρ(f).

The reduced Rauzy graph Γ̃n of u (of order n) is a directed graph whose set of vertices is
formed by the LS and RS factors of Ln(u) and whose set of edges is given by the simple paths,
i.e., two vertices w and v are connected with an edge f if there exists in Γn a simple path starting
in w and ending in v. It follows that Γn and Γ̃n have the same set of edge labels.

Γ̃1

0

Γ̃2

01 10

Γ̃3

010

Γ̃4

0010 0100

Fig. 2.4: Illustration of the reduced Rauzy graphs obtained from the Rauzy graphs in Figure 2.3.

2.2.13 Substitutions

A detailed overview on this topic is available in Pytheas Fogg [94].

Morphism and substitution

A substitution on A∗ is a morphism ϕ : A∗ → A∗ such that there exists a letter a ∈ A and
a non-empty word w ∈ A∗ satisfying ϕ(a) = aw and ϕ is non-erasing, i.e., ϕ(b) 6= ε for all
b ∈ A. Since any morphism satisfies ϕ(vw) = ϕ(v)ϕ(w) for all v,w ∈ A∗, a substitution is
uniquely determined by the images of letters. Instead of classical ϕ(a) = w, we sometimes write
a→ w. A substitution can be naturally extended to an infinite word u ∈ AN0 by the prescription
ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . An infinite word u is said to be a fixed point of the substitution ϕ if
it fulfills u = ϕ(u). It is obvious that every substitution ϕ has at least one fixed point, namely
limn→∞ ϕn(a) (to be understood with respect to the topology introduced in Section 2.2.2).

Morphisms on A∗, equipped with the operation of composition, form a monoid. Substitutions
do not form a monoid for the simple fact that the identity is not a substitution. Nevertheless,
if ϕ is a substitution, ϕn is also a substitution.

A substitution ϕ is called uniform if the images of letters have all the same length; that
is, there exists k ∈ N such that |ϕ(a)| = k for every a ∈ A. It is easy to see that a uniform
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substitution ϕ is injective if and only if for all a, b ∈ A, ϕ(a) = ϕ(b) implies a = b. A substitution
ϕ is said to be marked if the images of letters have mutually different first letters and mutually
different last letters; that is, for all a, b ∈ A, a 6= b, the first (last) letter of ϕ(a) is different
from the first (last) letter of ϕ(b). Obviously, every marked substitution is injective. The set of
letter images {ϕ(a) | a ∈ A} is called a prefix code if ϕ(a) is not a prefix of ϕ(b) for any pair
a, b ∈ A, a 6= b. Analogously, it is called a suffix code if ϕ(a) is not a suffix of ϕ(b) for any pair
a, b ∈ A, a 6= b. Clearly, every substitution whose letter images form a prefix or a suffix code is
injective.

Ancestors and synchronization points of substitutions

This section is inspired by Frid [54]. To every substitution ϕ may be associated the mapping
ψij : A∗ → A∗ so that ψij(v) is obtained from ϕ(v) by cutting the first i and the last j letters,
|ϕ(v)| > i + j. Let w ∈ A∗, |w| ≥ 2, then the triple s = (b0b1 . . . bn, i, j) is an interpretation of
w if

• either n = 0 and w = ψij(b0),

• or n ≥ 1 and w = ψij(b0b1 . . . bn), where |ϕ(b0)| > i ≥ 0 and |ϕ(bn)| > j ≥ 0.

The word b0b1 . . . bn is then denoted a(s) and is called the ancestor of the interpretation s =
(b0b1 . . . bn, i, j) or an ancestor of w. Every interpretation s = (b0b1 . . . bn, i, j) has only one
ancestor b0b1 . . . bn. On the other hand, b0b1 . . . bn can be the ancestor of more interpretations
(according to the parameters i and j), or, even, an ancestor of more distinct words. Clearly,
a word w, |w| ≥ 2, is a factor of u = ϕ(u) if and only if at least one of its ancestors is a factor
of u.

Another closely related term is a synchronization point. Let u be a fixed point of a substi-
tution ϕ and let v be its factor, then we say that (v(1), v(2)) is a synchronization point of v in
u if v = v(1)v(2) and whenever z(1)vz(2) = ϕ(s) for some factors z(1), z(2), s ∈ L(u), then there
exist factors s(1), s(2) ∈ L(u) satisfying

s = s(1)s(2), z(1)v(1) = ϕ(s(1)), v(2)z(2) = ϕ(s(2)).

Example 2.2.7. Let ϕ be a substitution on {0, 1} defined by ϕ(0) = 01, ϕ(1) = 10. This
substitution is known as the Thue-Morse substitution. ϕ is uniform, marked, and {ϕ(0), ϕ(1)}
is both a prefix code and a suffix code. (More generally, every marked substitution ϕ on A
satisfies that {ϕ(a) | a ∈ A} is both a prefix and a suffix code.) Furthermore, every factor of
the form waaw′ ∈ L(u), a ∈ A, has the synchronization point (wa, aw′). It is not difficult to
see that waaw′ has a unique interpretation, and, therefore, a unique ancestor. (It is a general
truth for any fixed point of a uniform marked substitution that if a factor has a synchronization
point, then it has a unique interpretation.)

Substitution matrix

The following prescription associates to every substitution ϕ on an alphabet A = {a1, a2, . . . , ad}
a non-negative integer d× d matrix, called the substitution matrix Mϕ:

Mϕ =





|ϕ(a1)|a1 |ϕ(a1)|a2 . . . |ϕ(a1)|ad

|ϕ(a2)|a1 |ϕ(a2)|a2 . . . |ϕ(a2)|ad

...
...

. . .
...

|ϕ(ad)|a1 |ϕ(ad)|a2 . . . |ϕ(ad)|ad



 . (2.18)
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As an immediate consequence of the definition, it holds for any word w that

(|w|a1 , |w|a2 , . . . , |w|ad
)Mϕ = (|ϕ(w)|a1 , |ϕ(w)|a2 , . . . , |ϕ(w)|ad

). (2.19)

The substitution matrix of the composition of substitutions ϕ, ψ obeys the formula Mϕ◦ψ =
MψMϕ. We have, in particular,

Mϕk = (Mϕ)k. (2.20)

Example: The substitution ϕ defined on {0, 1, 2} by ϕ(0) = 01, ϕ(1) = 120, ϕ(2) = 2 has the

following substitution matrix:

Mϕ =




1 1 0
1 1 1
0 0 1



 .

Mind the fact that the same substitution matrix corresponds to several other substitutions; for

instance, θ(0) = 10, θ(1) = 102, θ(2) = 2.

Primitive substitutions

A substitution ϕ on an alphabet A is called primitive if there exists k ∈ N such that for any
a ∈ A, the word ϕk(a) contains all letters of A.

Proposition 2.2.8. Any two fixed points of a primitive substitution ϕ generate the same lan-
guage.

Proof. Let u(1) = limn→∞ ϕn(a) and u(2) = limn→∞ ϕn(b) be two fixed points of ϕ on A,
a, b ∈ A. Let us take any factor w ∈ L(u(1)), then there exists n ∈ N such that w is a subword
of ϕn(a). Since the substitution ϕ is primitive, there exists k ∈ N such that ϕk(b) contains the
letter a, consequently, ϕn(a) is a subword of ϕk+n(b). It follows that w ∈ L(u(2)). The opposite
inclusion can be proved in a similar way.

Example: Notorious primitive substitutions and their basic properties.

• Fibonacci substitution 0 → 01, 1 → 0 is injective, {ϕ(0), ϕ(1)} is a suffix code, but not
a prefix code.

• Thue-Morse substitution 0 → 01, 1 → 10 is uniform, marked, injective, and {ϕ(0), ϕ(1)}
is both a prefix and a suffix code.

It is easy to check that ϕn(0) = S(ϕn(1)), where S is the morphism exchanging letters,
i.e., S(0) = 1, S(1) = 0.

• Period-doubling substitution 0 → 01, 1 → 00 is uniform and injective.

Perron-Frobenius theorem

Let us recall a notion from matrix theory, which proves useful in the study of substitutions.
A matrix M is called primitive if there exists k ∈ N such that all entries of Mk are positive.
Applying Equation (2.20), we notice immediately that a substitution matrix is primitive if
and only if the corresponding substitution is primitive. There is a powerful theorem treating
primitive matrices, being thus relevant for primitive substitution matrices.

Theorem 2.2.9 (Perron-Frobenius). Let M be a d× d primitive matrix. Then:
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1. the matrix M has a positive eigenvalue λ which is strictly greater than the modulus of any
other eigenvalue,

2. the eigenvalue λ is algebraically simple, i.e., it is a single root of the characteristic poly-
nomial,

3. to this eigenvalue corresponds an eigenvector with positive entries, while no other eigen-
value has an eigenvector with positive entries.

The eigenvalue λ from the above theorem is called the Perron-Frobenius eigenvalue of M .
If M is a substitution matrix, then, as a consequence of Item 1. and of the fact that M is an
integer matrix, λ is a Perron number (defined in Section 2.1.4). For fixed points of a primitive
substitution ϕ on A = {a1, . . . , ad}, according to the result of Durand [45], the factor frequencies
exist and the vector of letter frequencies is equal to the left eigenvector (l1, l2, . . . , ld) of λ
normalized by

∑d
i=1 li = 1, i.e.,

(
ρ(a1), ρ(a2), . . . , ρ(ad)

)
= (l1, l2, . . . , ld). (2.21)

Geometrical representation of substitutions

Every fixed point u = u0u1u2 . . . of a primitive substitution ϕ on A = {a1, . . . , ad} with the
substitution matrix M may be represented by a self-similar set T = {tn | n ∈ N0} constructed
in the following way: Take a positive right eigenvector r = (r1, . . . , rd) of the Perron-Frobenius
eigenvalue λ and define recurrently a sequence (tn)

t0 = 0 and tn+1 = tn + ri if un = ai.

Let v be a prefix of u, then, using the definition of (tn), Equation (2.19), and the properties
of the right eigenvector, it follows that

t|ϕ(v)| = (|ϕ(v)|a1 , |ϕ(v)|a2 , . . . , |ϕ(v)|ad
) rT

= (|v|a1 , |v|a2 , . . . , |v|ad
)MrT

= λ(|v|a1 , |v|a2 , . . . , |v|ad
)rT

= λt|v|.

Hence, λT ⊂ T ; in other words, T is a self-similar set with the self-similarity factor λ.

uτ = 0 1 0 0 1 0 1 0 0 1 00101001010010010100100101 . . .

T
r1
?

Q
QQs

r2 r1 r1 r2 r1 r2 r1 r1 r2

Fig. 2.5: Illustration of the self-similar set T with the self similarity factor λ = τ = 1+
√

5
2

associated with the fixed point uτ of the Fibonacci substitution ϕ(0) = 01, ϕ(1) = 0. Any
multiple of the vector (1, 1

τ
) is a right eigenvector of τ . If we choose the vector (r1, r2) = (1, 1

τ
),

then T is equal to the set of non-negative τ -integers Z+
τ (as explained in Section 2.3).
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Factor complexity of fixed points of substitutions

The complexity C of a fixed point of a substitution cannot be of any form, as brought to light
by Pansiot in [90, 91]:

K1f(n) ≤ C(n) ≤ K2f(n),

whereK1,K2 are positive constants and f(n) is one of the functions 1, n, n log log n, n log n, n2.
In the sequel, let us explain that for fixed points of primitive substitutions, their complexity

is even sublinear. Fixed points of primitive substitutions are known to be not only uniformly
recurrent (Queffélec [95]), but Damanik and Zare in [39] have shown that they are even linearly
recurrent. Finally, Durand has proved in [45] that for every linearly recurrent infinite word,
thus, in particular, for every fixed point of a primitive substitution, there exists a constant K
satisfying C(n) ≤ Kn for every n ∈ N.

2.3 Infinite words associated with beta-integers

With the background of combinatorics on words at hand, we can continue in the introduction of
notions concerning the set Zβ of β-integers, initiated in Section 2.1. Here, our aim is to associate
with β-integers infinite words which symbolically code distances between consecutive β-integers.

2.3.1 Parry numbers and infinite words uβ

From the formula for distances (2.8), we know that the number of distances between neighboring
elements of Zβ is finite if and only if the Rényi expansion of unity dβ(1) is eventually periodic;
that is, if β is a Parry number.

• If dβ(1) is finite, i.e., dβ(1) = t1t2 . . . tm, tm 6= 0, β is said to be a simple Parry number, and
the set of distances is {∆0,∆1, . . . ,∆m−1}, where all of the listed elements are mutually
distinct.

• If dβ(1) is eventually periodic, but not finite, β is a non-simple Parry number. Choose
r,m ∈ N to be minimal such that dβ(1) = t1t2 . . . tm(tm+1 . . . tm+r)

ω, then the set of all
mutually distinct distances is {∆0,∆1, . . . ,∆m+r−1}.

Let us precisely define the infinite word uβ = u0u1u2 . . . associated with Z+
β for a Parry

number β. Let {∆0, . . . ,∆d−1} be the set of distances between neighboring β-integers and let
(bn)

∞
n=0 be as defined in (2.7), then

un := i if bn+1 − bn = ∆i. (2.22)

2.3.2 Canonical substitutions for Parry numbers

Fabre in [49] has associated with Parry numbers canonical substitutions in the following way.
Let β be a simple Parry number, i.e., dβ(1) = t1t2 . . . tm, for m ∈ N. Then the corresponding

canonical substitution ϕ is defined on the alphabet {0, 1, . . . ,m− 1} by

ϕ(0) = 0t11,
ϕ(1) = 0t22,

...
ϕ(m− 2) = 0tm−1(m− 1),
ϕ(m− 1) = 0tm .

(2.23)
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Similarly, let β be a non-simple Parry number, i.e., dβ(1) = t1t2 . . . tm(tm+1 . . . tm+r)
ω. Then

the associated canonical substitution ϕ is defined on the alphabet {0, 1, . . . ,m+ r − 1} by

ϕ(0) = 0t11,
ϕ(1) = 0t22,

...
ϕ(m− 1) = 0tmm,

...
ϕ(m+ r − 2) = 0tm+r−1(m+ r − 1),
ϕ(m+ r − 1) = 0tm+rm.

(2.24)

Each of these substitutions has a unique fixed point, namely limn→∞ ϕn(0). Moreover, this
fixed point turns out to coincide with uβ defined in (2.22). Both substitutions are primitive and
ϕ(A) is a suffix code in the case of simple Parry numbers (2.23) and a prefix code in the case of
non-simple Parry numbers (2.24).

2.3.3 Combinatorial properties of uβ

The infinite words uβ associated with both simple and non-simple Parry numbers are uniformly
recurrent due to the fact that they are fixed points of primitive substitutions.

In some aspects, languages closed under reversal are of particular interest – for instance,
in the study of palindromes, as confirmed by Proposition 2.2.3. Let us specify how the Rényi
expansion of unity dβ(1) has to look like so that the language of uβ is closed under reversal.

Proposition 2.3.1 ([57]). Let uβ be an infinite word associated with a simple Parry number β
with dβ(1) = t1t2 . . . tm. Then L(uβ) is closed under reversal if and only if t1 = · · · = tm−1.

A simple Parry number β with dβ(1) = t1t2 . . . tm satisfying t1 = · · · = tm−1 is called
a confluent Parry number.

Proposition 2.3.2 ([12]). Let uβ be an infinite word associated with a non-simple Parry number
β with dβ(1) = t1t2 . . . tm(tm+1 . . . tm+r)

ω, m, r chosen to be minimal. Then L(uβ) is closed
under reversal if and only if m = r = 1.

The previous proposition may be reformulated as follows:
Among non-simple Parry numbers β, L(uβ) is closed under reversal if and only if β is quadratic.

2.3.4 Quadratic Parry numbers

The base β being a quadratic Parry number is the simplest generalization of an integer base,
with respect to the Rényi expansion of unity.

There are several other reasons for an exceptional position of quadratic numbers among
Parry numbers. Firstly, they can be entirely characterized by their algebraic properties since
the notions of Parry and Pisot number coincide for β being a quadratic number. Secondly, it
results from Section 2.3.3 that an infinite word uβ has language closed under reversal for any
quadratic Parry number β. Finally, if we search for Sturmian words among the infinite words
uβ, it is meaningful to take into account only quadratic Parry numbers, for the simple reason
that Sturmian words are binary.
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1. Simple quadratic Parry numbers
The Rényi expansion of unity is equal to dβ(1) = pq, where p ≥ q ≥ 1. Hence, β is the
positive root of the polynomial x2−px− q. Only two distances occur between neighboring
β-integers: the longer distance is always ∆0 = 1, the smaller one is equal to ∆1 = β − p.
The associated substitution ϕ is given by

ϕ(0) = 0p1, ϕ(1) = 0q, (2.25)

and its fixed point is

uβ = 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q . . . 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q

︸ ︷︷ ︸
p times

0p1 . . . 0p1︸ ︷︷ ︸
q times

. . . (2.26)

The substitution matrix is of the form

(
p 1
q 0

)
and it is easy to verify that the substi-

tution is primitive.

Example 2.3.3. For β = τ = 1+
√

5
2 , we know already that dτ (1) = 11. The substitution

ϕ associated with τ is the Fibonacci substitution defined by ϕ(0) = 01, ϕ(1) = 0.

2. Non-simple quadratic Parry numbers
The Rényi expansion of unity is equal to dβ(1) = pqω, where p > q ≥ 1. Consequently,
β is the larger root of the polynomial x2 − (p + 1)x + p − q. The set Zβ has again two
distances between neighbors: ∆0 = 1 and ∆1 = β − p. The corresponding substitution is

ϕ(0) = 0p1, ϕ(1) = 0q1, (2.27)

and its fixed point starts as follows

uβ = 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1 . . . 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1

︸ ︷︷ ︸
p times

0p1 . . . 0p1︸ ︷︷ ︸
q times

0q1 . . . (2.28)

The substitution matrix is

(
p 1
q 1

)
and ϕ is thus obviously primitive.

As an example, consider the infinite word uβ whose prefix is drawn in Figure 2.1 and that is the
fixed point of the substitution ϕ(0) = 0001, ϕ(1) = 01.

To conclude, let us reveal the relation between infinite words associated with β-integers and
Sturmian words, which is the topic of the next chapter.

Remark 2.3.4. A result by Crisp et al. [33] concerning substitution matrices says that the
only candidates for Sturmian words among the infinite words uβ are those ones with β being
a quadratic unit. Conversely, such words uβ turn out to be Sturmian. Let us recall that among
Parry numbers, β is a quadratic unit if,

1. in case of simple Parry numbers, β is a root of

x2 − px− 1, p ∈ N, (2.29)

2. in case of non-simple Parry numbers, β is a root of

x2 − (p + 1)x+ 1, p ≥ 2, p ∈ N. (2.30)
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2.4 Sturmian words

There exist plenty of publications on Sturmian words. We recommend Chapter 2 of the Lothaire
book [84] for a self-contained survey.

2.4.1 Equivalent combinatorial definitions

Sturmian words are defined as words with the complexity C(n) = n + 1 for all n ∈ N0. This
condition requires a binary alphabet. Thanks to the remarkable fact that Sturmian words are
aperiodic words with the lowest possible complexity, they have been always extensively studied.
Naturally, several equivalent definitions of Sturmian words have been found out. The following
theorem summarizes their well-known combinatorial characterizations (proved in [67], [107],
[44]).

Theorem 2.4.1. Let u be an infinite word. The properties listed below are equivalent:

• u is Sturmian,

• u is aperiodic and balanced,

• any factor of u has exactly two return words,

• u contains one palindrome of every even length and two palindromes of every odd length.

The previous theorem implies immediately further properties of Sturmian words. They are
uniformly recurrent, their language is closed under reversal, and each factor w contains exactly
|w| + 1 palindromes; that is, Sturmian words are full.

2.4.2 Explicit arithmetical formulae

Hedlund and Morse have chosen the name Sturmian sequence because such sequences emerged
when they were studying zeroes of the solutions of a differential equation of Sturm-Liouville
type, more precisely, the number of zeroes of the solutions in the intervals [n, n+ 1). They have
shown that for any 0 < α < 1, the solution is of the form sin(π(αx+ ρ)); hence, the number of
zeroes in [n, n+ 1) equals either sα,ρ(n) or sα,ρ(n), where

sα,ρ(n) = ⌈α(n + 1) + ρ⌉ − ⌈αn + ρ⌉, (2.31)

sα,ρ(n) = ⌊α(n + 1) + ρ⌋ − ⌊αn + ρ⌋. (2.32)

The sequence
(
sα,ρ(n)

)∞
n=0

is nowadays called an upper mechanical word and
(
sα,ρ(n)

)∞
n=0

a lower
mechanical word. The below listed properties of mechanical words are easy to check

1. their alphabet is {0, 1},

2. if α is rational, then they are periodic,

3. if α is irrational, then ⌈αn+ρ⌉ = ⌊αn+ρ⌋+1 whenever αn+ρ is not an integer, therefore

• if ρ 6= 0, then sα,ρ(n) = sα,ρ(n) for all n ∈ N0,

• if ρ = 0, then sα,0(n) = sα,0(n) for all n ∈ N, however, sα,0(0) = 1 and sα,0(0) = 0.
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Fig. 2.6: Illustration of the construction of an upper mechanical word.

The parameter α is called the slope and ρ the intercept of the mechanical word since such a word
may be visualized in the lattice Z2 using the line y = αx+ ρ.

To obtain the upper mechanical word, the lattice points Pn of Z2 just above the line are
considered, their coordinates are Pn = (n, ⌈αn+ ρ⌉). If the line segment joining two consecutive
lattice points Pn and Pn+1 is horizontal, then sα,ρ(n) = 0, if it is diagonal, then sα,ρ(n) = 1. See
Figure 2.6. The lower mechanical word can be constructed analogously, using the lattice points
below the line instead.

The particular importance of mechanical words comes to light thanks to the following theo-
rem proved by Hedlund and Morse [67].

Theorem 2.4.2. An infinite word u is Sturmian if and only if u is a mechanical word with an
irrational slope.

The geometrical interpretation of mechanical words and the homogeneity of the lattice Z2

guarantee that the language of any Sturmian word depends only on the slope, not on the
intercept.

2.4.3 Words coding 2-interval exchange transformation

Another synoptic algorithm providing Sturmian words is the 2-interval exchange transformation.
Take any 0 < α < 1 and make a partition of the unit interval I = [0, 1) into two subintervals
[0, 1 − α) and [1− α, 1). Define the interval exchange map T : [0, 1) → [0, 1) by T (x) = {x+ α}
(see Figure 2.7). Choose a point ρ ∈ I and write down the infinite word u = u0u1u2 . . . given
by

un :=
{ 0 if T n(ρ) ∈ [0, 1 − α),

1 if T n(ρ) ∈ [1 − α, 1).

The obtained word u is called a 2-interval exchange transformation coding word and it is readily
seen that u coincides with the lower mechanical word

(
sα,ρ(n)

)∞
n=0

. The 2-interval exchange
transformation may be visualized as the rotation of a chosen point ρ of the unit circle by an
angle α. The circle is dissected into two disjoint arcs of lengths 1−α and α. In order to get the
2-interval exchange transformation coding word, we write down 0 each time when the rotation
moves ρ onto the arc of length 1 − α, we note down 1 otherwise.
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Fig. 2.7: Illustration of the interval exchange map T .

2.4.4 One-dimensional cut & project sets

Before we describe the construction of 1-dimensional C&P sets, let us recall that a general defi-
nition of higher-dimensional C&P sets as well as the construction of a 1-dimensional Fibonacci
C&P set have been presented in the introductory part of the thesis.

Let ǫ, η be two distinct irrational numbers and Ω a bounded non-degenerated interval. Then
the set

Σǫ,η(Ω) = {a+ bη | a, b ∈ Z, a+ bǫ ∈ Ω}
is called a cut & project set with the acceptance window Ω. It is easy to see that, up to a scaling
factor, this set can be obtained by the projection of the lattice Z2 on the line y = ǫx along the
line y = ηx (as illustrated in Figure 2.8). We do not project all points of Z2, but only those
ones belonging to a stripe parallel to the line y = ǫx. The position of the stripe is given by the
interval Ω.

y = ηx

y = ǫx

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Fig. 2.8: Construction of a one-dimensional C&P set.

The results by Guimond, Masáková, and Pelantová from [65] detail the geometrical structure
of Σǫ,η(Ω) and bring to light the relation between Sturmian words and words coding distances
in C&P sets.
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Theorem 2.4.3. For any C&P set Σǫ,η(Ω), there exist two positive numbers ∆1 and ∆2 such
that the distances between consecutive points in Σǫ,η(Ω) take values in {∆1,∆2,∆1 + ∆2}.

Coding distances in Σǫ,η(Ω), we get a binary or ternary biinfinite word . . . u−2u−1u0u1u2 . . . .
If the biinfinite word coding Σǫ,η(Ω) is binary, then its right-sided part u0u1u2 . . . is a Sturmian
word. In addition, it has been proved that parameters ǫ, η and the acceptance window Ω can be
chosen so that the words coding the C&P set with such parameters coincide with mechanical
words. More precisely, for 0 < α < 1, α irrational, 0 ≤ ρ < 1, and η > 0, the distances between
consecutive non-negative elements

• in the C&P set Σ−α,η(ρ− 1, ρ] form the sequence
(
η + ⌊α(n + 1) + ρ⌋ − ⌊αn + ρ⌋

)∞
n=0

;

hence, the lower mechanical word
(
sα,ρ(n)

)∞
n=0

coincides with the word coding the non-
negative part of Σ−α,η(ρ− 1, ρ],

• in the C&P set Σ−α,η[ρ, ρ+ 1) form the sequence
(
η + ⌈α(n + 1) + ρ⌉ − ⌈αn + ρ⌉

)∞
n=0

;

therefore, the upper mechanical word
(
sα,ρ(n)

)∞
n=0

coincides with the word coding the
non-negative part of Σ−α,η[ρ, ρ+ 1).

2.4.5 Generalizations of Sturmian words

We have seen that Sturmian words can be defined in many equivalent ways. As a matter of
course, various generalizations to multilateral alphabets have been suggested and studied. We
often refer to two of them (for details see [43] and [53], respectively).

Arnoux-Rauzy words (or AR words for simplicity) are infinite words over anm-letter alphabet
containing exactly one LS factor w and one RS factor v of every length n, and both of these
factors have m-extensions, i.e., #Lext(w) = #Rext(v) = m. The language of AR words turns
out to be closed under reversal and AR words are uniformly recurrent. AR words form a subclass
of extensively studied episturmian words, defined as infinite words that have language closed
under reversal and contain at most one LS factor of every length.

Another possible generalization of Sturmian words (based on the definition from Section 2.4.3)
is provided by m-interval exchange transformation coding words. Let us state their definition.
Take positive numbers α1, . . . , αm linearly independent over Q and such that

∑m
i=1 αi = 1. They

define a partition of the interval I = [0, 1) into m subintervals

Ik =
[k−1∑

i=1

αi,

k∑

i=1

αi
)
, k = 1, 2, . . . ,m.

In general, the subintervals may be exchanged according to any permutation, however, the lan-
guage of the word coding m-interval exchange transformation is closed under reversal only for
the symmetric permutation π(1) = m, π(2) = m−1, . . . , π(m) = 1. The interval exchange trans-
formation associated with α1, . . . , αm and π is the bijection T : [0, 1) → [0, 1) which exchanges
the intervals Ik according to the permutation π, i.e.,

T (x) = x+
∑

i>k

αi −
∑

i<k

αi for x ∈ Ik.
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The infinite word u = u0u1u2 . . . over A = {a1, . . . , am} associated with T is defined as

un := ak if T n(x) ∈ Ik

and is called an m-interval exchange transformation coding word (or an m-iet word for short).
Its language does not depend on the position of the starting point x, but only on the transfor-
mation T . The 3-iet words can be geometrically represented by C&P sequences [65].

If we generalize the properties from Theorem 2.4.1 for an m-letter alphabet, they are never more
characteristic, or, even, are not true for AR words and m-iet words. It will come to light in the
forthcoming chapters that always start with a note on Sturmian words, AR words, and m-iet
words for every studied combinatorial characteristics.
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Chapter 3

Special factors and complexity

The computation of the factor complexity of infinite words (defined in (2.12) in Section 2.2.8)
is a very complex problem, even for words with relatively low complexity.

As shown by Hedlund and Morse in [66], an infinite word is either eventually periodic and
its complexity is bounded, or it is aperiodic and its complexity satisfies C(n) ≥ n + 1 for all
n ∈ N0. So, for instance, f(n) =

√
n cannot be the factor complexity of any infinite word.

The periodic word aω has the complexity C(n) = 1 for all n ∈ N0, while the Champernowne
word 011011100101110111 . . . , formed by concatenation of the binary expansions of non-negative
integers, satisfies C(n) = 2n for every n ∈ N0. These two examples are extreme; it holds for
every infinite word over an alphabet A that 1 ≤ C(n) ≤ (#A)n for all n ∈ N0. It is further
evident that C(n) is a non-decreasing function satisfying C(m + n) ≤ C(m)C(n). Nevertheless,
in general, the question which functions may be the factor complexity of an infinite word is far
from being answered. A detailed survey in this direction has been effected by Ferenczi in [50].

We present in this chapter, following mainly the survey by Cassaigne [27], special factors and
some related terminology and tools, simplifying the derivation of factor complexity and being of
great importance also in many consecutive chapters – for the study of palindromic complexity,
recurrence function, and return words, or, factor frequencies. We consider separately the binary
and multilateral case, firstly, since it is instructive to observe foremost the simpler case, secondly,
since the infinite word uβ associated with a quadratic non-simple Parry number β, which is often
in the center of our interest, is binary. Afterwards, as we concentrate in this thesis exclusively
on infinite words with sublinear complexity, we sum up what is known about such infinite words.
Moreover, we provide a summary of known results on special factors and complexity for some
selected infinite words and classes of words with sublinear complexity – the Thue-Morse word,
the period doubling word, the Rote word, a palindromeless reversal closed word, the infinite
words associated with simple and non-simple Parry numbers – with an eye illustrating studied
characteristics and methods in the forthcoming chapters for this “sample”. As a new result,
we describe the special factors and the factor complexity of uβ associated with a quadratic
non-simple Parry number β.

3.1 Special factors over a binary alphabet

Let us first restrict our considerations to an infinite word u over a binary alphabet, say {0, 1}.

3.1.1 Classification of special factors

Three situations can come up for a BS factor w ∈ L(u), with respect to the number of elements
of L(u) ∩ {0w0, 0w1, 1w0, 1w1}:
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• If the cardinality is maximal, i.e., all four elements 0w0, 0w1, 1w0, and 1w1 are factors of
u, then w is called a strong BS factor.

• If exactly three elements are factors of u, then w is called an ordinary BS factor.

• Finally, if only two elements are in the set, it means either 0w0, 1w1 ∈ L(u) or 0w1, 1w0 ∈
L(u), then w is called a weak BS factor.

Let us also classify LS factors and bring to light the connection between LS and BS factors.
The classification of RS factors is analogous. A LS factor w ∈ L(u) belongs to one of the
following types according to its extensibility to the right:

• If both w0 and w1 are LS, then w is a strong BS factor.

• If only one of the factors w0, w1 is LS, then w is called an ordinary LS factor. If w is
moreover RS, then w is an ordinary BS factor.

• If neither w0 nor w1 is LS, then w is a weak BS factor. In the context of LS factors, w is
usually called maximal LS factor (in order to express the impossibility of its extensibility
to the right staying LS).

3.1.2 Infinite LS branches

Another important term concerning LS factors is an infinite LS branch, which is an infinite word
whose all prefixes are LS factors of L(u). An infinite RS branch is defined symmetrically, so, it
is a left-sided infinite word whose all suffixes are RS factors. Since every LS factor in L(u) is
extendable to the right, it is either a prefix of a maximal LS factor or of an infinite LS branch.

3.1.3 Tree of LS factors

There exists a natural visualization tool of special factors- the tree of LS factors visualizing LS
factors (growing to the right) and the tree of RS factors visualizing RS factors (growing to the
left), respectively. Let us explain how the tree of LS factors is constructed. At the level n in the
tree, branches starting in the root correspond to different LS factors of length n. According to
the type of a LS factor, the following evolution can occur for a branch labeled with a LS factor
w of length n:

• If w is an ordinary LS factor, then w can be uniquely extended to the right staying LS,
and, hence, there is a unique branch of length n + 1 starting in the root whose label has
w as a prefix.

• If w is a maximal LS factor, then the branch w is truncated at the level n.

• If w is a strong BS factor, then there is a branching in the tree at the level n; that is, there
are two branches of length n+ 1 whose labels have w as a prefix.

Let us discuss the form of the trees of LS and RS factors for eventually periodic and aperiodic
words, both recurrent and non-recurrent.

Eventually periodic words: Since C(n) is bounded, there exists n ∈ N such that ∆C(n) = 0.
For a recurrent word (it is necessarily periodic), applying Formula (2.15), we see that the
tree of LS factors is finite. For a non-recurrent word u, we deduce from Remark 2.2.2
that the tree of LS factors contains exactly one infinite LS branch, and, possibly, a finite
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Fig. 3.1: Illustration of the tree of LS factors for the infinite word uβ being the fixed point of
the substitution ϕ(0) = 0001, ϕ(1) = 01 (see also Example 2.1.5). The two shortest strong BS
factors V (1), V (2) as well as the two shortest maximal LS factors (or, equivalently, weak BS
factors) U (1), U (2) are pointed out.

number of truncated branches. More precisely, if u = wvω, where w and v are chosen to
be minimal, then the infinite LS branch is equal to vω.

Aperiodic words: Since ∆C(n) ≥ 1 for every n ∈ N, the tree of LS factors contains, for every
n ∈ N, at least one branch of length n, both for recurrent and non-recurrent words.

3.1.4 The first and the second difference of complexity

The formula for the first difference of complexity from (2.15) takes a simpler form in the case
of a binary alphabet.

Proposition 3.1.1. Let u be an infinite recurrent word on {0, 1}. Then, for every n ∈ N0,

∆C(n) = #{w ∈ Ln(u)
∣∣ w is LS} = #{w ∈ Ln(u)

∣∣ w is RS}. (3.1)

To compute complexity, we have at disposal also the formula for the second difference of
complexity ∆2C(n) = ∆C(n + 1) − ∆C(n). Using Proposition 3.1.1, we obtain immediately
∆2C(n) = #{w ∈ Ln+1(u)

∣∣ w LS} − #{w ∈ Ln(u)
∣∣ w LS}. From the description of the tree

of LS factors, it is straightforward to deduce that the number of LS factors increases by 1 for
every strong BS factor (branching) and decreases by 1 for every maximal LS factor = weak BS
factor (truncated branch).

Proposition 3.1.2. Let u be an infinite recurrent word, then, for every n ∈ N0,

∆2C(n) = #{w ∈ Ln(u)
∣∣ w strong BS} − #{w ∈ Ln(u)

∣∣ w weak BS}. (3.2)

3.2 Special factors over a multilateral alphabet

Suppose that u is an infinite word over a multilateral alphabet A = {a1, a2, . . . , am}. The
situation gets more complicated since special factors have sometimes more than two letters in
their extension, but not necessarily all m letters. Moreover, the number of right extensions and
the number of left extensions of a BS factor are both at least two, but have no reason to be
equal.
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3.2.1 Classification of special factors

In order to get a classification of BS factors, we introduce the bilateral order B(w) of a factor w:

B(w) := # (L(u) ∩ AwA) − #Rext(w) − #Lext(w) + 1. (3.3)

We deduce easily the following lower and upper bound on B(w):

1 − min{#Lext(w),#Rext(w)} ≤ B(w) ≤ (#Lext(w) − 1)(#Rext(w) − 1). (3.4)

Since the cardinality of the alphabet A is m, we obtain immediately 1 − m ≤ B(w) ≤ (m −
1)2. For a factor w that is not BS, the bilateral order B(w) = 0. For a binary alphabet, we
recover three bilateral orders −1, 0, 1, corresponding to weak, ordinary, and strong BS factors,
respectively. The classification of BS factors in the binary case may be generalized in the
following way. Let w be a BS factor in L(u),

• if B(w) > 0, then w is called a strong BS factor,

• if B(w) = 0, then w is called an ordinary BS factor,

• if B(w) < 0, then w is called a weak BS factor.

Let us reformulate equivalently the definition of strong and weak BS factors, respectively. The
inequality B(w) > 0, characterizing strong BS factors, can be rewritten as

∑

a∈Lext(w)

(
#Rext(aw) − 1

)
> #Rext(w) − 1. (3.5)

Analogously, the inequality B(w) < 0, characterizing weak BS factors, is equivalent with

∑

a∈Lext(w)

(
#Rext(aw) − 1

)
< #Rext(w) − 1. (3.6)

Let us generalize also the notion of a maximal LS factor. A LS factor w ∈ L(u) is called maximal
if wa is not LS for any a ∈ A. A maximal RS factor is defined analogously.

3.2.2 Infinite LS branches

An infinite LS branch v of an infinite word u is defined similarly as in the binary case, i.e., v is
an infinite word whose each prefix is a LS factor of u. Clearly, since #Lext(w′) ≥ #Lext(w) for
every w′, w ∈ L(u) such that w′ is a prefix of w, the number of left extensions of all sufficiently
large prefixes of v is constant. Thus, we can define the set of left extensions of an infinite LS
branch v by

Lext(v) :=
⋂

w prefix of v

Lext(w). (3.7)

3.2.3 Base of trees of LS factors

Evidently, it is inevitable to modify the notion of the tree of LS factors in the multilateral
case. LS factors can loose some left extensions being extended to the right, though staying LS.
Therefore, it makes sense to put in the same tree only LS factors having the same left extensions.

We construct, for every subset Σ of A, a tree of LS factors such that all branches starting in
the root correspond to LS factors having as left extensions all letters from Σ. We put aside the

37



empty trees and we keep only the trees with Σ maximal, which means that no other subset of
A containing Σ gives rise to the same tree. Following this recipe, we obtain the so-called base
of the trees of LS factors. It is readily seen that to every weak or strong BS factor corresponds
a branching or a truncated branch in at least one tree of the base. On the other hand, every
branching and every truncated branch are labeled with a BS factor. Similarly as in the binary
case, having the base of the trees of LS factors constructed, it is straightforward to compute the
complexity.

3.2.4 The first and the second difference of complexity

We have two possibilities to compute complexity – using either the first (Equation (2.15)) or
the second difference of complexity.

Proposition 3.2.1. Let u be an infinite word, then, for all n ∈ N0, the second difference of
complexity has the following form

∆2C(n) =
∑

w∈Ln(u)

B(w). (3.8)

Remark 3.2.2. With Proposition 3.2.1 at disposal, let us discuss in more details how the
first difference of complexity looks like in dependence on the type of BS factors. Obviously,
∆C(0) = m− 1, where m = #A.

If all BS factors are ordinary, then ∆C(n) = m− 1 for all n ∈ N0. If u contains no weak BS
factors, then ∆C(n) is a non-decreasing function, thus ∆C(n) ≥ m−1 for all n ∈ N0. Similarly,
if u contains no strong BS factors, then ∆C(n) is a non-increasing function, thus ∆C(n) ≤ m−1
for all n ∈ N0.

3.3 Sublinear complexity

Infinite words with relatively low complexity, i.e., bounded by a polynomial of a small degree,
are naturally better understood. Among words with sublinear complexity, we find besides even-
tually periodic words, also Sturmian words, Arnoux-Rauzy words, and m-interval exchange
transformation coding words (defined in Section 2.4.5), or fixed points of primitive substitutions
(Section 2.2.13: Factor complexity of fixed points of substitutions).

Cassaigne in [27] has constructed, for any pair of integers a, b such that either a ≥ 2 and b
arbitrary, or, a ∈ {0, 1} and b > 0, an infinite word whose complexity fulfills C(n) = an+b for all
sufficiently large n. Moreover, he has proved that there exists an infinite word with C(n) = an+b
for all n ∈ N0, a ∈ N0, b ∈ Z, if and only if a+ b ≥ 1 and 2a+ b ≤ (a+ b)2.

The same author in [28] has moreover shown for infinite words with a sublinear complexity
that their first difference of complexity is bounded; that is, if there exists a constant K > 0 such
that C(n) ≤ Kn holds for all n ∈ N, then there exists a constant k > 0 such that

∆C(n) < k for all n ∈ N0. (3.9)

Let us write down a list of LS factors for some infinite words, being of particular interest
in several other chapters. We complete this list by the description of BS factors and the exact
formula for complexity, provided this information is known. All these words have sublinear
complexity.
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3.3.1 Sturmian words, AR words, and m-iet words

The formula for the complexity of Sturmian words, C(n) = n + 1 for all n ∈ N0, ensures that
for every n ∈ N0, there exists exactly one LS factor of length n. In consequence, the tree of LS
factors of a Sturmian word u is reduced to one infinite LS branch. All BS factors are prefixes of
this infinite LS branch and are necessarily ordinary. As u is uniformly recurrent, the language
of u and of the infinite LS branch coincide (see Section 2.2.4). If, moreover, the LS branch of
a Sturmian word u is u itself, then u is called standard Sturmian.

Similarly as for Sturmian words, the tree of LS factors of an AR word u over an m-letter
alphabet consists of an infinite LS branch whose each prefix has exactly m left extensions. All
BS factors are prefixes of this infinite LS branch and are ordinary. In consequence, C(n) =
(m−1)n+1 for all n ∈ N0. As u is uniformly recurrent, the language of u and of the infinite LS
branch are identical. We call an AR word u standard if u coincides with its infinite LS branch.

The complexity of m-iet words satisfies C(n) = (m− 1)n + 1 for all n ∈ N0. However, there
exist (m−1) LS factors of every length, hence, the sets of m-iet words and AR words are disjoint
for m > 2. BS factors are prefixes of the m− 1 infinite LS branches and are ordinary.

3.3.2 Thue-Morse word

The factor complexity of the Thue-Morse word uTM, the fixed point – limn→∞ ϕn(0) – of the
substitution ϕ defined in Section 2.2.13 by ϕ(0) = 01, ϕ(1) = 10, has been determined indepen-
dently by Brlek [22] and de Luca and Varricchio [86]. The details on the description of special
factors are to consult in [27].

BS factors and the second difference of complexity

It is not difficult to verify the following lemma - the essential ingredient for the derivation
of the complete list of BS factors.

Lemma 3.3.1. Every BS factor v ∈ L(uTM) of length ≥ 4 has a unique interpretation
(w, 0, 0), i.e., v = ϕ(w). Moreover, w is a BS factor of the same type as v.

• STRONG BS factors
ϕn(01) for n ∈ N0,
ϕn(10) for n ∈ N0.

(3.10)

Also ε is a strong BS factor.

• WEAK BS factors
ϕn(010) for n ∈ N0,
ϕn(101) for n ∈ N0.

(3.11)

In more precise terms, for n odd,

0ϕn(010)0, 1ϕn(010)1 ∈ L(uTM) and 0ϕn(101)0, 1ϕn(101)1 ∈ L(uTM), (3.12)

for n even,

0ϕn(010)1, 1ϕn(010)0 ∈ L(uTM) and 0ϕn(101)1, 1ϕn(101)0 ∈ L(uTM). (3.13)

• ORDINARY BS factors are 0 and 1.
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According to Proposition 3.1.2 and having the length |ϕn(0)| = 2n computed, we see that
the second difference of complexity obeys the following formula

∆2C(n) =






1 n = 0,
2 if n = 2k+1 for some k ∈ N0,

−2 if n = 3 · 2k for some k ∈ N0,
0 otherwise.

LS factors and the first difference of complexity

There exist two infinite LS branches and two infinite sequences of maximal LS factors:

1. the first infinite LS branch is uTM itself, having ϕn(01) as the longest common prefix
with the maximal LS factor ϕn(010) for every n ∈ N0,

0

1

-uTM

S(uTM)
-• •

•
ϕn+1(101)
•

ϕn+1(10)ϕn(10)

ϕn(101)

ϕn(01)

ϕn(010)

•
• •ϕ

n+1(010)

•
ϕn+1(01)

Fig. 3.2: Illustration of a sector of the tree of LS factors for uTM. All branches of lengths between
2n+1 and 3 · 2n+1 are plotted.

2. the second infinite LS branch is S(uTM) having ϕn(10) as the maximal common prefix
with the maximal LS factor ϕn(101) for every n ∈ N0, where S is the morphism given
by S(0) = 1, S(1) = 0.

Applying Equation (2.15), the explicit formula for the first difference of complexity is
obtained

∆C(n) =






1 for n = 0,
4 if 2k < n ≤ 3 · 2k−1 for some k ∈ N,
2 otherwise.

Complexity

To complete this example, we mention the explicit formula for the factor complexity of
uTM:

C(n) =






1 n = 0,
2 n = 1,
4 n = 2,

4n− 2k − 4 if 2k < n ≤ 3 · 2k−1 for some k ∈ N,
2n+ 2k+1 − 2 if 3 · 2k−1 < n ≤ 2k+1 for some k ∈ N.

(3.14)

3.3.3 Period doubling word

The period doubling word uPD is the unique fixed point of the substitution ϕ glanced already
in Section 2.2.13. We recall that ϕ(0) = 01, ϕ(1) = 00. Properties of this infinite word that
originates from the field of chaotic dynamics were first studied by Damanik [34]. The period
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doubling word has several peculiarities. It is a coding of the first difference of the Thue-Morse
word, i.e.,

(uPD)k = (uTM)k+1 − (uTM)k mod 2 for every k ∈ N0,

where (u)k denotes the (k + 1)-st letter of the corresponding infinite word u. In addition,
for every n ∈ N0, if we construct an infinite word writing down every n-th letter of uPD,
i.e., (uPD)n−1(uPD)2n−1(uPD)3n−1 . . . , we get again the period doubling word (possibly with
permuted letters).

BS factors and the second difference of complexity

The essential tool for the description of BS factors is the following lemma, where TPD(v) :=
ϕ(v)0 for every word v ∈ {0, 1}∗.

Lemma 3.3.2. Every BS factor v ∈ L(uPD) containing at least one letter 1 has two
interpretations (w0, 0, 1) and (w1, 0, 1) with ancestors w0, w1 in L(uPD), i.e., v = TPD(w).
Moreover, w is a BS factor of the same type as v.

• STRONG BS factors

V (1) = 0,

V (n) = TPD(V (n−1)) for n ≥ 2.
(3.15)

• WEAK BS factors
U (1) = 00,

U (n) = TPD(U (n−1)) for n ≥ 2.
(3.16)

• The only ORDINARY BS factor is ε.

Using Proposition 3.1.2 and having computed |V (n)| = 2n− 1 and |U (n)| = 3 · 2n−1 − 1, we
get the second difference of complexity in the following form

∆2C(n) =






1 if n = 2k − 1 for some k ∈ N,
−1 if n = 3 · 2k−1 − 1 for some k ∈ N,

0 otherwise.

LS factors and the first difference of complexity

There exists a unique infinite LS branch limn→∞ V (n), having V (n) as the longest common
prefix with the maximal LS factor U (n) for every n ∈ N.

Applying Equation (2.15), the explicit formula for the first difference of complexity is
obtained

∆C(n) =

{
2 if 2k ≤ n < 3 · 2k−1 for some k ∈ N,
1 otherwise.

Complexity

To conclude, let us provide the explicit formula for the factor complexity of uPD:

C(n) =






1 n = 0,
2 n = 1,
2n− 2k−1 if 2k ≤ n < 3 · 2k−1 for some k ∈ N,
n+ 2k if 3 · 2k−1 ≤ n < 2k+1 for some k ∈ N.

(3.17)
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3.3.4 Rote word

Let us denote by uR the fixed point of the non-primitive substitution ϕ defined by

ϕ(0) = 001, ϕ(1) = 111. (3.18)

We call uR the Rote word in order to recall Rote who was the first one to present a general
method for constructing infinite words of complexity 2n and who introduced uR as an example
of such words (see [99]). The Rote word uR is recurrent (it suffices to notice that the letter 0
occurs infinitely many times and that every factor is a subword of the prefix ϕn(0) for some n),
but not uniformly recurrent (there are blocks of 1’s of arbitrary lengths).

BS factors and the second difference of complexity

Basic, however essential for determining BS factors is the description of blocks of 1’s.

Observation 3.3.3. Let 01k0, k ∈ N, be a factor of uR, then k = 3n−1
2 for some n ∈ N.

Proof. Suppose there exists k ∈ N different from 3n−1
2 for all n ∈ N such that 01k0 ∈ L(uR).

Take the smallest one of such numbers k, clearly k > 1. The form of ϕ implies that
(01, 1k−10) and (01k, 0) are synchronization points (defined in Section 2.2.13: Ancestors
and synchronization points of substitutions). As ϕ is uniform (of length 3), we can write

01k0 = 01ϕ(1
k−1

3 )0. This is a contradiction with the minimality of k since 01
k−1

3 0 is
a factor of uR (it is the only ancestor of 01k0) and k−1

3 6= 3n−1
2 for all n ∈ N (otherwise

k = 3n+1−1
2 ).

The main role in the description of BS factors is played by the following lemma, where
TR(v) := 1ϕ(v) for every word v ∈ {0, 1}∗.

Lemma 3.3.4. Every BS factor v ∈ L(uR) containing the factor 00 has two interpretations
(0w, 2, 0) and (1w, 2, 0) with ancestors 0w, 1w in L(uR), i.e., v = TR(w). Moreover, w is
a BS factor of the same type as v.

• STRONG BS factors

V (1) = 1,

V (n) = TR(V (n−1)) = 1
3n

−1
2 for n ≥ 2.

(3.19)

Also ε is a strong BS factor.

• WEAK BS factors
U (1) = 0,

U (n) = TR(U (n−1)) for n ≥ 2.
(3.20)

• ORDINARY BS factors

11 . . . 1︸ ︷︷ ︸
k−times

, where k 6= 3n−1
2 for all n ∈ N.

(3.21)

Applying Proposition 3.1.2 and taking into account that |V (n)| = |U (n)| = 3n−1
2 , we get

the second difference of complexity ∆2C(n) = 0 for all n ∈ N and ∆2C(0) = 1.
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LS factors and the first difference of complexity

There exists a unique infinite LS branch limn→∞ V (n) = 1ω, having V (n) as the longest
common prefix with the maximal LS factor U (n+1) for every n ∈ N.

Applying Equation (2.15), the formula for the first difference of complexity takes a simple
form ∆C(n) = 2 for all n ∈ N and ∆C(0) = 1.

Complexity

To conclude, let us provide the explicit formula, obtained originally by Rote, for the factor
complexity of uR:

C(n) =

{
1 n = 0,
2n n ∈ N.

(3.22)

3.3.5 A palindromeless reversal closed word

An infinite word worth mentioning has been introduced by Berstel et al. in [16]. This word, say
z, is defined as

z = lim
n→∞

zn, where
zn+1 = zn01zn for all n ∈ N0,
z0 = 01.

(3.23)

It is useful to compute the length |zn| = 2(2n+1 − 1). For illustration, let us write down a prefix
of z

z = 010110010110100101011010011010010101100101101001011010011010 . . . (3.24)

The peculiarity of this word consists in the fact that even if z is uniformly recurrent with language
L(z) closed under reversal, z contains only palindromes of length ≤ 12. In other words, it shows
that the opposite implication in Proposition 2.2.3 does not hold. The complexity of z may be
quite easily derived using the following observation.

For every n ≥ 0, the word z can be factorized over the alphabet {zn, zn, 01, 10} as

z = zn01zn01zn10zn01zn01zn10zn10zn01zn01zn01zn10zn10zn01zn10zn10zn . . . ; (3.25)

that is, in such a way that zn and zn alternate regularly being separated either by 01 or by 10.
It can be shown that for n ≥ 2, the formula (3.25) determines all occurrences of zn, respectively
zn in z. With this observation at disposal, we may prove that z is not only uniformly recurrent,
but even linearly recurrent.

Proposition 3.3.5. The infinite word z is linearly recurrent with constant K = 31.

Proof. Let w ∈ {0, 1}, then every factor of length 3 contains w since z can be factorized over
the alphabet {01, 10}. Let |zn−1| ≤ |w| < |zn|, n ≥ 1, then observing (3.25), it is readily seen
that w is a factor of at least one of the following words: zn01zn, zn10zn, zn01zn, or zn10zn. By
definition, both zn+3 and zn+3 contain all four previous words. Again by (3.25), every factor of
z of length 2|zn+3| + 1 contains either zn+3 or zn+3, therefore it holds

R(|w|)
|w| ≤ 2|zn+3| + 1

|zn−1|
=

2n+4 − 1

2n − 1
≤ 31,

where R(n) has been defined in Section 2.2.4.
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BS factors and the second difference of complexity

• STRONG BS factors

of length < 14 01, 10, 0101, 1010, z1, z1,
of length ≥ 14 zn and zn for n ≥ 2.

(3.26)

• WEAK BS factors

of length < 14 10101, 01010, 10100101, 100101101001,
of length ≥ 14 zn01zn and zn10zn for n ≥ 1.

(3.27)

More precisely,

0zn01zn0, 1zn01zn1 ∈ L(z) and 0zn10zn0, 1zn10zn1 ∈ L(z).

• ORDINARY BS factors

0, 1, 010, 101, 0110, 1001, 100101, 101001. (3.28)

Considering Proposition 3.1.2, the second difference of complexity is deduced

∆2C(n) =






1 n = 0,
2 n = 2, 4, 6,

−2 n = 5,
−1 n = 8, 12,

0 otherwise.

LS factors and the first difference of complexity

There exists one infinite LS branch z = limn→∞ zn and two infinite sequences of maximal
LS factors (zn01zn)n≥1 and (zn10zn)n≥1.

The strong BS factor zn−1 is the maximal common prefix of z and zn01zn, and, also, of z
and zn10zn, for all n ≥ 1, while the strong BS factor zn is the longest common prefix of
zn01zn and zn10zn, for all n ∈ N.

Every LS factor of length ≥ |z2| = 14 is a prefix of z or of a maximal LS factor belonging
to the above infinite sequences.

0

1
-z

zn−1 01 zn−1

zn−1

-

10

01

10

01

10 zn

zn

zn

zn

•
•

-

-

� -
zn+1

� -
zn

zn01zn

zn10zn

Fig. 3.3: Illustration of a sector of the tree of LS factors for the infinite word z. For n ≥ 2, all
branches of lengths between |zn| and |zn+1| are drawn down.

LS factors of length < 14 may be moreover prefixes of maximal LS factors - weak BS
factors - listed in (3.27).
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0

1
ε

1 0
1 0

1
0 1 0 1

0 1 0 1 1 0 1 0 0 1

0 1

1 0 1 0
0 1 0 1 0 1 1 0
1 0 0 1 0 1 1 0

0 1
0
1 0

1 0 1 1 0 0 0. . .01
0 1 0 1 1 0 1 0. . .

Fig. 3.4: Illustration of the tree of LS factors for the infinite word z up to the level 14.

Applying (2.15), a simple formula for the first difference of complexity is obtained

∆C(n) =






1 n = 0,
2 n = 1, 2,
5 n = 9, 10, 11, 12,
6 n = 5, 7, 8,
4 otherwise.

Complexity

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 n ≥ 14

C(n) 1 2 4 6 10 14 20 24 30 36 41 46 51 56 4(n+ 1)

3.3.6 uβ associated with simple Parry numbers

As another example, let us present the description of special factors of infinite words uβ associ-
ated with simple Parry numbers, as derived by Frougny, Masáková, and Pelantová in [57]. Two
cases of dβ(1) = t1t2 . . . tm have been solved.

(a) t1 = t2 = · · · = tm−1 = t, t ≥ tm ≥ 1 (b) t1 > max{t2, . . . , tm−1}, t1 ≥ tm ≥ 1. (3.29)

The case (a) corresponds to the confluent Parry numbers β defined in Section 2.3.3.

BS factors and the second difference of complexity

The following list of BS factors with non-zero bilateral order (defined in (3.3)) is complete.

• STRONG BS factors form the set (V (n))∞n=1 given recurrently

(a) V (1) = 0t, (b) V (1) = 0t1 ,

for n ≥ 2 V (n) = ϕ(V (n−1))0t, for n ≥ 2 V (n) = ϕ(V (n−1))0tj ,
j = n mod (m− 1).

(3.30)
For every n ∈ N, #Lext(V (n)) = m, #Rext(V (n)) = 2, and the bilateral order
B(V (n)) = 1.

• WEAK BS factors form the set (U (n))∞n=1 given by

(a) U (1) = 0t+tm−1, (b) U (1) = 0t1+tm−1,

for n ≥ 2 U (n) = ϕ(U (n−1))0t, for n ≥ 2 U (n) = ϕ(U (n−1))0tj ,
j = n mod (m− 1).

(3.31)
For every n ∈ N, #Lext(U (n)) = 2, #Rext(U (n)) = 2, and B(U (n)) = −1.
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Applying Proposition 3.1.2, the formula for the second difference of complexity is obtained

∆2C(n) =






1 if n = |V (k)| for some k ∈ N,

−1 if n = |U (k)| for some k ∈ N,
0 otherwise.

(3.32)

Using the formula (2.19), the lengths |V (n)|, |U (n)| can be computed recurrently. It follows
then that

|V (n)| < |U (n)| < |V (n+1)| for all n ∈ N. (3.33)

LS factors and the first difference of complexity

Let us give an exhaustive description of the base of trees of LS factors. There exists
a unique infinite LS branch, namely uβ itself, satisfying Lext(uβ) = {0, 1, . . . ,m− 1}.
If tm = 1, then each LS factor is a prefix of uβ .

If tm ≥ 2, then each LS factor which is not a prefix of uβ has two left extensions and
is a prefix of a weak BS factor. More precisely, besides the infinite LS branch uβ, there
are the following m trees of LS factors. For every i ∈ {1, . . . ,m}, there exists a tree v(i)

whose set of branches is (U (i+km))k∈N0 and whose left extensions are Lext(v(i)) = {i − 1
mod m, i mod m}. There is a branching in the tree v(i) if and only if the branch is
labeled with V (i+km) for some k ∈ N0, as illustrated in Figure 3.5.

For all i ∈ {1, . . . ,m}

i mod m

i− 1 mod m

-
V (i)

U (i)

•
• •U

(i+m)

•
V (i+m)

...
0

m− 1

-
uβ

Fig. 3.5: Illustration of the base of the trees of LS factors for uβ associated with a simple Parry
number β, m > 2. The base contains m+ 1 trees, m of them having two left extensions and one
of them having m left extensions.

For m = 2, i.e., for a quadratic number β, the base of the trees of LS factors is reduced to
one tree containing an infinite LS branch uβ and truncated branches - maximal LS factors
- U (n) sharing with uβ the strong BS factors V (n) as the longest common prefixes. See
Figure 3.6.

Applying Equation (2.15), the formula for the first difference of complexity is obtained.

For tm = 1, we have ∆C(n) = m− 1 for every n ∈ N0.

For tm ≥ 2,

∆C(n) =

{
m if |V (k)| < n ≤ |U (k)| for some k ∈ N,
m− 1 otherwise.
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0

1
ε 0 0

0

1 0 0 1 0 0
1

0 0 1 0 0 1 0· · ·
0 0

-�
V (1) = 00

�

� -U (2) = 00100100100

-U
(1) = 000

� -
V (2) = 00100100

Fig. 3.6: Illustration of the tree of LS factors for the infinite word uβ with dβ(1) = 22, i.e., being
the fixed point of the substitution ϕ(0) = 001, ϕ(1) = 00. The two shortest strong BS factors
V (1), V (2) as well as the two shortest maximal LS factors (or, equivalently, weak BS factors)
U (1), U (2) are pointed out.

Complexity

For tm = 1, the complexity satisfies C(n) = (m − 1)n + 1. Proposition 2.3.1 implies that
uβ is an Arnoux-Rauzy word if and only if β is a confluent Parry unit, i.e., dβ(1) = tm−11
for some t ∈ N.

For tm ≥ 2, the precise formula is technical since it depends on the lengths of BS fac-
tors given by recurrent formulae. Let us just point out that in both considered cases of
parameters (3.29), we have

(m− 1)n + 1 ≤ C(n) ≤ mn.

Another interesting question concerning complexity sounds: “For which simple Parry numbers
β, the complexity of uβ associated with β is affine; that is, such that there exist constants A,B
satisfying C(n) = An + B for all n ∈ N0?” Bernat, Masáková, and Pelantová in [14] provide
a complete answer in the following theorem.

Theorem 3.3.6. Let uβ be the infinite word associated with a simple Parry number β with the
Rényi expansion of unity dβ(1) = t1t2 . . . tm. Then the factor complexity of uβ is affine if and
only if the coefficients t1, t2, . . . , tm satisfy tm = 1 and tj . . . tm−1t1 . . . tj−1 � t1 . . . tm−1 for all
j ∈ {2, . . . ,m− 1}, where � stands for ‘lexicographically less or equal’.

3.3.7 uβ associated with non-simple Parry numbers

According to Section 2.3.1, non-simple Parry numbers have an eventually periodic Rényi expan-
sion of unity dβ(1) = t1t2 . . . tm(tm+1 . . . tm+r)

ω, where m, r ∈ N are chosen to be minimal, and
the associated infinite word uβ is the fixed point of the substitution (2.24). The determination
of LS factors turns out to be even more complicated than in the case of simple Parry numbers
and only infinite LS branches have been recovered by Frougny, Masáková, Pelantová in [58],
under a rather restrictive assumption of all ti’s positive.

Infinite LS branches
Two very diverse situations occur in dependence on the period length r.

• If r ≥ 2, the unique infinite LS branch is uβ itself and Lext(uβ) = {m, . . . ,m+r−1}.
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• If r = 1 and if we denote by t := min{tm, tm+r}, there exist exactly m different LS
branches

v(1) = 0tmϕm(0tm)ϕ2m(0tm) . . . ,

v(2) = ϕ(v(1)),
...

v(m) = ϕ(v(m−1)),

each of them having only two left extensions, more precisely, Lext(v(i)) = {i− 1, i}.

3.4 Complexity of uβ associated with non-simple quadratic Parry

numbers

Let us recall that the Rényi expansion of a non-simple quadratic Parry number β is of the form
dβ(1) = pqω, where p > q ≥ 1, and uβ is the fixed point of the substitution ϕ given in (2.27).

uβ =
(
(0p1)(0p1) . . . (0p1)︸ ︷︷ ︸

p times

0q1
)p

(0p1)(0p1) . . . (0p1)︸ ︷︷ ︸
q times

0q1 . . . (3.34)

As stated in Remark 2.3.4, uβ is a Sturmian word if and only if p = q + 1. In consequence,
we can restrict our considerations to p > q+1, provided our aim is to determine the complexity.

We have seen in Section 3.3.7 that, so far, the special factors and the complexity of the
infinite words uβ associated with general non-simple Parry numbers are not deeply understood.

Let us provide the case of the infinite word uβ associated with quadratic non-simple Parry
numbers with a complete description of BS factors and the second difference of complexity, LS
factors and the first difference of complexity, and, finally, an exact formula for the complexity.

First of all, some simple, but important properties of the substitution ϕ are observed.

Observation 3.4.1. Let 10k1 be a factor of uβ, then k = p or k = q.

Observation 3.4.2. Let v be any word in L(uβ) containing at least one 1. One may rewrite
v as v = 0k11v′. Then, it is obvious that (0k11, v′) is a synchronization point of v. Similarly,
v may be rewritten as v = v′′10k2 and (v′′1, 0k2) is a synchronization point of v. This fact
together with the injectivity of ϕ implies that there exists a unique factor w ∈ L(uβ) such that
v = 0k11ϕ(w)0k2 . Thus, the set of ancestors of v is a subset of {0w0, 0w1, 1w0, 1w1}.

Example: Let w = 010q10p10p10q+1. Observing (3.34), we see that w is a factor of uβ.
According to Observation 3.4.2, we may write w = 01ϕ(100)0q+1 and the set of ancestors of w
is {01000, 11000}. Since 01000 ∈ L(uβ) and 11000 6∈ L(uβ), w has a unique ancestor 01000 in

L(uβ).

Of significant importance is the map T : {0, 1}∗ → {0, 1}∗ defined by

T (w) = 0q1ϕ(w)0q . (3.35)

Lemma 3.4.3. Let T be the map defined in (3.35). Then

1. T (L(uβ)) ⊂ L(uβ).

2. Let w be a factor of uβ , then

{(a, b)| a, b ∈ {0, 1}, awb ∈ L(uβ)} = {(a, b)| a, b ∈ {0, 1}, aT (w)b ∈ L(uβ)}.
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3. Let v be a BS factor of uβ containing at least one letter 1, then there exists a unique factor
w of uβ such that v = T (w).

4. Let w, v be factors of uβ, then w is a prefix of v if and only if T (w) is a prefix of T (v).

Proof. 1. Take an arbitrary factor w ∈ L(uβ). Then w is extendable to the right, and, since
uβ is recurrent, w is extendable also to the left. In other words, there exists a, b ∈ {0, 1} such
that awb is also a factor of uβ . As uβ is a fixed point of ϕ, the image ϕ(awb) belongs to L(uβ).
Finally, T (w) is a factor of uβ because T (w) is a subword of ϕ(awb).

2. Let 1w1 be a factor of L(uβ), then, since uβ is recurrent, there exists a ∈ {0, 1} such that
a1w1 is as well a factor of uβ. Applying ϕ, we learn that ϕ(a1w1) = ϕ(a)T (w)1 is a factor of
uβ, which proves that 1T (w)1 belongs to L(uβ). The other cases 0w0, 0w1, 1w0 are analogous.

Let 0T (w)1 ∈ L(uβ). Using Observation 3.4.1, the word v = 0p1ϕ(w)0q1 is also a factor
of uβ . Applying Observation 3.4.2, v has a unique ancestor 0w1, which is thus necessarily in
L(uβ). All the other cases 0T (w)0, 1T (w)0, 1T (w)1 are similar.

3. Observation 3.4.1 implies that each BS factor v containing at least one letter 1 has prefix
0q1 and suffix 10q. According to Observation 3.4.2, there exists a unique w such that v = T (w).

4. The implication ⇒ is obvious noticing that 0q is prefix of ϕ(a) for a ∈ {0, 1}. The opposite
implication ⇐ follows taking into account that {ϕ(0), ϕ(1)} is a prefix code; that is, ϕ(0) is not
a prefix of ϕ(1) and vice versa.

BS factors and the second difference of complexity

Let us start the study of BS factors with the simplest ones - BS factors containing no
letter 1.

Lemma 3.4.4. Among factors that contain no letter 1, there are the following BS factors
(with each factor w, the extension set {(a, b)| a, b ∈ {0, 1}, awb ∈ L(uβ)} is written down,
if not evident):

one strong BS factor 0q,
one weak BS factor 0p−1, {(0, 1), (1, 0)},
ordinary BS factors 0r, r ∈ {1, . . . , p− 2}, r 6= q, {(0, 0), (0, 1), (1, 0)},
ordinary BS factor ε, {(0, 0), (0, 1), (1, 0)}.

Proof. To verify that the above listed factors occur with the listed extensions in uβ, it is
enough to observe the beginning of uβ in (3.34). To show afterwards that there are no
other extensions, it suffices to take into account the form of blocks of zeros separating
consecutive 1’s (Observation 3.4.1) and the fact that p > q + 1.

As an immediate consequence of Lemma 3.4.4, Items 2. and 3. of Lemma 3.4.3, and
Observation 3.4.2, a complete list of BS factors is obtained.

Corollary 3.4.5. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) =
0p1, ϕ(1) = 0q1, where p − 1 > q ≥ 1. The set (V (n))∞n=1 of all strong BS factors is
given recurrently by

V (1) = 0q,

V (n) = T (V (n−1)) for n ≥ 2.
(3.36)

The set (U (n))∞n=1 of all weak BS factors is

U (1) = 0p−1,

U (n) = T (U (n−1)) for n ≥ 2.
(3.37)
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The set of all ordinary BS factors (W
(n)
r )∞n=1, r ∈ {0, . . . , p− 2}, r 6= q, has the following

form

W
(1)
0 = ε,

W
(1)
r = 0r, r 6= 0,

W
(n)
r = T (W

(n−1)
r ) for n ≥ 2.

(3.38)

According to Proposition 3.1.2, the second difference of complexity obeys the following
formula

∆2C(n) =






1 if n = |V (k)| for some k ∈ N,

−1 if n = |U (k)| for some k ∈ N,
0 otherwise.

(3.39)

Recurrent formulae for the lengths of V (n), U (n)

In order to compute lengths of weak and strong BS factors, we shall apply Equation (2.19).
Let us recall that the substitution matrix of ϕ has been determined in Section 2.3.4. The
recurrent definition of V (n) in (3.36) and U (n) in (3.37) leads to the following formulae for
all n ∈ N:

(
|V (n+1)|0
|V (n+1)|1

)
=
(
|V (n)|0, |V (n)|1

)( p 1
q 1

)
+

(
2q
1

)
, where |V (1)|0 = q, |V (1)|1 = 0,

(
|U (n+1)|0
|U (n+1)|1

)
=
(
|U (n)|0, |U (n)|1

)( p 1
q 1

)
+

(
2q
1

)
, where |U (1)|0 = p−1, |U (1)|1 = 0.

As a direct consequence of the above recurrent formulae, we deduce the ordering of the
lengths of strong and weak BS factors:

|V (n)| < |U (n)| < |V (n+1)| for all n ∈ N. (3.40)

LS factors and the first difference of complexity

As each LS factor is the prefix of an infinite LS branch or of a maximal LS factor (or,
equivalently, weak BS factor), it remains to find the infinite LS branches on order to have
described all LS factors.

Lemma 3.4.6. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1. Then, there exists at most one infinite LS branch of uβ.

Proof. As the substitution ϕ is primitive, Section 3.3 claims that ∆C(n) is bounded.
Proposition 3.1.1 thus implies that the number of infinite LS branches of uβ is finite.
Suppose there exists more infinite LS branches. Choose two of them, say v(1) and v(2),
whose distance d(v(1), v(2)) (defined in Section 2.2.2) is minimal. Nevertheless, in accor-

dance with properties of the map T , the words T (v(1)) = limn→∞ T (v
(1)
0 v

(1)
1 v

(1)
2 . . . v

(1)
n )

and T (v(2)) = limn→∞ T (v
(2)
0 v

(2)
1 v

(2)
2 . . . v

(2)
n ) are also infinite LS branches of uβ and share

a longer prefix, i.e., d(v(1), v(2)) > d
(
T (v(1)), T (v(2))

)
, which is a contradiction.

Proposition 3.4.7. The only infinite LS branch of uβ is limn→∞ V (n).
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Proof. The fact that V (1) is a proper prefix of V (2) together with Item 4. of Lemma 3.4.3
and the completeness of the space A∗ ∪ AN0 equipped with the metric d guarantees that
limn→∞ V (n) is an infinite word. Clearly, it is an infinite LS branch since V (n) are LS
factors of uβ.

The tree of LS factors consists of the infinite LS branch limn→∞ V (n) and the truncated
branches U (n) sharing with the infinite LS branch the strong BS factor V (n) as the maximal
common prefix. See Figure 3.1. The formula for the first difference of complexity is
straightforward:

∆C(n) =

{
2 if |V (k)| < n ≤ |U (k)| for some k ∈ N,
1 otherwise.

(3.41)

Complexity

To conclude, let us write down the formula for the factor complexity of uβ .

Theorem 3.4.8. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1. Then

C(n + 1) =






2 + n if n ≤ |V (1)|,
2 +

∑k−1
i=1 (|U (i)| − |V (i)|) + 2n− |V (k)| if |V (k)| < n ≤ |U (k)|, k ∈ N,

2 +
∑k

i=1(|U (i)| − |V (i)|) + n if |U (k)| < n ≤ |V (k+1)|, k ∈ N.

Remark 3.4.9. Let us provide some details on the Sturmian case. It is known that any Sturmian
word u has only one infinite LS branch and no maximal LS factors, thus, all BS factors of u
are ordinary. For Sturmian words uβ, i.e., with parameters p − 1 = q, it is easy to show that
Lemma 3.4.3 keeps its validity. As a direct consequence, the following set of BS factors is
obtained:

{W (n)
r | 0 ≤ r ≤ p− 1, n ∈ N},

where W
(n)
r = T (W

(n−1)
r ), W

(1)
r = 0r for 1 ≤ r ≤ p − 1 and W

(1)
0 = ε, and, the extension set

of W
(n)
r is {(0, 0), (0, 1), (1, 0)} for r < p − 1 and {(0, 1), (1, 0), (1, 1)} for r = p − 1. Evidently,

it holds for BS factors that W
(1)
r−1 is a prefix of W

(1)
r and W

(1)
p−1 is a prefix of W

(2)
1 . Thus,

according to Item 4. of Lemma 3.4.3, all BS factors are prefixes of the infinite LS branch given

by limn→∞W
(n)
1 .
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Chapter 4

Palindromic complexity

Palindromes, words that remain the same when read backwards, is a popular linguistic game.
The longest palindrome listed in the Oxford Dictionary is “tattarrattat”. This word is a neolo-
gism created by James Joyce to express tap on the door in his novel Ulysses. Not only words,
but also palindromic numbers have been attracting attention for ages. Such numbers appear
already in a sanskrit manuscript Ganitasarasâmgraha dated around 850 AD. The most famous
king of Bohemia – Charles IV – seems to have been fascinated by palindromes as well. He
inaugurated the Charles Bridge in Prague on the 9th of July 1357 at 5 o’clock 31 minutes. The
palindrome obtained writing down year-day-month-hour-minutes of the inauguration consists
moreover uniquely of odd numbers going from 1 to 9 and back.

However, palindromes occur in serious disciplines as well. For instance, nucleotides in most
of human genomes form palindromic sequences, or infinite words rich in palindromes are suitable
models for the potential of Schröodinger operators linked with quasicrystalline materials (see
the paper of Hof, Knill, and Simon [70]).

In this chapter, we study the palindromic complexity of infinite words, which describes
how rich an infinite word is in palindromes of a fixed length. After an extension of basics
from Section 2.2.10, facilitating the study of palindromic complexity, we recall the palindromic
complexity for infinite words in our illustrative sample (introduced in Chapter 3). Newly, we
deduce an exact formula for the palindromic complexity of uβ associated with a quadratic non-
simple Parry number.

4.1 Extended preliminaries

In order to investigate the palindromic complexity of an infinite word u over an alphabet A,
defined in Section 2.2.10, it is suitable to introduce some further notions. Intuitive terms are
those ones of central factors and centers of palindromes. A palindrome w′ is a central factor
of a palindrome w if there exists a finite word v such that w = vw′v. A letter a is a center of
a palindrome w if it is its central factor. The center of a palindrome of an even length is the
empty word ε. We say that a ∈ A is a palindromic extension of a palindrome w ∈ L(u) if awa
belongs to L(u). A palindrome w ∈ L(u) is called maximal if awa 6∈ L(u) for any letter a ∈ A,
or, in other words, if the only palindrome in L(u) having w as its central factor is w itself.

A complement concept to a maximal palindrome is an infinite palindromic branch. Let
v = v0v1v2 . . . be an infinite word over the alphabet A and let a ∈ {ε}∪A. Denote by v the left-
sided infinite word v = . . . v2v1v0. If, for every n ∈ N0, the palindrome w = vnvn−1...v0av0v1...vn
belongs to L(u), then the biinfinite word vav is called an infinite palindromic branch of u with
the center a; we also say that the palindrome w is a central factor of the infinite palindromic
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branch vav.
We will often use the fact (valid thanks to the completeness of the metric space A∗∪AN0) that

any sequence (w(n))n∈N of palindromes of strictly increasing length such that w(n) is a central
factor of w(n+1) for all n ∈ N determines uniquely an infinite palindromic branch.

Example: For the infinite word u = (010)ω , the only maximal palindrome is 0 and there are

two infinite palindromic branches, one of them with the center ε and of the form vv and the

other one with the center 1 and of the form v010v, where v = (010)ω .

Since every palindrome is either a central factor of a maximal palindrome or of an infinite
palindromic branch, once all maximal palindromes and infinite palindromic branches described,
the palindromic complexity is fully determined.

4.2 Bounds on palindromic complexity

A nice survey on the palindromic complexity of several concrete infinite words and some larger
classes of infinite words by Allouche et al. is to consult in [3]. It is natural to study the relation
between factor complexity and palindromic complexity. The authors of [3] have derived an upper
bound on the palindromic complexity of aperiodic words in terms of their factor complexity:

P(n) < 16
n
C(n+ ⌊n4 ⌋) for all n ∈ N. (4.1)

For infinite uniformly recurrent words, the following upper bound on the palindromic complexity
using the first difference of complexity has been obtained by Baláži, Masáková, and Pelantová
in [10]:

P(n) + P(n + 1) ≤ ∆C(n) + 2 for all n ∈ N0. (4.2)

Remark 4.2.1. This estimate holds even for infinite words with language closed under rever-
sal that are not necessarily uniformly recurrent. We recall that closeness under reversal implies
recurrence and recurrent words have strongly connected Rauzy graphs (see Section 2.2.12). Close-
ness under reversal and strongly connected Rauzy graphs were sufficient for the proof of (4.2)
in [10].

This upper bound is better than the general one from (4.1) for infinite words with language
closed under reversal and with factor complexity equal to a polynomial of degree ≤ 16. Infinite
words that realize the equality in (4.2) is the object of our further study.

Definition 4.2.2. An infinite word realizing the equality in (4.2) is called opulent in palin-
dromes.

Hereinafter, we start as usually with the known results on palindromes of Sturmian, AR,
and m-iet words. They represent the best-known examples of words opulent in palindromes.

We mention what is known about palindromes and the palindromic complexity for the in-
finite words whose special factors and complexity have been described in Section 3.3. Since
the estimate (4.2) together with Equation (3.9) guarantees that infinite words with sublinear
complexity have bounded palindromic complexity, it follows that the palindromic complexity of
each infinite word in our sample is bounded. We decide moreover for each sample word whether
it is opulent in palindromes or not. (We show later that also the infinite words uβ associated
with quadratic non-simple Parry numbers are opulent in palindromes.)
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4.2.1 Sturmian words, AR words, and m-iet words

Every Sturmian word has one palindrome of every even length and two palindromes of every
odd length (Theorem 2.4.1). Similarly, both AR words of order m (as proved by Damanik and
Zamboni in [40]) and m-iet words (as shown by Baláži, Masáková, and Pelantová in [10]) have
one palindrome of every even length and m palindromes of every odd length. The palindromic
complexity together with their first difference of complexity (Section 3.3.1) implies that all these
words are opulent in palindromes.

4.2.2 Thue-Morse word

Palindromes of the Thue-Morse word were originally determined by de Luca and Varricchio
in [86]. Crucial for the determination of palindromes in uTM is the following lemma.

Lemma 4.2.3. Let w be a factor of uTM . Then w is a palindrome if and only if ϕ2(w) is
a palindrome. Moreover, w and ϕ2(w) has the same number of palindromic extensions.

Maximal palindromes

The word uTM contains only two maximal palindromes of odd length:

010, 101,

while there exist two infinite sequences of maximal palindromes of even length:

(
ϕ2n(010)

)
n≥1

and
(
ϕ2n(101)

)
n≥1

.

Infinite palindromic branches

There are two infinite palindromic branches of uTM given by the following sequences of
their central factors

v(1) =
(
ϕ2n(1)

)
n≥1

and S(v(1)) =
(
ϕ2n(0)

)
n≥1

,

where the maximal palindrome ϕ2n(010) shares with the infinite palindromic branch v(1)

as the longest common central factor ϕ2n(1), and ϕ2n(101) shares with S(v(1)) the central
factor ϕ2n(0) as illustrated in Figure 4.1.

Palindromic complexity

We have
for n odd P(1) = 2, P(3) = 2, P(n) = 0 for n ≥ 5,

for n even P(n) =

{
4 if 4k < n ≤ 3 · 4k for some k ∈ N,
2 otherwise.

(4.3)

Let us remark that the Thue-Morse word is not opulent in palindromes. For instance, if we set
n := 2 ·4k, k ∈ N, then P(n+1)+P(n) = 4 and ∆C(n) = 4, hence P(n+1)+P(n) < ∆C(n)+2.
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-v(1)
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ϕ2n(1)
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-S(v(1))� � -
ϕ2n(0)

� -ϕ2n(101)

� -
ϕ2n+2(0)

���
HHH ••

HHHj
����

Fig. 4.1: Illustration of a sector of the infinite palindromic branches and of the maximal palin-
dromes of uTM between lengths |ϕ2n(0)| = 4n and |ϕ2n+2(0)| = 4n+1.

4.2.3 Period doubling word

The description of the palindromic structure of uPD has been provided by Damanik [34]. The
essential role for the determination of palindromes in uPD is played by the following lemma.

Lemma 4.2.4. Let w be a factor of uPD. Then w is a palindrome if and only if TPD(w) = ϕ(w)0
is a palindrome. Moreover, w has the same number of palindromic extensions as TPD(w).

Maximal palindromes

The word uPD has only one maximal palindrome of even length:

U (1) = 00,

and there exists an infinite sequence of maximal palindromes of odd length (U (n))n∈N. (See
Section 3.3.3 for the definition of U (n), V (n).)

There are two infinite palindromic branches of uPD given by the following sequences of
their central factors

v(1) =
(
V (2n−1)

)
n≥1

, v(2) =
(
V (2n)

)
n≥1

.

The center of v(1) is 0 and v(1) shares V (2n−1) as the longest central factor with the maximal
palindrome U (2n) for every n ∈ N. The center of v(2) is 1 and v(2) shares V (2n) as the
longest central factor with the maximal palindrome U (2n+1) for every n ∈ N.

Palindromic complexity

We deduce

for n even P(0) = 1, P(2) = 1, P(n) = 0 for n ≥ 4,

for n odd P(n) =






2 if n = 1,
4 if 2k < n ≤ 3 · 2k−1 − 1 for some k ∈ N, k ≥ 2,
3 otherwise.

(4.4)

Comparing with the formula for the first difference of complexity from Section 3.3.3, we
get P(n) + P(n + 1) = ∆C(n) + 2. The period doubling word is thus another example of
an infinite word opulent in palindromes.
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4.2.4 Rote word

Similarly as in the previous cases, the most important tool is a lemma revealing some relation
between palindromes and their images.

Lemma 4.2.5. Let w be a factor of uR. Then w is a palindrome if and only if TR(w) = 1ϕ(w)
is a palindrome. Moreover, w and TR(w) have the same number of palindromic extensions.

As a first observation, let us point out that L(uR) is closed under reversal. The explanation
is as follows. Any factor w occurs in ϕn(0) for some n, it is then not difficult to see that ϕn(0)
is a suffix of T nR(0), which is a palindromic factor of uR. Hence, w is also a factor of uR.

Maximal palindromes

The word uR has only one maximal palindrome with the center 0:

U (1) = 0,

and one with central factor 00:
U (2) = 1001,

there exists an infinite sequence (U (n))n∈N of maximal palindromes with either the center
1, if n is odd, or the central factor 11, if n is even.

There are two infinite palindromic branches of uR given by the following sequences of their
central factors

v(1) =
(
V (2n−1)

)
n≥1

, v(2) =
(
V (2n)

)
n≥1

.

The center of v(1) is 1 and v(1) shares V (2n−1) as the longest central factor with the maximal
palindrome U (2n+1) for every n ∈ N. The center of v(2) is ε and v(2) shares V (2n) as the
longest central factor with the maximal palindrome U (2n+2).

Palindromic complexity

We derive a nice formula for the palindromic complexity

P(n) = 2 for all n ∈ N and P(0) = 1. (4.5)

Comparing with the formula for the first difference of complexity from Section 3.3.4, we
deduce P(n) + P(n + 1) = ∆C(n) + 2. The Rote word is thus a further example of an
infinite word opulent in palindromes.

4.2.5 A palindromeless reversal closed word

As another example, we consider the infinite word z (defined by (3.23)). We find all fac-
tors of length 13 and 14, which is a simple task thanks to the linear recurrence of z with
constant 31 (Proposition 3.3.5). By inspection, we see that no palindromes of length > 12
are contained in z. More precisely, the complete list of the maximal palindromes of z is:
10101, 01010, 10100101, 100101101001.
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4.2.6 uβ associated with simple Parry numbers

The palindromic structure of uβ has been studied by Ambrož et al. in [4] for confluent Parry
numbers since it is the only case for which L(uβ) is closed under reversal (see Proposition 2.3.1),
and, therefore, uβ may have an infinite number of palindromes. Let us recall that such an infinite
word uβ is the fixed point of the substitution

ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m− 2) = 0t(m− 1), ϕ(m− 1) = 0s, (4.6)

where t ≥ s ≥ 1.
If s = 1, then according to Section 3.3.6, the word uβ is an Arnoux-Rauzy word, and,

consequently, its palindromic complexity is known (consult Section 4.2.1).
In the sequel, we provide the list of maximal palindromes and infinite palindromic branches.

The basic observation for the derivation of this list is the following lemma, which moreover
guarantees that uβ contains infinitely many palindromes.

Lemma 4.2.6. Let uβ be an infinite word associated with a confluent Parry number β and let
w be its factor. Then w is a palindrome if and only if ϕ(w)0t is a palindrome.

Maximal palindromes and palindromes with two palindromic extensions

The set of all maximal palindromes coincides with the set of all weak BS factors {U (n)|n ∈
N}, defined in (3.31), and the set of all palindromes with two palindromic extensions
is equal to the set of all strong BS factors {V (n)|n ∈ N}, defined in (3.30). The other
palindromes have exactly one palindromic extension. This fact together with the formula
for the second difference of complexity from (3.32) implies the equality

P(n + 2) − P(n) = ∆2C(n) for all n ∈ N0.

Performing a simple calculation, one gets finally

P(n) + P(n+ 1) = ∆C(n) + 2 for every n ∈ N0.

In other words, uβ associated with a confluent Parry number β is an example of an infinite
word opulent in palindromes.

Infinite palindromic branches

We write down not only infinite palindromic branches, but also the longest common central
factors they share with the maximal palindromes having the same center. The situation
is diversified in dependence on the parity of parameters t and s.

• If t is even and s even, then uβ has a unique infinite palindromic branch which is
given by the sequence of its central factors

(
V (n)

)
n≥1

and has the center ε. For every

n ∈ N, V (n) is the longest common central factor of the infinite palindromic branch
and the maximal palindrome U (n+m). Every palindrome with the center k − 1 is the
central factor of the maximal palindrome U (k), k ∈ {1, 2, . . . ,m}.

• If t is even and s odd, then there exist m+ 1 infinite palindromic branches, namely:(
V (n)

)
n≥1

with the center ε and having the common central factor V (n) with U (n) for

every n ∈ N, and, for k ∈ {1, 2, . . . ,m},
(
W

(k+mn)
1

)
n≥0

with the center k− 1, defined

by W
(1)
1 = 0, W

(n)
1 = ϕ(W

(n−1)
1 )0t for all n ∈ N.
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• If t is odd and s even, then there are m infinite palindromic branches, namely: for
k ∈ {1, 2, . . . ,m}, the branch

(
V (k+mn)

)
n≥1

has the center k−1 and the central factor

V (k+mn) in common with U (k+mn+1) for all n ∈ N0. All palindromes of even length
are central factors of U (1).

• If t is odd and s odd, then uβ possesses m+ 1 infinite palindromic branches, namely:(
V (k+(m+1)n)

)
n≥0

for k ∈ {1, 2, . . . ,m + 1} with the center k − 1 if k 6= m + 1 and

ε if k = m + 1, and sharing the central factor V (k+(m+1)n) with U (k+(m+1)n) for all
n ∈ N0.

Palindromic complexity

The exact formula for the palindromic complexity is straightforward with the previous
paragraph in hand, however, it is rather technical. In consequence, we prefer to summarize
that for n large and

t even, s even, m+ 1 ≤ P(2n) ≤ m+ 2 and P(2n + 1) = 0,
t even, s odd, 1 ≤ P(2n) ≤ 2 and P(2n + 1) = m,
t odd, s even, P(2n) = 0 and m+ 1 ≤ P(2n + 1) ≤ m+ 2,
t odd, s odd, 1 ≤ P(2n) ≤ 2 and m ≤ P(2n + 1) ≤ m+ 1.

4.3 Palindromic complexity of uβ associated with quadratic non-

simple Parry numbers

For the study of the palindromic complexity of infinite words uβ associated with non-simple
Parry numbers β, it is meaningful to restrict the considerations to the quadratic numbers. The
word uβ associated with a non-simple Parry number β may have infinitely many palindromes
only if β is a quadratic number (combine Propositions 2.2.3 and 2.3.2). We shall see immediately
that the infinite words associated with quadratic non-simple Parry numbers contain indeed an
infinite number of different palindromes.

Let us recall that the infinite word uβ is the fixed point of the substitution ϕ defined in (2.27)
by ϕ(0) = 0p1, ϕ(0) = 0q1, p > q ≥ 1. In reference to Remark 2.3.4, uβ is a Sturmian word if
and only if p = q + 1. The palindromic complexity of Sturmian words is known, therefore, we
restrict our considerations to p > q + 1.

Similarly as in the study of special factors and complexity, the map T defined in (3.35) plays
an essential role in the determination of palindromic complexity.

Lemma 4.3.1. Let T be the map defined in (3.35) and let w be a factor of uβ. Then w
is a palindrome if and only if T (w) is a palindrome. Moreover, w has the same palindromic
extensions as T (w).

Proof. To prove both implications, it suffices to notice that 1ϕ(a) = ϕ(a)1 for a ∈ {0, 1}. The
implication ⇐ follows using in addition the fact that {ϕ(0), ϕ(1)} is a prefix code.

The second statement is an immediate consequence of Item 2. of Lemma 3.4.3.

Proposition 4.3.2. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1, and let w be a palindromic factor of uβ. Then

1. w is a maximal palindrome ⇔ w = U (n) for a positive integer n.

2. w has two palindromic extensions ⇔ w = V (n) for a positive integer n.

3. w has one palindromic extension ⇔ w 6= U (n) ∧ w 6= V (n) for all n ∈ N.
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Proof. 1. (⇒): Let w be a maximal palindrome, then the set of extensions {(a, b)| a, b ∈
{0, 1}, awb ∈ L(uβ)} is a subset of {(0, 1), (1, 0)}. On the other hand, since the infinite word uβ
is recurrent and its language L(uβ) is closed under reversal, the sets even coincide {(a, b)| a, b ∈
{0, 1}, awb ∈ L(uβ)} = {(0, 1), (1, 0)}. Thus, w is a weak BS factor and is therefore necessarily
equal to U (n) for some n ∈ N. (⇐): The fact that all weak BS factors are palindromes is
guaranteed by Lemma 4.3.1.
2. (⇒): Let w be a palindrome with two palindromic extensions, then Corollary 3.4.5 together
with Lemma 3.4.4 and Item 2. of Lemma 3.4.3 state that w is a strong BS factor, hence, w is
equal to V (n) for some n ∈ N. (⇐): Again, the fact that all strong BS factors are palindromes
follows from Lemma 4.3.1.
3. is obvious - there are no other possibilities for palindromic extensions over a binary alphabet.

It is interesting to notice that sequences U (n) of weak BS factors and V (n) of strong BS factors
play an important role not only in computing the factor complexity, but also in determining the
palindromic complexity. For illustration, consider the example from Figure 3.1 in Section 3.4
and check that the strong and weak BS factors illustrated there are indeed palindromes.

Using the inequality |V (n)| < |U (n)| < |V (n+1)| from (3.40) for all n ∈ N, we obtain the
following corollary of Proposition 4.3.2.

Corollary 4.3.3. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1. Then

P(n+ 2) − P(n) =






1 if n = |V (k)| for some k ∈ N,

−1 if n = |U (k)| for some k ∈ N,
0 otherwise.

Combining with the formula from (3.39), we can derive a simple connection of palindromic
complexity with the second difference of complexity:

∆2C(n) = P(n + 2) − P(n) .

This relation is essential in order to show that the word uβ is another example of an infinite
word opulent in palindromes.

Corollary 4.3.4. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1. Then

P(n + 1) + P(n) = ∆C(n) + 2 for all n ∈ N0 . (4.7)

Proof. We have
P(n + 1) + P(n) = P(0) + P(1) +

n∑

i=1

(
P(i + 1)−P(i− 1)

)
=

= 1 + 2 +

n∑

i=1

∆2C(i− 1) =

= 3 +
n∑

i=1

(
∆C(i) − ∆C(i− 1)

)
=

= 3 + ∆C(n) − ∆C(0) =
= ∆C(n) + 2.

A direct consequence of the above corollary and the formula (3.41) is an upper bound on
the palindromic complexity of uβ in the form P(n+ 1) + P(n) ≤ 4.

59



4.3.1 Centers of palindromes

We have seen that the set of palindromes of uβ is closed under the map w 7→ T (w) = 0q1ϕ(w)0q .
Let us study how T acts on the central factors of palindromes.

Lemma 4.3.5. Let w, v be palindromes in uβ . If w is a central factor of v, then T (w) is a central
factor of T (v).

Proof. Let v = w′0w0w′ for a w′ ∈ L(uβ). Then T (v) = 0q1ϕ(w′)0p1ϕ(w)0p1ϕ(w′)0q. According
to Lemma 4.3.1, T (v) is a palindrome, and clearly, T (w) = 0q1ϕ(w)0q is its central factor. The
proof is similar for v = w′1w1w′.

Now, using Lemma 4.3.5, we can describe how the center of the palindrome T (w) depends
on the center of the palindrome w.

Lemma 4.3.6. Let w be a palindromic factor of uβ.

(i) If w has the center ε, then T (w) has the center 1.

(ii) If w has the center 0, then T (w) has the center

{
0 for p odd,
ε for p even.

(iii) If w has the center 1, then T (w) has the center

{
0 for q odd,
ε for q even.

Proof. Let us verify for example the statement (ii). Using Lemma 4.3.5, it is evident that if w
has the center 0, then T (w) has the central factor T (0) = 0q10p10q. Consequently, the center of
T (w) is either 0 if p is odd, or ε if p is even. The other statements can be proved analogously.

Lemmas 4.3.5 and 4.3.6 allow us to describe the centers of palindromes with two palindromic
extensions V (n) and the centers of maximal palindromes U (n).

Proposition 4.3.7. The centers and central factors of palindromes V (n) with two palindromic
extensions depend on the values of parameters p and q.

(i) Let q be even. Then V (n) is a central factor of V (n+2) for all n ∈ N. Moreover, V (2n) has
the center 1 and V (2n−1) has the center ε.

(ii) Let q be odd and p even. Then V (n) is a central factor of V (n+3) for all n ∈ N. Moreover,
V (3n) has the center 1, V (3n−1) has the center ε, and V (3n−2) has the center 0.

(iii) Let both q and p be odd. Then V (n) is a central factor of V (n+1) for all n ∈ N and has the
center 0.

Proof. In order to show the statement (i), it suffices to verify that V (1) is a central factor of
V (3) and that V (1) has the center ε and V (2) has the center 1. The statement (i) then follows
by induction on n ∈ N using Lemma 4.3.5. Since q is even, V (1) = 0q has the center ε. By
Lemma 4.3.6, V (2) has the center 1. Applying Lemma 4.3.5, one can see that V (3) has the
central factor T (1) = 0q10q10q, i.e., it has also V (1) as its central factor.

Proofs of statements (ii) and (iii) are analogous.

Proposition 4.3.8. The centers and central factors of maximal palindromes U (n) depend on
the values of parameters p and q.
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(i) Let q be even and p odd. Then V (n) is a central factor of U (n) for all n ∈ N. Moreover,
U (2n−1) has the center ε and U (2n) has the center 1.

(ii) Let both q and p be even. Then U (1) = 0p−1 is the only maximal palindrome with the
center 0. For all n ∈ N, V (n) is a central factor of U (n+1). Moreover, U (2n) has the
center ε and U (2n+1) has the center 1.

(iii) Let q be odd and p even. Then V (n) is a central factor of U (n) for all n ∈ N. Moreover,
U (3n−2) has the center 0, U (3n−1) has the center ε, and U (3n) has the center 1.

(iv) Let both q and p be odd. The only maximal palindrome with the center ε is U (1) = 0p−1.
The only maximal palindrome having the center 1 is U (2). For n ≥ 3, U (n) has the center
0 and the central factor V (n−2).

Proof. Let us show for example the statement (ii). Since p is even, U (1) = 0p−1 has the center 0.
Lemma 4.3.6 implies that U (2) has the center ε and the central factor T (0) = 0q10p10q. Con-
sequently, V (1) = 0q is also a central factor of U (2), q being even. Applying Lemma 4.3.6, we
obtain that U (3) has the center 1. The statement follows by the induction on n ∈ N, applying
Lemma 4.3.5.

4.3.2 Infinite palindromic branches

We have already described maximal palindromes, therefore the remaining task in order to derive
the palindromic complexity is to find infinite palindromic branches. First, let us show that there
may be only a few infinite palindromic branches.

Lemma 4.3.9. Let a ∈ {ε, 0, 1}. Then there exists at most one infinite palindromic branch with
the center a.

Proof. We show the statement by contradiction. Suppose that there are two different infinite
palindromic branches given by the sequences of their central factors (w(n))n∈N and (v(n))n∈N

with the same center a having w as the maximal common central factor. By applying the map
T , we obtain two different infinite palindromic branches (T (w(n)))n∈N and (T (v(n)))n∈N with
a longer common central factor T (w). Repeating this procedure, we can construct infinitely
many different infinite palindromic branches, which is a contradiction with boundedness of the
palindromic complexity.

Using Propositions 4.3.7 and 4.3.8, we now describe, for each a ∈ {ε, 0, 1}, the infinite
palindromic branch of uβ with the center a (provided it exists) and the common central factors
of this branch with maximal palindromes having the same center a. With this in hand, we will
be able to summarize the values of the palindromic complexity. Note that the candidate for the
longest common prefix of a maximal palindrome and an infinite palindromic branch with the
same center is a palindrome, which has two palindromic extensions, thus one of the palindromes
V (n).

Proposition 4.3.10. Let uβ be the fixed point of the substitution ϕ(0) = 0p1, ϕ(1) = 0q1, p−1 >
q ≥ 1.
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(i) Let q be even and p odd. There exists an infinite palindromic branch with the center a for
all a ∈ {ε, 1, 0}, namely:

(
V (2n−1)

)
n∈N

having the center ε,(
V (2n)

)
n∈N

having the center 1,
(
W

(n)
1

)
n∈N

where W
(1)
1 = 0,W (n) = T (W

(n−1)
1 ),

having the center 0.

For n ∈ N, the longest common central factor of the maximal palindrome U (n) and the
infinite palindromic branch with the same center is V (n).

(ii) Let both q and p be even. There exists an infinite palindromic branch with the center a for
a ∈ {ε, 1}, namely: (

V (2n−1)
)
n∈N

having the center ε,(
V (2n)

)
n∈N

having the center 1.

There is no infinite palindromic branch with the center 0. For n ∈ N, n ≥ 2, the longest
common central factor of the maximal palindrome U (n) and the infinite palindromic branch
with the same center is V (n−1).

(iii) Let q be odd and p even. There exists an infinite palindromic branch with the center a for
a ∈ {0, ε, 1}, namely: (

V (3n−2)
)
n∈N

having the center 0,(
V (3n−1)

)
n∈N

having the center ε,(
V (3n)

)
n∈N

having the center 1.

For n ∈ N, the longest common central factor of the maximal palindrome U (n) and the
infinite palindromic branch with the same center is V (n).

(iv) Let both q and p be odd. There exists one infinite palindromic branch, namely:

(
V (n)

)
n∈N

having the center 0.

There is neither an infinite palindromic branch with the center ε, nor with the center 1.
For n ∈ N, n ≥ 3, the longest common central factor of the maximal palindrome U (n) and
the infinite palindromic branch is V (n−2).

Proof. It follows from Lemma 4.3.9 that there is at most one infinite palindromic branch with
the center a for each a ∈ {ε, 0, 1}. It suffices to use Proposition 4.3.7, or Lemma 4.3.5, to see that
the listed sequences determine infinite palindromic branches, i.e., are sequences of palindromes
of strictly growing length and such that these palindromes are central factors of one another.
Let us explain why in cases (ii) and (iv) one does not have an infinite palindromic branch with
every center.

(ii) Let q and p be even, suppose that there is a palindromic branch with the center 0.
Necessarily, this branch has a block of the form 0p or 0q as its central factor. It is impossible
owing to the fact that both p and q are even.

(iv) Let both q and p be odd, suppose that there is an infinite palindromic branch with the
center ε. Then it has a block of the form 0p or 0q as its central factor. It is impossible since
both p and q are odd. Suppose now that there exists an infinite palindromic branch with the
center 1. Take a central factor of this palindromic branch of the form T (w) for a palindrome w
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containing at least two letters 1. Using Lemma 4.3.6, w must have the center ε, and, thus, have
the central factor 0p or 0q, which is impossible.

The statements about the maximal common central factors of maximal palindromes and
infinite palindromic branches is a consequence of Proposition 4.3.8.
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Fig. 4.2: Illustration of maximal palindromes and infinite palindromic branches for q even and
p odd. There is one infinite branch with the center ε, one with the center 1, and one with the
center 0. There are infinitely many maximal palindromes with the center ε and 1.
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Fig. 4.3: Illustration of maximal palindromes and infinite palindromic branches for p and q even.
There is one infinite branch with the center ε and one with the center 1. There are infinitely
many maximal palindromes with the center ε and 1. There is only one maximal palindrome
with the center 0.

4.3.3 Explicit values of the palindromic complexity of uβ

We are now in position to derive explicitly the values of the palindromic complexity of the
infinite word uβ dependently on the parity of parameters p, q of the Rényi expansion of unity
dβ(1) = pqω. We have investigated maximal palindromes, infinite palindromic branches, and
their centers. The determination of the complexity is easy with the use of Figures 4.2–4.5, which
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Fig. 4.4: Illustration of maximal palindromes and infinite palindromic branches for q odd and
p even. There are infinite branches and infinitely many maximal palindromes with the centers
0, 1, ε.
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Fig. 4.5: Illustration of maximal palindromes and infinite palindromic branches for p and q
odd. The only infinite palindromic branch has the center 0. There are infinitely many maximal
palindromes with the center 0. There is only one maximal palindrome with the center ε and
one with the center 1.

visualize the structure of maximal palindromes and of infinite palindromic branches, according
to Proposition 4.3.10.

Theorem 4.3.11. Let uβ be the fixed point of the substitution ϕ(0) = 0p1, ϕ(1) = 0q1, p− 1 >
q ≥ 1. Then 4 cases appear according to the values of parameters p and q, n ∈ N0:

(i) Let q be even and p odd.

P(2n) =

{
2 if |V (2k−1)| < 2n ≤ |U (2k−1)| for some k ∈ N ,
1 otherwise.

P(2n + 1) =

{
3 if |V (2k)| < 2n+ 1 ≤ |U (2k)| for some k ∈ N ,
2 otherwise.
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(ii) Let both q and p be even.

P(2n) =

{
2 if |V (2k−1)| < 2n ≤ |U (2k)| for some k ∈ N ,
1 otherwise.

P(2n + 1) =






2 if 2n+ 1 ≤ |U (1)| = p− 1 ,

2 if |V (2k)| < 2n + 1 ≤ |U (2k+1)| for some k ∈ N ,
1 otherwise.

(iii) Let q be odd and p even.

P(2n) =

{
2 if |V (3k−1)| < 2n ≤ |U (3k−1)| for some k ∈ N ,
1 otherwise.

P(2n + 1) =

{
3 if |V (k)| < 2n+ 1 ≤ |U (k)| for some k ∈ N, k 6≡ 2mod 3,
2 otherwise.

(iv) Let both q and p be odd. We have

P(2n) =

{
1 if 0 ≤ 2n ≤ |U (1)| = p− 1,
0 otherwise.

P(2n + 1) =






2 if 2n+ 1 ≤ |V (1)| = q,

4 if |V (k)| < 2n+ 1 ≤ |U (k)| for some k ≥ 2,
3 otherwise.

Note that we can either derive the values of the palindromic complexity, for both even and
odd n, directly from Proposition 4.3.10, or we can determine only P(2n) and then use the
relation (4.7) between palindromic complexity and the first difference of factor complexity,

P(2n + 1) = △C(2n) + 2 − P(2n),

knowing the first difference of factor complexity from (3.41).
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Chapter 5

Fullness

Let us open anew the investigation of palindromes to which the entire Chapter 4 has been
already devoted. This time, the study is initiated from another point of view: We are interested
in the degree of “saturation” of an infinite word by palindromes – the smaller the defect the
more saturated the word. The infinite words the most saturated by palindromes are thus those
ones with zero defect, baptized full words in Section 2.2.11.

The first ones to tackle this problem were Droubay, Justin, and Pirillo [43]; they have
shown that Sturmian and episturmian words are full. Brlek et al. [23] provide an insight in
the defects of periodic words. In particular, in the context of fullness of infinite words, the
following result is worth mentioning: An infinite periodic word u = wω, where w is minimal, has
an infinite number of palindromes if and only if w is a concatenation of two palindromes, i.e.,
w = w(1)w(2), where w(1), w(2) are palindromes. If it is the case, then u = wω is full if its prefix

of length |w| + ⌊ ||w(1)|−|w(2)||
3 ⌋ is full. Recently, Glen et al. [62] have completed the above result

by the proof that an infinite periodic word u = wω, where w is minimal, has bounded defect if
and only if w is a concatenation of two palindromes.

In the center of our attention are two distinct measures of palindromic variety – palindromic
complexity and defects. A recent result of Bucci et al. [25] shed some light on their relation.
They have proved for a uniformly recurrent infinite word u that u is full if and only if u is
opulent in palindromes (see Definition 4.2.2). In this chapter, we provide a simpler elegant
proof of this equivalence, valid even for infinite words with language closed under reversal that
are not necessarily uniformly recurrent.

5.1 Measures of palindromic variety

Two different measures of palindromic variety in an infinite word u are the most frequently
studied – palindromic complexity (determining, for any given length n, the number of distinct
palindromes of length n occurring in the language of u) and defects of prefixes of u (counting,
for any given prefix of length n of u, the difference between the utmost number n + 1 and the
actual number of palindromes of all possible lengths occurring in the prefix). A natural question
to be settled is: “Do the sets of infinite words with maximal palindromic complexity and of full
infinite words coincide?” This question has been answered affirmatively for uniformly recurrent
words in [25]. We answer it affirmatively even for words with language closed under reversal
that are not necessarily uniformly recurrent. The keynote of our proof is a meticulous inspection
of complete return words of factors of full infinite words and the application of some basic graph
theory.
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5.1.1 Full infinite words

Fullness of finite and infinite words has been defined in Section 2.2.11. Here, let us recall
a definition and a result from [43] which supplies us with an equivalent and more hands-on
formulation of fullness. We say that a finite word v satisfies Property Ju (or Ju for short) if
there exists a palindromic suffix of v which occurs exactly once in v, or, equivalently, if the
longest palindromic suffix of v occurs exactly once in v.

Proposition 5.1.1. Let u be an infinite word. Then u is full if and only if each prefix v of u
satisfies Ju.

Proof. It is a direct consequence of the formula (2.17) for P (v) in the proof of Proposition 2.2.4.

Let us introduce several lemmas, concerning mainly occurrences of factors and their reversals,
which turn out to be useful for our aim to prove the equivalence of infinite words with maximal
palindromic variety, according to each one of the two measures. As a by-product, we get a useful
equivalent characterization of full infinite words (Proposition 5.1.3), proved already by Glen et
al. in [62].

Lemma 5.1.2. Let u be a full infinite word and w and v = unun+1 . . . um−1um be factors of
u such that: 1) w is a prefix and w is a suffix of v and 2) neither w nor w occurs in
un+1 . . . um−1. Then v is a palindrome.

Proof. Let us prove it by contradiction. Assume that there exists a pair of factors w and
v = unun+1 . . . um−1um satisfying 1) and 2) such that v is not a palindrome.

Choose the smallest n with this property and find s such that usus+1 . . . um is the longest
palindromic suffix of u0u1 . . . um. Since v is not a palindrome s 6= n. The assumption s < n
leads to a contradiction with the choice of n, since already the pair of factors usus+1 . . . us+m−n
and w satisfies 1) and 2) with usus+1 . . . us+m−n non-palindromic. If n < s < m− |w|, then s is
an occurrence of w in un+1 . . . um−1, which is impossible. If m− |w| ≤ s < m, then the longest
palindromic suffix of u0u1 . . . um occurs twice: at the positions s and n, i.e., Property Ju does
not hold.

Proposition 5.1.3. An infinite word u is full if and only if complete return words of any
palindromic factor of u are palindromes.

Proof. One implication is an immediate consequence of the previous lemma if w = w. To prove
the opposite implication, suppose that u is not full. There exists a prefix u′ of u which does not
fulfill Ju. Therefore, the longest palindromic suffix of u′, denote it by v, occurs in u′ at least
twice. Clearly, the most righthand complete return word of v contained in u′ is not a palindrome.

Lemma 5.1.4. Let u be a full infinite word and w its non-palindromic factor. Then occurrences
of w and its mirror image w alternate, i.e., any complete return word of w contains the factor
w and any complete return word of w contains the factor w.

Proof. Let us denote by (on)n∈N the strictly increasing sequence of integers such that any element
of the sequence is an occurrence of w or w and any occurrence of w or w appears in the sequence.
For any n ∈ N, we want to prove

on is an occurrence of w ⇐⇒ on+1 is an occurrence of w.
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Let us suppose the contrary and find the smallest n for which both on and on+1 are occurrences
of the same factor, say w. Let us consider the prefix u′ of u of length on+1 + |w| − 1 and denote
by v the longest palindromic suffix of u′. The choice of the length of u′ guarantees that the
factor w is a suffix of u′. The fullness of u implies that v occurs in u′ exactly once; we denote
its occurrence by s.
If s ≥ on+1, then v is a suffix of w, and, therefore, v occurs in u′ twice, which is a contradiction
with Ju.
The situation on ≤ s < on+1 is impossible because s is an occurrence of w and w is not
a palindrome.
Let us discuss the situation s < on. We know that s and s + on+1 − on are occurrences of w.
Since the factor w does not occur between on and on+1 and v is a palindrome, there are no
occurrence of w between s and s+ on+1 − on, which is a contradiction with the choice of n.

Lemma 5.1.5. Let u be a full infinite word, w and z be factors of u of the same length ℓ such
that w 6= z, z. Then there exists a unique factor v = v0v1 . . . vq of u with the properties:

• w or w is a prefix of v,

• z or z is a suffix of v,

• factors w, w, z, and z do not occur in v1 . . . vq−1.

Proof. Let us denote by (on)n∈N the strictly increasing sequence of integers such that any element
of the sequence is an occurrence of w or w and any occurrence of w or w appears in the sequence.
According to Lemma 5.1.2, the factors

Un := uonuon+1 . . . uon+1+ℓ−1

are palindromes for any n ∈ N. Therefore the number of occurrences of the factor z and the
number of occurrences of the factor z in Un coincide. Let us find two indices n < m such that
Un and Um contain z at least once, and Uk does not contain z for any k ∈ N, n < k < m.

Let us denote by on + i the smallest occurrence of one of the factors z and z in Un. WLOG
suppose that on is an occurrence of w and on + i is an occurrence of z. Similarly, denote by
om + j the smallest occurrence of one of the factors z and z in Um. Our choice guarantees
that both segments uon . . . uon+i+ℓ−1 and uom . . . uon+j+ℓ−1 have the properties imposed on the
factor v in Lemma 5.1.5, and, moreover, they are the closest neighbors behaving as v. To prove
Lemma 5.1.5, it is enough to show that they coincide.

Since Un is a palindrome, on+1 − i is an occurrence of z. With respect to Lemma 5.1.4, the
index om + j is an occurrence of z. Due to Lemma 5.1.2, the factor uon+1−i . . . uom+j+ℓ−1 which
starts with z and ends with z is a palindrome. Therefore the segment uon+1−i . . . uon+1+ℓ−1 (its
prefix is z and its suffix is w) is the mirror image of the segment uom . . . uom+j+ℓ−1, and i = j. As
Un itself is a palindrome, the suffix uon+1−i . . . uon+1+ℓ−1 of Un is as well the mirror image of the
prefix uon . . . uon+i+ℓ−1. So, we have shown uon . . . uon+i+ℓ−1 = uom . . . uom+j+ℓ−1, as desired.

5.1.2 Infinite words opulent in palindromes

For infinite words with language closed under reversal, opulence in palindromes may be refor-
mulated as a condition on a modified reduced Rauzy graph. To formulate this condition, we
employ the notion of a simple path (introduced in Section 2.2.12). Let u be an infinite word
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with language closed under reversal and n be a given positive integer. We will denote by Gn an
undirected graph whose set of vertices is formed by unordered pairs (w,w) such that w ∈ Ln(u)
is RS or LS. We connect two vertices (w,w) and (v, v) by an unordered pair (e, e) if e or e is
a simple path starting in w or w and ending in v or v. Note that the graph Gn may have multiple
edges and loops. With this in hand, we may formulate a lemma resulting from the proof of (4.2)
in [10].

Lemma 5.1.6. Let u be an infinite word with language closed under reversal. Then u is opulent
in palindromes if and only if both of the following conditions are satisfied:

1. The graph Gn, after removing loops, is a tree.

2. Any simple path forming a loop in the graph Gn is a palindrome.

Corollary 5.1.7. Let u be an infinite word with language closed under reversal. If u is opulent
in palindromes, then complete return words of any palindromic factor of u are palindromes.

Proof. Assume the contrary. Let w = w1w2 . . . wk be a palindrome and let v be its complete
return word which is not a palindrome. Remark that the length of any non-palindromic return
word of a palindrome w is > 2|w|. Hence, there exist factors t, v′ (possibly empty) and two
different letters x and y such that v = wtxv′ytw.

Let us consider the graph Gn, where n is the length of the factor z := wt. Since the language
of u is closed under reversal, the factor z is right special - the letters x and y belong to its right
extensions.

If the complete return word v contains no other right or left special factors, then the non-
palindromic v is a simple path which starts in z = wt and ends in z = tw, which is a contradiction
with the condition 2. in Lemma 5.1.6.

Let v contain other left or right special factors. We find the prefix of v which is a simple
path. This simple path starts in z, its ending point is a special factor, we denote it by A. Since
v is a complete return word of w, we have A 6= z, z. So, in the graph Gn, the vertices (z, z) and
(A,A) are connected with an edge. Similarly, we find the suffix of v which is a simple path, and
we denote its starting point by B, its ending point is z. Again, B 6= z, z and the vertices (z, z)
and (B,B) are connected with an edge. So, in the graph Gn, we have a path with two edges
which connects (A,A) and (B,B) and the vertex (z, z) is its intermediate vertex.

Since A and B are factors of w2 . . . wktxv
′ytwk . . . w2, we have, in the Rauzy graph with the

set of vertices Ln(u), an oriented walk from the vertex A to B. To be precise, it means that in
the graph Gn there exists a walk, and, therefore, a path1 as well, between vertices (A,A) and
(B,B), which does not use the vertex (z, z).

Finally, if (A,A) and (B,B) coincide, then we have, in the graph Gn, a multiple edge. If
(A,A) 6= (B,B), then, in the graph Gn, there are two different paths connecting (A,A) and
(B,B). In any event, we have a contradiction with the condition 1. in Lemma 5.1.6.

Theorem 5.1.8. Let u be an infinite word with language closed under reversal. The word u is
full if and only if u is opulent in palindromes, i.e., for any n ∈ N, we have

P(n) + P(n + 1) = ∆C(n) + 2 .

1Along a walk, vertices may occur with repetition, in a path, any vertex appears at most once.
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Proof. The implication (⇐) results from Corollary 5.1.7 and Proposition 5.1.3. To prove the
opposite implication, we use Lemma 5.1.6. At first, we have to show that the graph Gn, after
removing loops, is a tree. Let us recall that an undirected graph without loops is a tree if and
only if any two different vertices of Gn are connected with a unique path. This property of
Gn follows from the definition of Gn and Lemma 5.1.5. The second condition of Lemma 5.1.6
follows from Lemma 5.1.2.

Remark 5.1.9. Let us correct the following example given in [25]. The word u generated by
the substitution a → aba, b → bb is recurrent, however not uniformly recurrent (by a similar
argument as the one from Section 3.3.4), and u is closed under reversal (by a similar argument
as in Section 4.2.4). By inspection of the complete return words of palindromic factors, applying
Proposition 5.1.3, it may be proved that u is full. According to Theorem 5.1.8, u is also opulent
in palindromes. The authors of [25] claimed that P(2) + P(3) 6= ∆C(2) + 2. This mistake is
however based on the fact that C(3) = 5 and not 6.

Example 5.1.10. We have seen in Chapter 4 that the m-iet words, the Rote word, the period-
doubling word, the infinite word uβ associated with a confluent simple Parry number, and the
infinite word uβ associated with a quadratic non-simple Parry number are opulent in palindromes.
Thanks to Theorem 5.1.8, we see that all these words are full.

Let us clarify that Theorem 5.1.8 is slightly stronger than the equivalence of fullness and
opulence in palindromes for uniformly recurrent words, proved in [25]. In other words, the
following statement is a corollary of Theorem 5.1.8.

Corollary 5.1.11. Let u be a uniformly recurrent infinite word. Then u is full if and only if u
is opulent in palindromes.

Proof. If L(u) is closed under reversal, then the statement follows from Theorem 5.1.8. If L(u)
is not closed under reversal, then Proposition 2.2.3 claims that u contains only a finite number
of palindromes. It is then readily seen that u is neither full, nor opulent in palindromes.

Let us mention as an open problem the following question. “Is it possible to extend the
equivalence of fullness and opulence in palindromes for a larger class of words than words with
languages closed under reversal?”

• It does not hold for non-recurrent infinite words in general. In [25], the infinite word abω

is given as an example of a full non-recurrent infinite word (with language of course not
closed under reversal), which is not opulent in palindromes.

• Notice that both full infinite words and infinite words opulent in palindromes contain
infinitely many palindromes. Moreover, if u is full and recurrent, then u is closed under
reversal (Glen in [62], Proposition 2.11).

– In order to disprove the general validity of the equivalence of fullness and opulence
in palindromes for recurrent words, it suffices to find a recurrent word opulent in
palindromes with infinitely many palindromes and language not closed under reversal.

– On the other hand, if we prove that any recurrent infinite word opulent in palin-
dromes has language closed under reversal, then the answer to the above question is
affirmative for recurrent words.
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Chapter 6

Return words

Recently, return words (defined in Section 2.2.5) have turned out to be useful in many disciplines:
symbolic dynamical systems, combinatorics on words, and number theory. This notion was
introduced by Durand [47] in order to give a nice characterization of primitive substitutive
sequences. A slightly different definition of return words was used by Ferenczi, Mauduit, and
Nogueira [52] in the investigation of dynamical systems associated with primitive substitutions.
One may be also interested in the ordering of return words in an infinite word. This leads to the
study of the so-called derivated words encoding the unique decomposition of an infinite word
in terms of return words. A characterization of words derivated from standard Sturmian words
can be found in [6].

We preface the study of return words by the description of some simple ideas facilitating the
task. We explain that in order to describe return words of all factors, it is sufficient to take into
account only BS factors. The so-called tree of return words is introduced as a useful visualization
tool. A factor and its image under a symmetry are shown to have the same number of return
words and the relation between their return words is described in details. Finally, a closer look
is focused onto the fixed points of substitutions - some relation between (complete) return words
of factors and (complete) return words of their ancestors is pointed out.

As a practical application of these useful rules, we determine return words of factors of
several infinite words in our illustrative sample.

Furthermore, an insight into the characterization of infinite words with a constant number
of return words for every factor is provided. The last topic linked with return words is the
recurrence function which to every n associates the minimal length R(n), provided it exists,
such that every segment of length R(n) of the infinite word in question contains all factors of
length n. We derive the recurrence function of the infinite word uβ associated with a quadratic
non-simple Parry number.

6.1 Handy tools for the study of return words

6.1.1 Restriction to BS factors

If a factor w of an infinite word u is not RS, denote its unique right extension b. Then the
sets of occurrences of w and wb coincide, and Ret(w) = Ret(wb). If a factor w has a unique
left extension a, then j is an occurrence of w in the infinite word u if and only if j − 1 is an
occurrence of aw. This statement does not hold for j = 0. Nevertheless, if u is a recurrent
infinite word, then the set of return words of w stays the same no matter whether we include
the return word corresponding to the prefix w of u or not. Consequently, we have Ret(aw) =
aRet(w)a−1 = {ava−1| v ∈ Ret(w)}, where ava−1 means that the word v is extended to the
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left by the letter a and it is shortened from the right by erasing the letter a (which is always
the suffix of v for v ∈ Ret(w)). For an aperiodic recurrent infinite word u, every factor w can
be uniquely extended to the left and to the right to the shortest BS factor containing w. To
describe the cardinality and the structure of Ret(w) for all factors w, it suffices therefore to
consider BS factors w.

6.1.2 Tree of return words

A useful visualization tool of return words is a tree constructed in the following way: Label
the root with a factor w, and attach #Rext(w) children, with labels wb, b ∈ Rext(w). Repeat
this recursively with every vertex labeled by v, except if w is a suffix of v. If u is uniformly
recurrent, then this algorithm stops, and it is easy to see that the labels of the leaves of this tree
are exactly the complete return words of w. Therefore, we have

#Ret(w) = #{leaves} = 1 +
∑

non-leaves v

(#Rext(v) − 1). (6.1)

In particular, if w is the unique RS factor of its length, then the only branching in the tree takes
place in the root, all non-root vertices have just one child, thus #Ret(w) = #Rext(w).

01

010

011

0110

01100

01101

011001

0101

0100 01001

Fig. 6.1: The tree of return words of 01 in the Thue-Morse word.

A similar construction can be done with left extensions, yielding similar formulae. Since
we can restrict our considerations to special factors by Section 6.1.1, we obtain the following
proposition.

Proposition 6.1.1. Let u be a recurrent word and m ∈ N. Suppose that for every n ∈ N0, at
least one of the following conditions is satisfied:

1. There is a unique LS factor w ∈ Ln(u), and #Lext(w) = m.

2. There is a unique RS factor w ∈ Ln(u), and #Rext(w) = m.

Then every factor of u has exactly m return words.

Definition 6.1.2. An infinite word u satisfies the property Rm if every of its factors has exactly
m return words.

As an immediate consequence of Proposition 6.1.1, the number of return words of every
factor for Arnoux-Rauzy words may be determined.

Corollary 6.1.3. Arnoux-Rauzy words of order m satisfy Rm, in particular, Sturmian words
satisfy R2.
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6.1.3 Symmetries

Let us focus on maps which preserve in a certain way factor occurrences in an infinite word u.
We say that a map S : L(u) → L(u) is a symmetry of L(u) if S fulfills two properties:

1. S is a bijective map.

2. For every w, v ∈ L(u),

#{occurrences of w in v} = #{occurrences of S(w) in S(v)}.

Lemma 6.1.4. Let u be an infinite word over an alphabet A = {a1, . . . , am} and let S be
a symmetry of L(u). Then it holds S

(
Ln(u)

)
= Ln(u) for every n ∈ N, i.e., |S(w)| = |w| for all

w ∈ L(u).

Proof. It clearly holds that #{occurrences of S(w) in S(ε)} = #{occurrences of w in ε} = 0,
for every w ∈ L(u). As S is a bijection, it follows that #{occurrences of v in S(ε)} = 0 for
every v ∈ L(u). Hence, S(ε) = ε. Since S is a bijection, for each letter a ∈ A, there exists
w ∈ L(u) such that S(w) = a, where w 6= ε. Take b ∈ A such that #{occurrences of b in w} > 0.
Then #{occurrences of S(b) in S(w) = a} > 0. Therefore, S(b) = a. In other words, taking into
account that S is a bijection, we have deduced that there exists a permutation π ∈ Sm such that
S(ak) = aπ(k) for all k ∈ {1, . . . ,m}. Let us now take an arbitrary w ∈ L(u), then, for every
a ∈ A, it holds #{occurrences of a in w} = #{occurrences of S(a) in S(w)}. As S(A) = A, it
follows

|w| =
∑

a∈A
#{occurrences of a in w} =

∑

a∈A
#{occurrences of S(a) in S(w)} = |S(w)|.

In fact, a language cannot have too many symmetries. We know already from the proof
of Lemma 6.1.4 that there exists a permutation π ∈ Sm such that S(ak) = aπ(k) for all k ∈
{1, . . . ,m}. Moreover, since a symmetry preserves the number of letter occurrences, it is readily
seen for every w = w1w2 . . . wn ∈ Ln(u) that the following equation is valid

S(w1w2 . . . wn) = S(wσ(1))S(wσ(2)) . . . S(wσ(n)) (6.2)

for some permutation σ ∈ Sn. We shall see in the sequel that the permutation σ is necessarily
either the identical permutation (1 2 . . . n) or the symmetric permutation (n . . . 2 1). In other
words, every symmetry S is a letter permutation extended to a morphism on A∗ (words with
such symmetry are called complementation-symmetric), or, the composition of this morphism
with the mirror map.

Lemma 6.1.5. Let S be a symmetry of the language of an infinite word u. Then either S(w) =
S(w1)S(w2) . . . S(wn) for every w = w1w2 . . . wn ∈ Ln(u), or S(w) = S(wn) . . . S(w2)S(w1) for
every w = w1w2 . . . wn ∈ Ln(u).

Proof. Let us proceed by induction on the length n of w. For n = 2, suppose a contradiction,
i.e., there exist factors v1v2 and z1z2 in L2(u), with v1 6= v2 and z1 6= z2, such that S(v1v2) =
S(v2)S(v1) and S(z1z2) = S(z1)S(z2). Then, obviously, it is possible to find a factor w1w2w3 of
length 3 in u, with w1 6= w2 and w2 6= w3, satisfying

1. either S(w1w2) = S(w1)S(w2) and S(w2w3) = S(w3)S(w2),
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2. or S(w1w2) = S(w2)S(w1) and S(w2w3) = S(w2)S(w3).

Assume that 1. holds (the proof for the case 2. is an analogy). Using the fact that for all i, j ∈
{1, 2, 3}, we have #{occurrences of wiwj in w1w2w3} = #{occurrences of S(wiwj) in S(w1w2w3)},
and taking into account that w1 6= w2 and w2 6= w3, we deduce

S(w1w2w3) = S(w1w2)S(w3) or S(w1w2w3) = S(w3)S(w1w2)

and

S(w1w2w3) = S(w1)S(w2w3) or S(w1w2w3) = S(w2w3)S(w1).

Assume that S(w1w2w3) = S(w1w2)S(w3) and S(w1w2w3) = S(w1)S(w2w3). Using 1., we get
S(w1)S(w2)S(w3) = S(w1)S(w3)S(w2), which is a contradiction with w2 6= w3. Analogously,
we obtain contradictions in all the other cases. To sum up, we have proved that either S(w) =
S(w1)S(w2) for every w = w1w2 ∈ L2(u), or S(w) = S(w2)S(w1) for every w = w1w2 ∈ L2(u).
Suppose that S(w) = S(w1)S(w2) . . . S(wk) for every w = w1w2 . . . wk ∈ Lk(u), 2 ≤ k < n.
Take an arbitrary factor w = w1w2 . . . wn ∈ Ln(u). Then, as S is a symmetry, S(w2 . . . wn) is
a factor of S(w1w2 . . . wn), in more precise terms, S(w2 . . . wn) is either a prefix or a suffix of
S(w1 . . . wn). Moreover, if w1 occurs in w2 . . . wn l-times, w1 occurs in w1w2 . . . wn (l+1)-times.
Since S is a symmetry, it follows that S(w1) occurs then l-times in S(w2 . . . wn) and (l+1)-times
in S(w1w2 . . . wn). These two observations result in

S(w1w2 . . . wn) = S(w1)S(w2 . . . wn) or S(w1w2 . . . wn) = S(w2 . . . wn)S(w1).

Similar reasoning leads to

S(w1w2 . . . wn) = S(wn)S(w1 . . . wn−1) or S(w1w2 . . . wn) = S(w1 . . . wn−1)S(wn)

Let us show in detail that S(w) = S(w1)S(w2) . . . S(wn) for all cases which can occur.

(a) Suppose that S(w) = S(w1)S(w2 . . . wn) and S(w) = S(wn)S(w1 . . . wn−1). Applying the
induction hypothesis, this is equivalent with S(w1)S(w2) . . . S(wn) = S(wn)S(w1) . . . S(wn−1).
Hence, this case occurs only for w1 = w2 = · · · = wn. Then, S(w) = S(w1)S(w2) . . . S(wn).

(b) Suppose that S(w) = S(w1)S(w2 . . . wn) and S(w) = S(w1 . . . wn−1)S(wn). Applying the
induction hypothesis, we see that S(w) = S(w1)S(w2) . . . S(wn).

(c) Suppose that S(w) = S(w2 . . . wn)S(w1) and S(w) = S(w1 . . . wn−1)S(wn). Applying the
induction hypothesis, we learn that this case occurs only for w1 = w2 = · · · = wn. Then,
S(w) = S(w1)S(w2) . . . S(wn).

(d) Suppose that S(w) = S(w2 . . . wn)S(w1) and S(w) = S(wn)S(w1 . . . wn−1). Applying the
induction hypothesis, this is equivalent with S(w2) . . . S(wn)S(w1) = S(wn)S(w1) . . . S(wn−1).
If n is odd, then it implies w1 = w2 = · · · = wn, thus S(w) = S(w1)S(w2) . . . S(wn). If n
is even, say n = 2l, then it follows that w2k−1 = w1 and w2k = w2 for all k ≤ l. Thus
w1w2 . . . wn = (w1w2)

l and S(w1w2 . . . wn) = (S(w2)S(w1))
l. Using again that S is a symmetry,

#{occurrences of w1w2 in (w1w2)
l} = #{occurrences of S(w1)S(w2) in (S(w2)S(w1))

l}. This is
possible only for w1 = w2. Therefore, S(w) = S(w1)S(w2) . . . S(wn).

With the same reasoning, we deduce that if S(w) = S(wk) . . . S(w2)S(w1) for every w =
w1w2 . . . wk ∈ Lk(u), k < n, then S(w) = S(wn) . . . S(w2)S(w1) for every w = w1w2 . . . wn ∈
Ln(u).
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Theorem 6.1.6. Let S be a symmetry of the language L(u) of an infinite word u. Then, the
complete return words of any factor w of u and of its symmetrical image S(w) obey the following
relation

Ret
(
S(w)

)
S(w) = S

(
Ret(w)w

)
.

Proof. Let v be a return word of a factor w ∈ L(u), then, using Lemma 6.1.5, S(vw) contains
S(w) only twice - as prefix and suffix, thus, S(vw) is a complete return word of S(w). The other
inclusion is obvious since S−1 is also a symmetry.

Corollary 6.1.7. If the symmetry S of an infinite word u is a morphism, i.e., S is a letter
permutation extended to a morphism, then the relation between the return words of a factor w
and the return words of its image by S reads

Ret
(
S(w)

)
= S

(
Ret(w)

)
.

6.1.4 Respect for ancestors

If an infinite word u is a fixed point of a substitution ϕ, then some relation between return words
of a factor and return words of its ancestors can be revealed. See Section 2.2.13 (Ancestors and
synchronization points of substitutions), for the definition of an ancestor and a synchronization
point.

Proposition 6.1.8. Let u be a fixed point of an injective substitution ϕ, and let v be a factor
of u. Assume:

1. There exist factors t, t′, w ∈ L(u) such that v = tϕ(w)t′ and (tϕ(w), t′) and (t, ϕ(w)t′) are
synchronization points of v.

2. The factor ϕ(w) occurs only as subword of v.

Then the following relation binds the complete return words of v and w

Ret(v)v = tϕ
(
Ret(w)w

)
t′.

Proof. Let v′ be a complete return word of v, then, according to Assumption 1., there exists
w′ ∈ L(u) such that v′ = tϕ(w′)t′. Since ϕ is injective, w′ contains w as prefix and suffix.
Moreover, w′ contains w exactly twice, otherwise, using Assumption 2., v′ would contain v more
than twice. Thus, we have shown the inclusion ⊂.

On the other hand, let w′ be a complete return word of w. Then, applying Assumption 2.,
v′ = tϕ(w′)t′ is a factor of L(u) and v is a prefix and a suffix of v′. The factor v′ is a complete
return word of v, otherwise, with respect to Assumption 1. and the injectivity of ϕ, w′ would
contain w more than twice.

Let us remark that the injectivity of ϕ implies

#Ret(v) = #Ret(w).

Corollary 6.1.9. Let u be a fixed point of an injective substitution ϕ and let v be a factor of u.
If v is of the form ϕ(w), where s = (w, 0, 0) is the unique interpretation of v with w ∈ L(u),
then Ret(v) = ϕ

(
Ret(w)

)
.
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6.1.5 Return words of several infinite words

We recall return words of the Thue-Morse word (determined by Cassaigne in [30]). Furthermore,
we derive return words of infinite words uβ associated with quadratic non-simple Parry numbers
β, return words of the period doubling word, and of the Rote word.

According to Section 6.1.1, we can restrict our considerations to BS factors if we want to
describe the set of return words of an aperiodic recurrent infinite word.

Thue-Morse word

The list of BS factors of uTM is at disposal in Section 3.3.2. We can combine Corollary 6.1.9
from Section 6.1.4 and Lemma 3.3.1 from Section 3.3.2 and we learn that in order to obtain
return words of BS factors, it suffices to determine return words of BS factors of length less than
4. Non-empty BS factors of length ≤ 3 are: {0, 1, 01, 10, 010, 101}. Moreover, Corollary 6.1.7
implies that if Ret(w) is the set of return words of a factor w, then S

(
Ret(w)

)
is the set of

return words of S(w), where S is the morphism defined by S : 0 → 1, 1 → 0. It is easy to show
that

Ret(0) = {0, 01, 011},
Ret(01) = {01, 010, 011, 0110},
Ret(010) = {010, 01011, 0100110, 010110011}.

Corollary 6.1.10. Every factor of the Thue-Morse word has either 3 or 4 return words. The
complete list of return words of non-empty BS factors has the following form:

Return words of strong BS factors

Ret
(
ϕn(01)

)
= {ϕn(01), ϕn(010), ϕn(011), ϕn(0110)},

Ret
(
ϕn(10)

)
= {ϕn(10), ϕn(101), ϕn(100), ϕn(1001)}.

Return words of weak BS factors

Ret
(
ϕn(010)

)
= {ϕn(010), ϕn(01011), ϕn(0100110), ϕn(010110011)},

Ret
(
ϕn(101)

)
= {ϕn(101), ϕn(10100), ϕn(1011001), ϕn(101001100)}.

Return words of ordinary BS factors

Ret(0) = {0, 01, 011},
Ret(1) = {1, 10, 100}.

uβ associated with quadratic non-simple Parry numbers

In Section 3.4, the description of BS factors of uβ is provided. Moreover, Observation 3.4.2 and
Item 3. of Lemma 3.4.3 together with Proposition 6.1.8 proves that to determine return words
of BS factors, it is sufficient to determine return words of BS factors containing no letter 1. More
precisely, for every BS factor v containing at least one letter 1, there exists a unique BS factor
w such that v = T (w) and Ret(v)v = tϕ

(
Ret(w)w

)
t′ = 0q1ϕ

(
Ret(w)w

)
0q = T

(
Ret(w)w

)
.

Non-empty BS factors containing no letter 1 are: 0r, 1 ≤ r ≤ p − 1. Their complete return
words are easy to derive.

Ret(0r)0r = {0r+1, 0r10r}, 1 ≤ r ≤ q,
Ret(0r)0r = {0r+1, 0r10r, 0r10q10r}, q < r ≤ p− 1.
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Corollary 6.1.11. Every factor of uβ associated with quadratic non-simple Parry numbers has
either 2 or 3 return words. The list of complete return words of non-empty BS factors has the
following form:

Complete return words of strong BS factors

Ret
(
V (n)

)
V (n) = {T n−1(0q+1), T n−1(0q10q)}.

Complete return words of weak BS factors

Ret
(
U (n)

)
U (n) = {T n−1(0p), T n−1(0p−110p−1), T n−1(0p−110q10p−1)}.

Complete return words of ordinary BS factors

for 1 ≤ r < q
Ret

(
W (n)
r

)
W (n)
r = {T n−1(0r+1), T n−1(0r10r)},

for q < r < p− 1

Ret
(
W (n)
r

)
W (n)
r = {T n−1(0r+1), T n−1(0r10r), T n−1(0r10q10r)}.

Period doubling word

The list of BS factors of uPD has been deduced in Section 3.3.3. Relating Proposition 6.1.8
from Section 6.1.4 and Lemma 3.3.2 from Section 3.3.3, we see that for every BS factor v
containing the letter 1, there exists a unique BS factor w such that v = TPD(w) and Ret(v)v =
tϕ
(
Ret(w)w

)
t′ = ϕ

(
Ret(w)w

)
0 = TPD

(
Ret(w)w

)
.

Therefore, we need to describe only complete return words of non-empty BS factors contain-
ing no letter 1, i.e., of factors 0, and 00. This is simple.

Ret(0)0 = {00, 010},
Ret(00)00 = {000, 00100, 001010100}.

Corollary 6.1.12. Every factor of the period doubling word has either 2 or 3 return words. The
list of complete return words of non-empty BS factors has the following form:

Complete return words of strong BS factors

Ret
(
V (n)

)
V (n) = {T n−1

PD
(00), T n−1

PD
(010)}.

Complete return words of weak BS factors

Ret
(
U (n)

)
U (n) = {T n−1

PD
(000), T n−1

PD
(00100), T n−1

PD
(001010100)}.

Rote word

Let us recall that the Rote word uR is recurrent, however, uR is not uniformly recurrent. Thus,
we will not be surprised that some BS factors have infinitely many return words. The list of BS
factors of uR has been deduced in Section 3.3.4. Relating Proposition 6.1.8 from Section 6.1.4
and Lemma 3.3.4 from Section 3.3.4, we learn that for every BS factor v containing 00 as
a factor, there exists a unique BS factor w such that v = TR(w) and Ret(v)v = tϕ

(
Ret(w)w

)
t′ =

1ϕ
(
Ret(w)w

)
= TR

(
Ret(w)w

)
. Consequently, it remains to describe return words of non-empty
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BS factors which do not contain the factor 00 in order to have all return words determined. BS
factors which do not contain 00 are: 0 and 1k, k ∈ N.

The complete return words of the factor 0 are obtained using Observation 3.3.3 (notice that
there are infinitely many of them):

Ret(0)0 = {00} ∪ {01k0 | k = 3j−1
2 , j ∈ N}.

To determine complete return words of blocks of 1’s, two observations are necessary. The first
one is a direct consequence of Observation 3.3.3, the second one of Proposition 6.1.8.

Observation 6.1.13. Return words of 1k, where 3n−1−1
2 < k < 3n−1

2 for some n ∈ N, distinct

from 1 are in a one-to-one correspondence with return words of V (n) = 3n−1
2 , more precisely,

Ret
(
V (n)

)
= 1

3n−1
2 −kRet(1k).

Observation 6.1.14. The complete return words of V (n), n ≥ 2, containing the letter 0 satisfy

Ret(V (n))V (n) = TR

(
Ret(V (n−1))V (n−1)

)
.

With the previous observations in hand, it is straightforward to determine the searched
complete return words of blocks of 1’s.

Corollary 6.1.15. The list of complete return words of BS factors has the following form:

Complete return words of strong BS factors

Ret
(
V (n)

)
V (n) = {V (n)1, T n−1

R
(1001)}.

Complete return words of weak BS factors

Ret
(
U (n)

)
U (n) = {T n−1

R
(00), T n−1

R
(01k0) | k = 3j−1

2 , j ∈ N}.

Complete return words of ordinary BS factors

Ret
(
1k
)
1k = {1k+1} ∪ {1k−

3n−1
2 T n−1

R
(1001)1k−

3n−1
2 },

where n ∈ N is such that 3n−1−1
2 < k < 3n−1

2 .

6.2 Infinite words with a constant number of return words

An interesting task is to characterize infinite words with a constant number of return words,
i.e., infinite words satisfying the property Rm for some m ∈ N (see Definition 6.1.2). Vuillon
in [107] has proved that the set of infinite words satisfying R2 coincides with the set of Sturmian
words. Consequently, infinite words fulfilling Rm represent another generalization of Sturmian
words. This generalization includes Arnoux-Rauzy words (as shown by Justin and Vuillon [74])
and words coding m-interval exchange transformation (Vuillon [108]).

Both AR words and m-iet words satisfy C(n) = (m−1)n+1 for all n ∈ N0. However, already
Vuillon noticed that this assumption on complexity is not sufficient for a word to have Rm for
m ≥ 3; the fixed point of a certain recoding of the Chacon substitution that has complexity
2n+ 1 (as shown by Ferenczi [51]) contains factors with more than 3 return words.
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A closer look brings to light that both AR words and m-iet words have not only a constant
first difference of complexity, but the bilateral order (defined in Section 3.2.1) of every their
factor is equal to zero. We prove that this condition is sufficient for an infinite word over an
m-letter alphabet to have Rm. More precisely, we show a stronger statement: If an infinite
word does not contain weak BS factors, i.e., factors with negative bilateral orders, then Rm is
equivalent with C(n) = (m− 1)n+ 1 for all n ∈ N0.

If a word satisfies R3, then we can show that no factor is weak BS. Therefore, the words with
R3 are characterized by complexity 2n+ 1 and the absence of weak BS factors, or, equivalently,
by the fact that all their BS factors have zero bilateral order.

For m ≥ 4, neither the complexity C(n) = (m− 1)n+ 1 nor the absence of weak BS factors
are necessary conditions for an infinite word to fulfill Rm. Steiner [11] has constructed a word
satisfying R4 with an even number of factors of every positive length, thus, C(n) 6= 3n + 1 for
n even, n ≥ 1, and containing infinitely many weak BS factors. The problem to find a nice
characterization of words with Rm for m ≥ 4 thus remains open.

We conclude the study of infinite words with a constant number of return words by deter-
mining which infinite words among words uβ associated with Parry numbers β satisfy Rm.

6.2.1 Sufficient conditions for Rm

The main objective of this section is to study sufficient conditions guaranteeing for an infinite
word u the property Rm, however, we mention first two evident necessary conditions. If u has
Rm, then:

1. The alphabet A of u must have m letters since the occurrences of the empty word ε are
all integers n ∈ N0, and its return words are therefore all letters.

2. Furthermore, u must be uniformly recurrent since every factor has a return word and only
finitely many of them.

Combining Item 1. and Remark 3.2.2, we derive the following lemma.

Lemma 6.2.1. If an infinite word u satisfies Rm and no factor is weak BS, then ∆C(n) ≥ m−1
for all n ∈ N0.

The number of return words may be bounded from below and from above with the help of
the following lemmas.

Lemma 6.2.2. If u is an infinite uniformly recurrent word with no weak BS factor, then
#Ret(w) ≥ ∆C(|w|) + 1 for every factor w ∈ L(u).

Proof. Let w ∈ L(u) and denote by v(1), v(2), . . . , v(r) the RS factors of length |w|. Since no factor
is weak BS and u is uniformly recurrent, every v(j) can be extended to the left without decreasing
the total amount of “right branching” until w is reached. More precisely, we have (mutually

different) RS factors v
(j)
1 , v

(j)
2 , . . . , v

(j)
sj with suffix v(j), prefix w, and no other occurrence of w

such that #Rext(v(j)) − 1 ≤ ∑sj

i=1

(
#Rext(v

(j)
i ) − 1

)
. The construction implies that the set

{v(j)
i | 1 ≤ j ≤ r, 1 ≤ i ≤ sj} is equal to the set of vertices in the tree of return words of w and

v
(j)
i 6= v

(j′)
i′ for (j, i) 6= (j′, i′). Consequently, we can use Equation (6.1) and obtain

#Ret(w) = 1 +

r∑

j=1

sj∑

i=1

(
#Rext(v

(j)
i ) − 1

)
≥ 1 +

r∑

j=1

(
#Rext(v(j)) − 1

)
= 1 + ∆C(|w|).
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Lemma 6.2.3. If an infinite uniformly recurrent word u has no weak BS factor and ∆C(n) < m
for all n ∈ N0, then #Ret(w) ≤ m for every factor w ∈ L(u).

Proof. Let v(1), v(2), . . . , v(r) denote the RS factors which are labels of non-leave vertices in the
tree of return words of a factor w, and put n := max1≤j≤r |v(j)|. Since no BS factor is weak,
every v(j) can be extended to the left to factors of length n without decreasing the total amount

of “right branching”. More precisely, we have (mutually different) RS factors v
(j)
1 , v

(j)
2 , . . . , v

(j)
sj

of length n with suffix v(j) such that #Rext(v(j)) − 1 ≤ 1 +
∑sj

i=1

(
#Rext(v

(j)
i ) − 1

)
. Since w

occurs in v(j) only as prefix, no v(j) can be a proper suffix of v(j′). Hence, we have v
(j)
i 6= v

(j′)
i′

for (j, i) 6= (j′, i′) and

#Ret(w) = 1 +

r∑

j=1

(
#Rext(v(j) − 1

)
≤ 1 +

r∑

j=1

sj∑

i=1

(
#Rext(v

(j)
i ) − 1

)
≤ ∆C(n) + 1 ≤ m.

For words with no weak BS factors, the previous three lemmas give a very simple characte-
rization of the property Rm.

Theorem 6.2.4. If u is a uniformly recurrent word with no weak BS factor, then it satisfies
Rm if and only if C(n) = (m− 1)n+ 1 for all n ∈ N0.

It is easy to see that the following two statements are equivalent.

1. The complexity of u obeys the formula C(n) = (m− 1)n+ 1 for all n ∈ N0 and u contains
no weak BS factors.

2. The word u is defined over an m-letter alphabet and u contains only ordinary BS factors.

Using the equivalence of the above statements, we may reformulate the sufficient condition.

Corollary 6.2.5. Let u be a uniformly recurrent word over A with #A = m. If u contains only
ordinary BS factors, then u fulfills Rm.

6.2.2 Known characterization of R2 and new characterization of R3

For m = 2 and m = 3, words with the property Rm can be completely characterized.

Definition 6.2.6. Let v be a return word of w ∈ L(u). We say that the return word v starts
with b if wb is a prefix of the complete return word vw and that it ends with a if aw is a suffix
of vw.

Lemma 6.2.7. If w is a maximal RS factor of a recurrent word u such that for any b ∈ Rext(w),
there exists a unique v ∈ Ret(w) starting with b, then u is eventually periodic.

Proof. Denote the return words of w by v(1), v(2), . . . , v(r), where v(j) starts with bj , ends with
aj , and bj+1 is the only letter in Rext(ajw) for 1 ≤ j < r. Then b1 is the only letter in Rext(arw)
and u = u′(v(1)v(2) . . . v(r))ω for some prefix u′.

Corollary 6.2.8. If u satisfies R2, then it has no maximal RS factor.

Proof. Assume that w is a maximal RS factor. Then the two return words of w have different
starting letters, hence u is eventually periodic by Lemma 6.2.7 and #Ret(wa) = 1.
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Over a binary alphabet, the notions of weak BS and maximal RS factor coincide. Therefore,
Corollaries 6.1.3, 6.2.8, Lemma 6.2.2 provide a short proof of the following theorem.

Theorem 6.2.9 (Vuillon [107]). An infinite word u satisfies R2 if and only if u is Sturmian.

In order to characterize words with the property R3, we need one more lemma.

Lemma 6.2.10. Let u be a recurrent word.

1. Let w be a weak BS factor of u with a unique a ∈ Lext(w) such that more than one return
word of w starts with a letter in Rext(aw). Then #Ret(aw) < #Ret(w).

2. Similarly, let w be a weak BS factor of u with a unique b ∈ Rext(w) such that more than
one return word of w ends with a letter in Lext(wb). Then #Ret(wb) < #Ret(w).

Proof. 1. Any return word of aw has the form av(1)v(2) . . . v(r)a−1 for some r ≥ 1 and
v(j) ∈ Ret(w), 1 ≤ j ≤ r. If v(1) ends with a, then r = 1. If v(1) ends with a′ 6= a, then
the assumption of the lemma implies that there is a unique return word of w starting with
a letter in Rext(a′w) (and #Rext(a′w) = 1). Therefore, v(2) and inductively the sequence
of words v(2), . . . , v(r) are completely determined by the choice of v(1). This implies that
#Ret(aw) equals the number of return words of w starting with a letter in Rext(aw).
Since w is weak BS, we have #Rext(aw) < #Rext(w), and, thus, #Ret(aw) < #Ret(w).

2. Any return word of wb has the form v(1)v(2) . . . v(r) for some r ≥ 1 and v(j) ∈
Ret(w), 1 ≤ j ≤ r. If v(r) starts with b, then r = 1. If v(r) starts with b′ 6= b, then there is
a unique return word of w ending with a letter in Lext(wb′) (and #Lext(wb′) = 1). Thus,
v(r−1) and inductively the sequence of words v(1), . . . , v(r−1) are completely determined by
the choice of v(r). This means that #Ret(wb) equals the number of return words of w
ending with a letter in Lext(wb). Since w is weak BS, we have #Lext(wb) < #Lext(w),
and, consequently, #Ret(wb) < #Ret(w).

Remark 6.2.11. There are two cases for Item 1. of Lemma 6.2.10: Either aw is RS or there
is more than one return word of w starting with the unique right extension of aw.

Corollary 6.2.12. If u satisfies R3, then it has no weak BS factor.

Proof. Assume that w is a weak BS factor.

• If #Rext(w) = 3, then every return word of w starts with a different letter in Rext(w).
Either w is a maximal RS factor, which causes a contradiction to R3 applying Lemma 6.2.7,
or, there exists a unique a ∈ Lext(w) such that the factor aw is RS, then we obtain
a contradiction to R3 by Item 1. of Lemma 6.2.10.

• If Rext(w) = {b, b′}, then either Lext(w) = {a, a′}, Rext(aw) = {b}, and Rext(a′w) =
{b′}. Then, w.l.o.g., two return words of w start with b and one starts with b′ and we obtain
a contradiction to R3 by Item 1. of Lemma 6.2.10. Or, #Lext(w) = 3 and, w.l.o.g., two
return words ends with a letter in Lext(wb), then we have again a contradiction to R3 by
Item 2. of Lemma 6.2.10.

By combining Corollary 6.2.12 and Theorem 6.2.4, we obtain the following theorem.
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Theorem 6.2.13. A uniformly recurrent word u satisfies R3 if and only if C(n) = 2n + 1 for
all n ∈ N0 and u has no weak BS factor.

Using Corollary 6.2.5, the theorem can be reformulated.

Corollary 6.2.14. Let u be a uniformly recurrent word over A with #A = 3. Then u has R3

if and only if u contains only ordinary BS factors.

Let us give several remarks:

• Theorem 6.2.13 remains true if “weak BS factor” is replaced by “maximal RS factor”:
If ∆C(n) = 2 for all n ∈ N0, then every factor w with #Rext(w) = 3 is the unique
RS factor of its length, and it cannot be weak BS. If #Rext(w) = 2, then the two
notions coincide.

• By symmetry, “weak BS factor” can be replaced by “maximal LS factor”.

• The condition on weak BS factors cannot be omitted. Ferenczi in [51] showed that the
fixed point limn→∞ ϕn(1) of the substitution given by ϕ : 1 → 12, 2 → 312, 3 → 3312,
a recoding of the Chacon substitution, has complexity 2n + 1 and it contains weak
BS factors.

6.2.3 Comments on Rm, m ≥ 4

The characterization of Rm for m = 3 introduced in Theorem 6.2.13 cannot be easily generalized
for m ≥ 4. The following example due to Steiner [11] shows that C(n) need not be (m− 1)n+ 1
for all n ∈ N0 if u satisfies Rm, m ≥ 4.

Example 6.2.15. Define the substitution ϕ by

ϕ : 1 → 13231
2 → 13231424131
3 → 42324131424
4 → 42324

and denote its fixed point u = limn→∞ ϕn(1).
The first observation to do is that the language L(u) has a symmetry: the morphism S defined

by S : 1 ↔ 4, 2 ↔ 3. Since factors w and S(w) are different (provided w 6= ε) but of the same
length, there exists an even number of different factors of every length. Therefore C(n) 6= 3n+ 1
for any n > 1, n even.

Now let us show that u satisfies R4. By Section 6.1.1, it is sufficient to consider BS factors
of u. Let us determine them, using the fact that if w is a BS factor, then S(w) is a BS factor of
the same bilateral order. Observing the substitution ϕ, we learn that the following table shows
LS and RS factors of lengths between 1 and 7, if we add their images by S, we obtain a complete
list of LS and RS factors of lengths between ≤ 7.

length 1 2 3 4 5 6 7

LS’s 1, 2 23, 24 241 2413 24131, 24132 241314, 241323 2413142 , 2413231

RS’s 1, 2 32, 42 142 3142 13142, 23142 413142, 323142 2413142 , 1323142

Thus, the only BS factors of length ≤ 7 are weak BS factors 1 and 4, 23 and 32, 2413142 and
3142413, and strong BS factors 2 and 3, 2413 and 3142. Every BS factor of length > 7 has
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either 2413231 or 3142324 as prefix and either 1323142 or 4232413 as suffix. Consequently, it
is easy to see that every BS factor v of length > 7 satisfies Proposition 6.1.8 with decomposition
v = tϕ(w)t′, where t ∈ {24, 31}, t′ ∈ {1323142, 4232413}, provided w 6= ε.

Therefore, if we prove that every BS factor of length ≤ 7 and BS factors of the form tϕ(ε)t′ ∈
{241323142, 314232413} have 4 return words, then applying Proposition 6.1.8 with the fact that
ϕ is injective, we will have shown that #Ret(w) = 4 for every w ∈ L(u).

For the BS factors 1, 2, 23, 2413, the return words are easily determined:

Ret(1) = {13, 1323, 1424, 142324},
Ret(2) = {23, 2314, 2413, 241314},
Ret(23) = {2314, 2314241314, 232413, 232413142413},

Ret(2413) = {241314, 24131423, 24132314, 2413231423}.

The return words of the weak BS factor 2413142 are factors of ϕ(v), with a factor v of length
|v| ≥ 2 having prefix 2 or 3, suffix 2 or 3 and no other occurrence of 2 and 3. Since the only
possibilities for v are 23, 2413, 32, 3142, we obtain

Ret(2413142) = {24131423, 241314232413231423, 24131424132314, 241314241323142324132314}.

The return words of the BS factor 241323142 are factors of ϕ(v), with a factor v of length |v| ≥ 4
containing either 1 or 2 as the second letter and 1 or 2 as the last but one letter and having no
other occurrences of 1 and 2. Since the only possibilities for v are 41323, 32314, 31423, 31424,
42413, 32413, 41314, 42324, we obtain

Ret(241323142)={2413231423, 2413231423241314, 2413231424131423, 24132314241314232413242}.

6.2.4 Property Rm for uβ associated with Parry numbers

In this section, we describe which infinite words associated with simple Parry numbers have
the property Rm. For non-simple Parry numbers (defined in Section 2.3.1), this question stays
open: neither special factors nor complexity have been described if uβ is defined over an m-letter
alphabet with m ≥ 3. In the case of non-simple quadratic Parry numbers, the alphabet of uβ
equals {0, 1}, thus, only the Sturmian case corresponding to parameters p = q + 1 satisfies R2.

For simple Parry numbers, all prefixes of uβ are LS factors, with all m letters being left
extensions [14]. For every factor w, the tree of return words constructed by the left extensions
(see Section 6.1.2) contains therefore a vertex with m children, the shortest prefix of uβ having
w as a suffix. Therefore, every factor w has at least m return words. If there exists a LS factor
which is not a prefix of uβ , then this factor has more than m return words. By Proposition 6.1.1,
we obtain the following statement.

Proposition 6.2.16. Let uβ be a fixed point of the substitution ϕ given by (2.23). Then uβ
satisfies Rm if and only if C(n) = (m− 1)n + 1 for all n ∈ N0.

Bernat, Masáková, and Pelantová in [14] characterize uβ associated with simple Parry num-
bers having an affine complexity (Theorem 3.3.6), in terms of the Rényi expansion of unity. It is
readily seen that the complexity is then necessarily given by C(n) = (m− 1)n+ 1 for all n ∈ N0.

Corollary 6.2.17. Let uβ be an infinite word associated with a simple Parry number. Then uβ
satisfies Rm if and only if tm = 1 and tj . . . tm−1t1 . . . tj−1 � t1 . . . tm−1 for all j ∈ {2, . . . ,m−1}.

For the seek of completeness, let us recall that the language of uβ is closed under reversal if
and only if t1 = t2 = · · · = tm−1. In this case, uβ satisfying Rm is an Arnoux-Rauzy word of
order m.
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6.3 Recurrence function of uβ associated with quadratic non-

simple Parry numbers

The study of the recurrence function (vaguely defined in Section 2.2.4) was initiated by Hedlund
and Morse in [66]. They revealed the following relation between the recurrence function and the
complexity of any infinite word

R(n) ≥ C(n) + n− 1 for all n ∈ N.

For infinite words which are not periodic, they refined the relation as

R(n) ≥ C(n) + n for all n ∈ N. (6.3)

In the other direction, a similar generally valid inequality cannot be established since it is
possible to construct Sturmian words whose recurrence function grows arbitrarily fast, as shown
by Cassaigne in [29].

Cassaigne in [29] determined the recurrence function for Sturmian words, taking into account
continued fractions of their slope. Furthermore, the same author in [30] has given a general
algorithm describing how to determine the recurrence function if we know return words. He
demonstrated his result on the example of the Thue-Morse word. This algorithm constitutes
the cornerstone of the new result of this section – the derivation of the recurrence function
for infinite words uβ associated with quadratic non-simple Parry numbers. Let us start with
a precise definition of the recurrence function.

Definition 6.3.1. The recurrence function of an infinite word u is the map Ru : N → N∪{+∞}
defined by

Ru(n) = min{N ∈ N
∣∣ ∀v ∈ LN (u),Ln(v) = Ln(u)},

and we put Ru(n) := ∞ if the above set is empty.

We will write R(n) instead of Ru(n) provided it causes no confusion. Clearly, u is uniformly
recurrent if and only if R(n) is finite for every n ∈ N. In order to get another expression for
R(n), convenient to work with, let us introduce some more terms.

Definition 6.3.2. Let u be an infinite uniformly recurrent word.

• Let w ∈ L(u), then l(w) = max{|v|
∣∣ v ∈ Ret(w)} is called the maximal return time of w

in u.

• For all n ∈ N, we define l(n) = max{l(w)
∣∣ w ∈ Ln(u)}.

Once the lengths of return words of every factor determined, the following proposition
from [30] allows to calculate the recurrence function R(n).

Proposition 6.3.3. For any infinite uniformly recurrent word u, and, for any n ∈ N, one has

R(n) = l(n) + n− 1.

The task to compute the recurrence function may be simplified using the notion of singular
factors. A factor w ∈ L(u) is called singular if |w| = 1 or there exist a word v ∈ L(u) and
letters a, a′, b, b′ ∈ A such that w = avb, a 6= a′, b 6= b′, and {avb′, a′vb} ⊂ L(u). Obviously, v is
a non-weak BS factor.
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Proposition 6.3.4. Let u be a uniformly recurrent word and n ≥ 1. If l(n − 1) < l(n), then
there exists a singular factor w of length n such that l(w) = l(n).

A singular factor w is said to be essential if l(w) = l(|w|) > l(|w| − 1). To calculate l(n), it
is sufficient to consider singular, or, even, only essential singular factors of length ≤ n.

Theorem 6.3.5. Let u be a uniformly recurrent word and n ≥ 1.

l(n) = max{l(w)
∣∣ |w| ≤ n and w singular} = max{l(w)

∣∣ |w| ≤ n and w essential singular}.

Now, we are able to give an algorithm for computing the recurrence function of an
infinite uniformly recurrent word u:

1. Determine BS factors.

2. Deduce the form of singular factors and compute their lengths.

3. For every singular factor, determine the associated return words and compute their lengths.

4. Compute the function l(n) to get the recurrence function R(n) for every n ∈ N.

Let us apply the algorithm for computing the recurrence function to the infinite word uβ
associated with quadratic non-unit non-simple Parry numbers, i.e., being the fixed point of the
substitution ϕ(0) = 0p1, ϕ(1) = 0q1, p− 1 > q.

1. The BS factors of uβ are described in Corollary 3.4.5.

2. Combining Item 2. of Lemma 3.4.3, Lemma 3.4.4, and Corollary 3.4.5, we deduce the form
of singular factors.

Proposition 6.3.6. The set of all singular factors of uβ is given by the union of

{0, 1},
{S(n)

r (0, 0) | n ∈ N, 0 ≤ r ≤ p− 2},
{S(n)

q (1, 0) | n ∈ N},
{S(n)

q (0, 1) | n ∈ N},
{S(n)

q (1, 1) | n ∈ N},

where S
(n)
r (a, b) = aW

(n)
r b, n ∈ N, r 6= q, and S

(n)
q (a, b) = aV (n)b.

To compute the lengths of singular factors, it is enough to compute the lengths of BS
factors. See Section 3.4 for recurrent formulae for lengths.

3. The description of return words of singular factors is simplified by the following lemma,
obtained applying rules from Section 6.1.

Lemma 6.3.7. Let n ≥ 2, r ∈ {0, . . . , p− 2}. The following sets are equal

{|w|
∣∣ w ∈ Ret(S(n)

r (a, b))} = {|ϕ(w′)|
∣∣ w′ ∈ Ret(S(n−1)

r (a, b))}.
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Proof. Let us start with S
(n)
r (0, 0) for r 6= q

S(n)
r (0, 0) = 0W (n)

r 0 = 00q1ϕ(W (n−1)
r )0q0.

Clearly, S
(n)
r (0, 0) is not BS, and, using Section 6.1.1, return words of S

(n)
r (0, 0) have the

same lengths as return words of ϕ
(
0W

(n−1)
r 0

)
= ϕ

(
S

(n−1)
r (0, 0)

)
. Since ϕ

(
S

(n−1)
r (0, 0)

)

has a unique interpretation
(
S

(n−1)
r (0, 0), 0, 0

)
, as a consequence of Corollary 6.1.9, we

have Ret
(
ϕ(S

(n−1)
r (0, 0))

)
= ϕ

(
Ret(S

(n−1)
r (0, 0))

)
. To summarize,

{|w|
∣∣ w ∈ Ret(S(n)

r (0, 0))} = {|ϕ(w′)|
∣∣ w′ ∈ Ret(S(n−1)

r (0, 0))}.

The case of S
(n)
q (0, 1) is analogous to the previous one.

Slightly different is the case of S
(n)
q (1, 1). We have

S(n)
q (1, 1) = 1V (n)1 = 10q1ϕ(V (n−1))0q1.

Again, S
(n)
q (1, 1) is not BS, and, using Section 6.1.1, return words of S

(n)
q (1, 1) has the same

lengths as return words of ϕ
(
01V (n−1)1

)
. Since ϕ

(
01V (n−1)1

)
has a unique interpretation(

01V (n−1)1, 0, 0
)
, as a consequence of Corollary 6.1.9, we get Ret

(
ϕ(01V (n−1)1)

)
=

ϕ
(
Ret(01V (n−1)1)

)
. Applying again Section 6.1.1, since 1V (n−1)1 is not LS, it holds

Ret(01V (n−1)1) = 0Ret(1V (n−1)1)0−1. Therefore {|ϕ(w′)| | w′ ∈ ϕ
(
Ret(01V (n−1)1)

)
} =

{|ϕ(w′)| | w′ ∈ ϕ
(
Ret(1V (n−1)1)

)
}. To sum up

{|w|
∣∣ w ∈ Ret

(
S(n)
q (1, 1)

)
} = {|ϕ(w′)|

∣∣ w′ ∈ Ret
(
S(n−1)
q (1, 1)

)
}.

The case of S
(n)
q (1, 0) is analogous to the precedent one.

Now, it suffices to determine return words for the simplest singular factors S
(1)
r (a, b).

Lemma 6.3.7 implies that the lengths of return words of all the other singular factors are
obtained by calculating the lengths of images of the simplest return words. Here are the
return words of the simplest singular factors.

• For the trivial singular factors 0, 1,

Ret(0) = {0, 01} and Ret(1) = {10p, 10q}. (6.4)

• For S
(1)
0 (0, 0) = 00,

Ret(00) = {0, 001} if q ≥ 2,
Ret(00) = {0, 001, 00101} if q = 1.

(6.5)

• For S
(1)
r (0, 0) = 00r0,

Ret(00r0) =






{0p1, 0p10q1} if r = p− 2 ,
{0, 0r+21, 0r+210q1} if q − 2 < r < p− 2,
{0, 0r+21} if 1 ≤ r ≤ q − 2.

(6.6)

• For S
(1)
q (1, 0) = 10q0,

Ret(10q0) = {10p, 10p10q}. (6.7)
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• For S
(1)
q (0, 1) = 00q1,

Ret(00q1) = {0q+110p−(q+1), 0q+110q10p−(q+1)}. (6.8)

• For S
(1)
q (1, 1) = 10q1,

Ret(10q1) = {1ϕ(10p)1−1, 1ϕ(10q)1−1}. (6.9)

4. The last step is to compute l(k), k ∈ N. Before starting, let us exclude singular factors
which are not essential. Naturally, we apply Lemma 6.3.7 to determine the maximal return
times l(w) of a singular factor w.

• Obviously, 0 is not an essential singular factor.

• Since |S(n)
q (1, 0)| = |S(n)

q (0, 1)| = |S(n)
q (1, 1)|, but from Relations (9.8), (9.9), and (9.10),

it is clear that for all n ∈ N, one gets l(S
(n)
q (1, 0)) = l(S

(n)
q (0, 1)) < l(S

(n)
q (1, 1)). Thus,

S
(n)
q (1, 0) and S

(n)
q (0, 1) are not essential singular factors and one does not have to

consider them in calculation of l(k), k ∈ N.

• Analogously, if q ≥ 2, we have |S(n+1)
0 (0, 0)| > |S(n)

q (1, 1)|, while l(S
(n+1)
0 (0, 0)) <

l(S
(n)
q (1, 1)) for all n ∈ N. Hence, the singular factors S

(n+1)
0 (0, 0) are not essential

for q ≥ 2, n ∈ N.

• Next, if p− 2 ≥ r ≥ q, we have |S(n)
r (0, 0)| ≥ |S(n)

q (1, 1)|, nevertheless, l(S
(n)
r (0, 0)) <

l(S
(n)
q (1, 1)) for all n ∈ N. Therefore, S

(n)
r (0, 0), r ≥ q, are not essential.

• If 1 ≤ r ≤ q − 2, then we obtain |S(n+1)
r (0, 0)| > |S(n)

q (1, 1)|, but l(S
(n+1)
r (0, 0)) <

l(S
(n)
q (1, 1)) for all n ∈ N, thus, the singular factors S

(n+1)
r (0, 0), 1 ≤ r ≤ q − 2, are

not essential.

• The last remark is that for the trivial singular factor w = 1, we have |w| < |S(1)
r (0, 0)|,

1 ≤ r ≤ q − 2, but l(S
(1)
r (0, 0)) < l(w), hence, S

(1)
r (0, 0), 1 ≤ r ≤ q − 2, are not

essential.

The previous facts imply that to calculate l(k), we have to take into account only the trivial

singular factor 1, the non-trivial singular factors of the form S
(n)
q (1, 1), and, eventually,

S
(n)
0 (0, 0) and S

(n)
q−1(0, 0). The formulae for l(k), k ∈ N, split into more cases, according to

the values taken by p and q.

(a) For q ≥ 2, combining the previous facts and the description of the simplest singular
factors, we obtain the following formula for l(k), k ∈ N,

• If 2q + 1 ≥ p, then

l(1) = · · · = l(q) = p+ 1,
l(q + 1) = 2q + 3,

l(k) = |ϕn(10p)| for |S(n)
q (1, 1)| ≤ k < |S(n+1)

q−1 (0, 0)|, n ∈ N,

l(k) = |ϕn(0q+110q1)| for |S(n+1)
q−1 (0, 0)| ≤ k < |S(n+1)

q (1, 1)|, n ∈ N.

• If 2q + 1 < p, then

l(1) = · · · = l(q + 1) = p+ 1,

l(k) = |ϕn(10p)| for |S(n)
q (1, 1)| ≤ k < |S(n+1)

q (1, 1)|, n ∈ N.
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(b) For q = 1 and p = 3, then it holds for l(k), k ∈ N,

l(1) = 4,

l(k) = |ϕn−1(00101)| for |S(n)
0 (0, 0)| ≤ k < |S(n)

1 (1, 1)|, n ∈ N,

l(k) = |ϕn(103)| for |S(n)
1 (1, 1)| ≤ k < |S(n+1)

0 (0, 0)|, n ∈ N.

(c) For q = 1 and p > 3, we get

l(1) = l(2) = p+ 1,

l(k) = |ϕn(10p)| for |S(n)
1 (1, 1)| ≤ k < |S(n+1)

1 (1, 1)|, n ∈ N.

Having calculated the formula for l(k), k ∈ N, we have also the recurrence function computed
since R(k) = l(k) + k − 1.

Remark 6.3.8. Let us discuss the Sturmian case of uβ, i.e., given by parameters p − 1 = q.
BS factors have been described in Remark 3.4.9. As a straightforward consequence, the set of
singular factors is deduced:

{S(n)
r (0, 0) | 0 ≤ r ≤ p− 2, n ∈ N} ∪ {S(n)

p−1(1, 1)},

where S
(n)
r (a, b) = aW

(n)
r b. It is not difficult to show that

{|w|
∣∣ w ∈ Ret(S(n)

r (a, b))} = {|ϕ(w′)|
∣∣ w′ ∈ Ret(S(n−1)

r (a, b))}

for all n ≥ 2 and 0 ≤ r ≤ p − 1. Thus, to determine lengths of return words, it is sufficient to
restrict the considerations to the return words of the shortest singular factors. Here are their
return words.

Ret(0r) = {0, 0r1} 1 ≤ r ≤ p− 1.

This time, all singular factors are essential and l(k), k ∈ N, is easy to determine.

l(k) = k + 1 for 1 ≤ k ≤ p− 1,

l(k) = |ϕn(0p−11)| for |S(n+1)
p−1 | ≤ k < |S(n+2)

1 |, n ∈ N0,

l(k) = |ϕn(0r1)| for |S(n+1)
r | ≤ k < |S(n+1)

r+1 |, 1 ≤ r ≤ p− 2, n ∈ N.

In conclusion, let us provide a table of the first 18 values of l(k) and R(k) for the simplest
Sturmian case p = 2 and q = 1.

l(k) 3 5 8 8 13 13 13 21 21 21 21 21 34 34 34 34 34 34

R(k) 3 6 10 11 17 18 19 28 29 30 31 32 46 47 48 49 50 51
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Chapter 7

Frequencies

This chapter studies the problematics of factor frequencies in an infinite word. To be specific,
we tackle two tasks. The first one is to improve the so-far known upper bound on the number of
factor frequencies. We improve this upper bound in the case of the infinite words whose language
has a symmetry. The second task is to determine the actual values of factor frequencies in two
infinite words – uβ associated with quadratic non-simple Parry numbers (representing fixed
points of substitutions) and the palindromeless reversal closed word (representing words with
a finite number of palindromes). Throughout this chapter, a central role is played by (reduced)
Rauzy graphs.

7.1 Rauzy graphs and factor frequencies

Rauzy graphs, despite of their simplicity, have turned out to be a powerful tool in the study
of various combinatorial properties of words. The first one to use the idea to label the edges
of Rauzy graphs with frequencies was Dekking [41] in order to show that for every length,
there exist at most three different factor frequencies in the Fibonacci word. Moreover, he has
described, for every n, the set of frequencies of factors of length n and the number of factors of
length n having the same frequency.

It is not difficult to explain why the factor frequencies of Sturmian words attain at most
three values for every length. The reduced Rauzy graphs of every Sturmian word take only the
forms depicted in Figure 2.4; that is, the graph consists either of one vertex (corresponding to
a BS factor) and two edges, or two vertices (corresponding to a LS and a RS factor) and three
edges. As a consequence, there are at most three edge labels in the Rauzy graph Γn for any
length n.

Berthé in [17], observing also the evolution of Rauzy graphs for growing factor lengths,
generalized Dekking’s result for all Sturmian words.1 More precisely, for every Sturmian word
with the slope α, knowing the consecutive n-Farey fractions p1

q1
, p2
q2

such that p1
q1
< α < p2

q2
, the

exact values of frequencies of factors of length n and also the number of factors of length n
having the same frequency have been derived in [17].

With the help of Rauzy graphs, Boshernitzan in [21] has deduced an upper bound on the
number of different frequencies in an aperiodic recurrent infinite word. According to his result,
the number of frequencies of factors of length n+ 1 does not exceed 3∆C(n).

Since ∆C(n) is known to be bounded for infinite words with sublinear complexity, it follows
for Arnoux-Rauzy words, m-interval exchange words, and fixed points of primitive substitutions
that the number of different frequencies of factors of the same length is bounded.

1Note that this result follows also from the 3 gap theorem by Sós [104].
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Let us present the estimates leading to the result of Boshernitzan since their improvement
for infinite words with symmetries is our first important goal. Let u be an aperiodic recurrent
infinite word and assume that its factor frequencies exist. The idea is simple. We calculate the
number of edges in the reduced Rauzy graph Γ̃n of u (defined in Section 2.2.12) in order to get
an upper bound on the number of edge labels in Γ̃n. As the sets of edge labels of Γ̃n and Γn
coincide, we get in fact an upper bound on the number of frequencies of factors in Ln+1(u).

For every RS factor w ∈ Ln(u), it holds that #Rext(w) edges begin in w, and, for every LS
factor v ∈ Ln(u) which is not RS, only one edge begins in v, thus we get the following relation

#{e| e edge in Γ̃n} =
∑

w RS in Ln

#Rext(w) +
∑

v LS not RS in Ln

1. (7.1)

Using Proposition 2.2.1, we deduce that

#{e| e edge in Γ̃n} = ∆C(n) +
∑

w RS in Ln

1 +
∑

v LS not RS in Ln

1. (7.2)

Since #Rext(w) − 1 ≥ 1 for any RS factor w, and, similarly, #Lext(w) − 1 ≥ 1 for any LS
factor, we have

#{w ∈ Ln(u)| w RS} ≤ ∆C(n) and #{w ∈ Ln(u)| w LS} ≤ ∆C(n). (7.3)

The following result, initially proved in [21], follows immediately combining (7.2) and (7.3).

Theorem 7.1.1. Let u be an aperiodic recurrent infinite word such that for every factor w ∈
L(u), the frequency ρ(w) exists. Then, for every n ∈ N, it holds

#{ρ(e)
∣∣ e ∈ Ln+1(u)} ≤ 3∆C(n).

7.2 Symmetries in Rauzy graphs and factor frequencies

The aim of this section is to show that Boshernitzan’s upper bound 3∆C(n) can be further
diminished if the labeled Rauzy graphs of the infinite word in question have a nontrivial group
of automorphisms. Examples of such automorphisms are symmetries defined in Section 6.1.3
(mirror symmetry and letter permutations). Let us mention that the idea to exploit the mirror
symmetry of the Rauzy graph was already used by Baláži, Masáková, and Pelantová in [10] and
it has led to the estimate (4.2) on the palindromic complexity in terms of the first difference of
factor complexity.

Let us improve the estimate from Theorem 7.1.1 for aperiodic infinite words u whose language
is closed under reversal and such that the frequency of every factor exists. The following two
properties may be easily checked.

1. Such words are recurrent.

2. For any pair of factors w, v ∈ L(u), it holds

#{occurrences of w in v}
|v| =

#{occurrences of w in v}
|v| .

The definition of factor frequency in (2.11) implies ρ(w) = ρ(w) for all factors w of u.

With the above two ingredients in hand, we are able to prove a lemma, essential for determining
of an improved upper bound on the number of factor frequencies.
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Lemma 7.2.1. Let u be an aperiodic infinite word whose language L(u) is closed under reversal
and such that for every factor w ∈ L(u), the frequency ρ(w) exists. Then, for every n ∈ N, we
have

#{ρ(e)|e ∈ Ln+1(u)} ≤ 1

2

(
P(n) + P(n + 1) + ∆C(n) −X − Y

)
+ Z,

where X is the number of BS factors of length n,
Y is the number of BS palindromic factors of length n,
Z is the number of RS factors of length n.

Proof. Let Γn be the labeled Rauzy graph of u of order n. Then the mirror map µ maps Γn
onto itself (since L(u) is closed under reversal). Thanks to the relation ρ(w) = ρ(w) for all
w ∈ L(u), the map µ is even an automorphism of the labeled Rauzy graph Γn. Clearly, every
simple path f in Γn is mapped by µ to the simple path f having the same label. Hence, µ
induces an automorphism on the reduced Rauzy graph Γ̃n, too.

We know already that the set of edge labels of Γ̃n is equal to the set of edge labels of Γn.
Let us denote by A the number of edges f in Γ̃n (the number of simple paths in Γn) such that
f is mapped by µ onto itself and by B the number of edges f in Γ̃n such that f is not mapped
by µ onto itself. Then, obviously,

#{f | f edge in Γ̃n} = A+B.

If a simple path f = f1f2 . . . fm is mapped by µ onto itself, then f is a palindrome. Consequently,
if m and n have the same parity, then the central factor of f of length n is a palindromic vertex
in Γn, and if m and n + 1 have the same parity, then the central factor of f of length n + 1 is
a palindromic edge in Γn. On the other hand, every palindrome of length n+1 is a central factor
of a simple path mapped by µ onto itself and every palindrome of length n is either a central
factor of a simple path mapped by µ onto itself or it is a vertex in Γ̃n. Therefore,

A = P(n) + P(n + 1) − #{w ∈ Ln(u)| w BS in Paln}. (7.4)

We subtract the number of palindromic BS factors of Ln(u), in the statement denoted by Y ,
since they are not factors of any simple path – they are vertices in Γ̃n.

Now, let us turn our attention to the edges of Γ̃n that are not mapped by µ onto themselves.
For every such edge f , at least one distinct edge, namely f , has the same label ρ(f). These
considerations lead to the following estimate

#{ρ(e)| e ∈ Ln+1(u)} ≤ A+ 1
2B = 1

2A+ 1
2 (A+B). (7.5)

Rewriting Equation (7.2), we obtain

A+B = ∆C(n) + 2Z −X. (7.6)

This fact together with (7.4) and (7.5) proves the statement.

If we apply on P(n) + P(n + 1) and Z from Lemma 7.2.1 the estimates (4.2) and (7.3),
respectively, we obtain immediately the main theorem.

Theorem 7.2.2. Let u be an aperiodic infinite word whose language L(u) is closed under reversal
and such that for every factor w ∈ L(u), the frequency ρ(w) exists. Then, for every n ∈ N, we
have

#{ρ(e)|e ∈ Ln+1(u)} ≤ 2∆C(n) + 1 − 1
2X − 1

2Y, (7.7)

where X is the number of BS factors of length n and Y is the number of BS palindromic factors
of length n.
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Corollary 7.2.3. Let u be an infinite word whose language L(u) is closed under reversal and
such that for every factor w ∈ L(u), the frequency ρ(w) exists. Then the number of distinct
factor frequencies obeys, for all n ∈ N,

#{ρ(e)|e ∈ Ln+1(u)} ≤ 2∆C(n) + 1, (7.8)

where the equality is reached if and only if u is purely periodic.

Proof. The validity for aperiodic words follows from Theorem 7.2.2. Moreover, aperiodic words
contain infinitely many BS factors. Hence, according to (7.7), the strict inequality #{ρ(e)|e ∈
Ln+1(u)} < 2∆C(n) + 1 holds for infinitely many n.

Infinite words whose languages are closed under reversal are readily seen to be either aperiodic
or purely periodic. Hence, it remains to explain that the statement holds for purely periodic
words.

In case of purely periodic words, for sufficiently large n, the first difference of complexity
satisfies ∆C(n) = 0 and all factors of length n have the same frequency (see Section 2.2.6). Thus,
the equality in (7.8) is realized.

Remark 7.2.4. If we seek for infinite words reaching the upper bound from Theorem 7.2.2, the
only candidates are the aperiodic recurrent infinite words

• satisfying #Rext(w) ≤ 2 for all w ∈ L(u) (since the upper bounds in (7.3) are reached),

• opulent in palindromes (since the upper bound in (4.2) is realized).

Let us mention examples of infinite words which demonstrate the accuracy of the upper
bound from Theorem 7.2.2.

Example 7.2.5. Berthé in [17] has shown that for every Sturmian word u, the number of
frequencies of factors of length n equals 2 if Ln(u) contains a BS factor, and is equal to 3
otherwise. Since any BS factor of a Sturmian word is a palindrome, the upper bound in (7.7) is
realized for all n ∈ N.

Example 7.2.6. Ferenczi and Zamboni [53] have proved that m-iet words attain the upper bound
in (7.7) for all n ∈ N. Their result shows that the equality in (7.7) may be reached even for words
over multilateral alphabets. As Sturmian words are 2-iet words, Example 7.2.5 is a particular
case of their result.

The above examples illustrate that the upper bound (7.7) is optimal and cannot be improved,
preserving the general assumptions. However, under some additional conditions, one can obtain
an improved analogy of the estimate (7.7). For instance, Lemma 7.2.1 gives us the following
statement.

Proposition 7.2.7. Let u be an aperiodic infinite word having language closed under reversal,
however, containing only a finite number of palindromes. Then

#{ρ(e)|e ∈ Ln+1(u)} ≤ 3
2∆C(n) − 1

2X for all but finitely many n ∈ N,

where X is the number of BS factors of length n.
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An example of an infinite word satisfying the assumptions of Proposition 7.2.7 can be found
in Section 3.3.5. We shell determine the values of factor frequencies of this word in a forthcoming
section.

The essential idea of our approach relies in the fact that the closeness of the language
under reversal implies the existence of a non-trivial automorphism of the labeled Rauzy graph.
More generally, our method can be applied on any infinite word u whose language L(u) has
a symmetry S : L(u) → L(u) (defined in Section 6.1.3). Let us recall that the group of all such
symmetries S is generated by the mirror image map and permutations of letters (extended to
L(u) as morphisms).

If the language of a binary word is closed under an exchange S of letters, no simple path
is mapped by S onto itself, and, thus, each frequency is assigned to at least two edges in the
reduced Rauzy graph Γ̃n. As the number of edges is at most 3∆C(n), we obtain for frequencies
the following upper bound

#{ρ(e)|e ∈ Ln+1(u)} ≤ 3
2∆C(n).

Example 7.2.8. The Thue-Morse word uTM has the most symmetrical language among binary
words in the sense that L(uTM ) is both closed under reversal and also under exchange of letters.
It explains why the upper bound from Theorem 7.2.2 overestimates the actual number of factor
frequencies of uTM . For concrete values of factor frequencies consult [54]. 2

7.3 Frequencies of fixed points of substitutions

In this section, we intend to derive the values of factor frequencies of the infinite word uβ
associated with a quadratic non-simple Parry number β. The following method enables to get
the factor frequencies recurrently.

7.3.1 Recurrent formula for factor frequencies

Let us recall a recurrent formula established by Frid in [54] for the derivation of factor frequencies
in fixed points u = u0u1u2 . . . of substitutions ϕ satisfying:

1. ϕ is non-erasing,

2. ρ(v) exists for every v ∈ L(u),

3. limk→∞
|ϕk+1(u0)|
|ϕk(u0)| = θ > 1.

Under the above conditions, it is possible to calculate recurrently the frequency of each factor
v ∈ L(u) knowing letter frequencies. Notice that the conditions exact neither the primitivity
from the substitution ϕ nor the positivity from the frequencies of factors of u.

Theorem 7.3.1. Let v,w ∈ L(u), then

#{occurences of v in ϕ(w)} =
∑

s∈I(v)
#{occurrences of a(s) in w},

where I(v) denotes the set of interpretations of v and a(s) is the ancestor of an interpretation s.

2The first one to derive factor frequencies in the Thue-Morse word was Dekking [41].
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Corollary 7.3.2. For every v ∈ L(u), we have

ρ(v) =
1

θ

∑

s∈I(v)
ρ(a(s)). (7.9)

If ϕ is a strictly growing substitution, i.e., |ϕ(a)| ≥ 2 for all a ∈ A, then ancestors of any
word v of length greater than 2 cannot be as long as the word v itself. Thus, in such a case, we
have to solve a system of linear equations for frequencies of factors of length 2; the frequencies
of factors of larger lengths can be computed recurrently using Corollary 7.3.2.

7.3.2 Frequencies of uβ associated with quadratic non-simple Parry numbers

Let us recall that the substitution matrix of the infinite word uβ associated with a quadratic

non-simple Parry number β, defined in Section 2.3.4, is of the form M =

(
p 1
q 1

)
. The left

eigenvector (l1, l2) corresponding to the larger eigenvalue β and satisfying l1 + l2 = 1 is equal to
(1 − 1

β
, 1
β
). Consequently, according to the result of Durand [45], the frequencies of all factors

of uβ exist and we have ρ(0) = 1 − 1
β

and ρ(1) = 1
β
. In addition, using Equation (2.19), we

obtain

lim
k→∞

|ϕk+1(u0)|
|ϕk(u0)|

= β.

Remark that for p − 1 = q, the word uβ is Sturmian, and, thus, factor frequencies may
be calculated using the method of Berthé [17] and the upper bound given in Theorem 7.2.2 is
attained. Therefore, in the sequel, we limit our considerations to the case p− 1 > q.

First, we compute the values of frequencies of BS factors (described in Section 3.4) using
the recurrent formula from Corollary 7.3.2. Second, we introduce some necessaries for the
construction of reduced Rauzy graphs Γ̃l for growing l. It is not difficult to see that these
necessaries are also sufficient for the construction of Γ̃l+1 from Γ̃l and that they allow us to
determine, using Kirchhoff’s law, for every n ∈ N, the set of frequencies of Ll(uβ) for l ∈
{|W (n)

1 | + 1, . . . , |W (n+1)
1 |}, knowing just frequencies of BS factors, even only of two BS factors

W
(n+1)
0 and W

(n)
1 . However, since the construction of reduced Rauzy graphs is rather technical,

we give instead only a list of explicit values of factor frequencies. Finally, observing the results
on factor frequencies, we deduce for which lengths l ∈ N, the upper bound from Theorem 7.2.2
is reached.

Frequencies of BS factors of uβ

Applying Corollary 7.3.2, we can derive a recurrent relation for frequencies of BS factors.

Lemma 7.3.3. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) = 0q1,
where p− 1 > q ≥ 1. Let n ≥ 1, then

ρ(W
(n+1)
k ) = 1

β
ρ(W

(n)
k ), k ∈ {0, . . . , p− 2}, k 6= q,

ρ(V (n+1)) = 1
β
ρ(V (n)),

ρ(U (n+1)) = 1
β
ρ(U (n)).

(7.10)

Proof. Observation 3.4.2 implies that any factor of the form v = 0q1ϕ(w)0q has the following
set of interpretations

I(v) = {(0w0, p − q, p− q + 1), (0w1, p − q, 1), (1w0, 0, p − q + 1), (1w1, 0, 1)}.
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Of course, if awb 6∈ L(uβ), then ρ(awb) = 0. Corollary 7.3.2 together with Lemma 2.2.5 states
that

ρ(v) =
1

β

(
ρ(0w0) + ρ(0w1) + ρ(1w0) + ρ(1w1)

)
=

1

β
ρ(w).

Thanks to the simple form of the recurrent relation for frequencies of BS factors and thanks
to the knowledge of letter frequencies, we can even calculate the explicit values of frequencies of
BS factors.

Corollary 7.3.4. Let n ≥ 1, then

ρ(W
(n+1)
k ) = 1

βn ρ(W
(1)
k ), k ∈ {0, . . . , p− 2}, k 6= q,

ρ(V (n+1)) = 1
βn ρ(V (1)),

ρ(U (n+1)) = 1
βn ρ(U (1)).

(7.11)

For the shortest BS factors, we have

ρ(W
(1)
0 ) = ρ(ε) = 1,

ρ(W
(1)
k ) = ρ(0k) = p−k+1

β
ρ(0) + q−k+1

β
ρ(1), for 1 ≤ k < q,

ρ(V (1)) = ρ(0q) = p−q+1
β

ρ(0) + 1
β
ρ(1),

ρ(W
(1)
k ) = ρ(0k) = p−k+1

β
ρ(0), for q + 1 ≤ k < p− 1,

ρ(U (1)) = ρ(0p−1) = 2
β
ρ(0).

(7.12)

Proof. In order to keep the relation ρ(W
(2)
0 ) = 1

β
ρ(W

(1)
0 ) valid, and, since ρ(W

(2)
0 ) = ρ(1) = 1

β
,

it is natural to put ρ(ε) := 1. For k = 1, we have ρ(W
(1)
k ) = ρ(0), which is in correspondence

with the second formula in the above list. To calculate frequencies of the other shortest BS
factors, we use again Corollary 7.3.2. Hence, we have to describe interpretations of the shortest
BS factors. This task is easy to solve considering the form of the substitution ϕ. For 2 ≤ k ≤ q,
we obtain I(0k) = {(0, 0, p − k + 1), . . . , (0, p − k, 1), (1, 0, q − k + 1), . . . , (1, q − k, 1)}, hence
ρ(0k) = p−k+1

β
ρ(0) + q−k+1

β
ρ(1), and, for q + 1 ≤ k ≤ p − 1, the set of interpretations is

I(0k) = {(0, 0, p − k + 1), . . . , (0, p − k, 1)}, thus ρ(0k) = p−k+1
β

ρ(0).

Necessaries for construction of reduced Rauzy graphs of uβ

In order to construct reduced Rauzy graphs, it is necessary to know more details on BS factors
of uβ:

• If w is a BS factor, we need to find, for every a ∈ Rext(w) such that wa is LS, the shortest
BS factor v containing wa as a prefix. As every BS factor is a palindrome (see Section 4.3),
aw is then a suffix of v and the factor starting in wa and ending in aw is a simple path.
Applying Item 4. of Lemma 3.4.3, we reveal the following relations for BS factors with

lengths in {|W (n)
1 |, . . . , |W (n+1)

1 |} (words on the right-hand side are the shortest BS factors
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containing words on the left-hand side as prefixes):

W
(n)
k 0 is a prefix of W

(n)
k+1, 1 ≤ k < q − 1,

W
(n)
q−10 is a prefix of V (n),

V (n)0 is a prefix of W
(n)
q+1,

V (n)1 is a prefix of W
(n+1)
0 ,

W
(n)
k 0 is a prefix of W

(n)
k+1, q + 1 ≤ k < p− 2,

W
(n)
p−20 is a prefix of U (n),

W
(n+1)
0 0 is a prefix of W

(n+1)
1 .

• It is also indispensable to know the ordering of BS factors according to their lengths.
The ordering is obvious for pairs of BS factors such that one is a prefix of the other,

therefore, the only question left is the position of |W (n+1)
0 | in {|W (n)

1 |, . . . , |W (n+1)
1 |}. In

order to compare lengths, the same recurrent formula for computing lengths as the one
from Section 3.4 is used. Two cases are to be considered, according to the relation of

lengths |U (n)| ⋚ |W (n+1)
0 |:

1. If p − 1 < 2q + 1, then |W (n)
1 | < · · · < |W (n)

q−1| < |V (n)| < |W (n)
q+1| < · · · < |W (n)

p−2| <
|U (n)| < |W (n+1)

0 | < |W (n+1)
1 | for all n ∈ N, thus there is at most one BS factor for

every length. BS factors are illustrated in Figure 7.1.

0

1
•
V (n)

•W
(n)
1• • • •W

(n)
q−1

•W
(n)
q+1• • • •W

(n)
p−2•U

(n)

•
W

(n+1)
0

•
W

(n+1)
1

Fig. 7.1: Illustration of a sector of the infinite LS branch of uβ for p − 1 < 2q + 1. The sector

shows BS factors of lengths between |W (n)
1 | and |W (n+1)

1 |.

2. If p − 1 ≥ 2q + 1, then |W (n)
1 | < · · · < |W (n)

q−1| < |V (n)| < |W (n)
q+1| < · · · < |W (n)

2q | <
|W (n+1)

0 | < |W (n)
2q+1| < |U (n)| < |W (n+1)

1 | for all n ≥ 2 and |W (1)
2q+1| = |W (2)

0 | since

W
(1)
2q+1 = 02q+1 and W

(2)
0 = 0q10q. There occurs at most one BS factor for every

length l 6= 2q + 1. BS factors are illustrated in Figure 7.2.

0

1
•
V (n)

•W
(n)
1• • • •W

(n)
q−1

•
W

(n)
q+1• • • •

W
(n)
2q

•
W

(n+1)
0

•
W

(n)
2q+1•• • •

W
(n)
p−2 •

U (n)

•
W

(n+1)
1

Fig. 7.2: Illustration of a sector of the infinite LS branch of uβ for p − 1 ≥ 2q + 1. The sector

shows BS factors of lengths between |W (n)
1 | and |W (n+1)

1 |, n ≥ 2.

Explicit values of factor frequencies of uβ

We have seen in the previous section that the evolution of reduced Rauzy graphs depends on

the position of |W (n+1)
0 | in {|W (n)

1 |, . . . , |W (n+1)
1 |}. In consequence, there appear two distinct

situations, for p− 1 < 2q + 1 and p − 1 ≥ 2q + 1. Nevertheless, both of them are quite similar,
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in particular, the conditions on factor lengths guaranteeing the equality in (7.7) are the same.
Therefore, we present results only for the case of p− 1 ≥ 2q + 1.

In addition, it is necessary to treat separately the case of n = 1 and n > 1 for the construction

of reduced Rauzy graphs Γ̃l with l ∈ {|W (n)
1 |, . . . , |W (n+1)

1 | − 1}. In the first case, not only there
are two BS factors of the same length for 2q + 1 = p− 1, but the difference between the lengths
of consecutive BS factors may be equal to 1, while in the second case, the difference is always

greater than 1. The sets of factor frequencies of Ln+1(uβ) for l ∈ {|W (1)
1 |, . . . , |W (2)

1 | − 1} are as
follows:

{f − lg, g} for l ∈ {|W (1)
1 |, . . . , |V (1)|},

{f − qg − (l − q)h, g, h, g − h} for l ∈ {|W (1)
q+1|, . . . , |W

(1)
2q |},

{f − qg − (q + 1)h, h, g − h} for l = |W (1)
2q+1|,

{f − qg − (l − q)h, h, g − h, 2h− g} for l ∈ {|W (1)
2q+1| + 1, . . . , |U (1)| − 1},

{h, g − h, 2h− g} for l ∈ {|U (1)|, . . . , |W (2)
1 | − 1},

where the frequencies are expressed as linear combinations of f, g, and h, with f = ρ(0) =

ρ(W
(1)
1 ), g = ρ(1) = ρ(W

(2)
0 ), and h = f−qg

p−q .

The sets of factor frequencies of Ln+1(uβ) for l ∈ {|W (n)
1 |, . . . , |W (n+1)

1 | − 1}, n ≥ 2, reads:

{f − kg, g} for l = |W (n)
k |,

k ∈ {1, . . . , q − 1},
{f − kg, g, f − (k + 1)g} for |W (n)

k | < l < |W (n)
k+1|,

k ∈ {1, . . . , q − 1},
{f − qg, g} for l = |V (n)|,

{f − qg, g, h, f − qg − h, g − h} for |V (n)| < l < |W (n)
q+1|,

{f − qg − (k − q)h, g, h, g − h} for l = |W (n)
k |,

k ∈ {q + 1, . . . , 2q},
{f − qg − (k − q)h, g, f − qg − (k + 1 − q)h, h, g − h} for |W (n)

k | < l < |W (n)
k+1|,

k ∈ {q + 1, . . . , 2q − 1},
{f − qg − qh, g, f − qg − (q + 1)h, h, g − h} for |W (n)

2q | < l < |W (n)
0 |,

{f − qg − qh, f − qg − (q + 1)h, h, g − h} for l = |W (n)
0 |,

{f − qg − qh, f − qg − (q + 1)h, h, g − h, 2h− g} for |W (n)
0 | < l < |W (n)

2q+1|,
{f − qg − (k − q)h, h, g − h, 2h− g} for l = |W (n)

k |,
k ∈ {2q + 1, . . . , p− 2},

{f − qg − (k − q)h, f − qg − (k + 1 − q)h, h, g − h, 2h− g} for |W (n)
k | < l < |W (n)

k+1|,
k ∈ {2q + 1, . . . , p− 3},

{f − qg − (p − 2 − q)h, h, g − h, 2h− g} for |W (n)
p−2| < l < |U (n)|,

{h, g − h, 2h− g} for |U (n)| ≤ l < |W (n+1)
1 |,

where the frequencies are functions of f, g, and h, with f = ρ(W
(n)
1 ), g = ρ(W

(n)
0 ), and h = f−qg

p−q .

Reaching the upper bound from Theorem 7.2.2

As we know, the infinite word uβ is aperiodic and recurrent, its language L(uβ) is closed under
reversal, and its factor frequencies exist. In consequence, Theorem 7.2.2 holds for uβ. Moreover,
uβ is defined over a binary alphabet and is opulent in palindromes (see Corollary 4.3.4); hence,
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in reference to Remark 7.2.4, uβ satisfies the two necessary conditions for reaching the equality
in (7.7). It is therefore reasonable to ask for which lengths l ∈ N, the equality in

#{ρ(e)|e ∈ Ll+1(uβ)} ≤ 2∆C(l) + 1 − 1
2X − 1

2Y,

where X is the number of BS factors of length l and Y is the number of BS palindromic factors
of length l, is attained.

Thanks to Section 3.4, we know that all BS factors of uβ are palindromes and we have the
following formula for the first difference of complexity:

∆C(l) =

{
2 if |V (n)| < l ≤ |U (n)| for some n ∈ N,
1 otherwise.

The question may be thus simplified as follows: For which lengths l ∈ N, the following
formula holds:

#{ρ(e)|e ∈ Ll+1(uβ)} =

{
5 − #{w ∈ Ll(uβ) | w BS} if |V (n)| < l ≤ |U (n)|, n ∈ N,
3 − #{w ∈ Ll(uβ) | w BS} otherwise ?

In the case of parameters p, q satisfying p− 1 ≥ 2q + 1, the answer may be provided looking at
the explicit values of factor frequencies given in the previous section. The upper bound from

Theorem 7.2.2 is realized for all lengths l satisfying l 6∈ {|W (n)
p−2|, . . . , |U (n)|}, n ≥ 2. For lengths

l ∈ {|W (n)
p−2|, . . . , |U (n)|}, n ≥ 2, the upper bound from Theorem 7.2.2 is by one greater than the

actual number of frequencies; that is, #{ρ(e)|e ∈ Ll+1(uβ)} = 2∆C(l)−#{w ∈ Ll(uβ) | w BS}.
We add without proof that the result is exactly the same for the case p− 1 < 2q + 1.

7.4 Frequencies of a palindromeless reversal closed word

The infinite word z whose language contains only a finite number of palindromes has been defined
in (3.23). According to Section 3.3.5, z is linearly recurrent. In reference to Section 2.2.6, linear
recurrence guarantees the existence of factor frequencies. The word z is aperiodic, therefore every
factor w which is not BS may be uniquely extended to the shortest BS factor v containing w.
Then, Corollary 2.2.6 implies that ρ(w) = ρ(v).

As the sets of special factors in Ll(z) become regular for l ≥ 14, we restrict our considerations
to the factors of length ≥ 14. First, we compute explicitly the frequencies of BS factors. Second,
observing the evolution of reduced Rauzy graphs Γ̃l for growing l ≥ 14, we are capable to
determine the set of frequencies of Ll(uβ) for l ∈ {|zn|+ 1, . . . , |zn+1|}, n ≥ 2, knowing just the
frequencies of BS factors.

Proposition 7.4.1. For every n ≥ 2, the frequencies of BS factors of z satisfy

ρ(zn) = ρ(zn) = 1
2n+3 and ρ(zn01zn) = ρ(zn10zn) = 1

2n+4 .

Proof. Since the formula (3.25) determines all occurrences of zn in z for n ≥ 2, we deduce that
the set of occurrences of zn, n ≥ 2, equals {0} ∪ {k · 2n+3 − 1 | k ∈ N}. It follows then directly
from the definition of factor frequency that ρ(zn) = 1

2n+3 . Since the language of z is closed under
reversal, we have ρ(zn) = ρ(zn).

Similarly, since zn01zn is reversal of zn10zn, both factors have the same frequency. Moreover,
thanks to Corollary 2.2.6 and the formula (3.25), we deduce ρ(zn01zn) = ρ(zn0) and ρ(zn10zn) =
ρ(zn1). Finally, applying Kirchhoff’s law, we get ρ(zn0) + ρ(zn1) = ρ(zn). Therefore, using the
previous result for frequency of zn, we obtain ρ(zn01zn) = ρ(zn10zn) = 1

2n+4 .
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In order to construct the reduced Rauzy graphs Γ̃l, l ∈ {|zn|, . . . , |zn+1|}, n ≥ 2, the following
ingredients are needed.

1. The list of special factors of length ≥ 14: BS and LS factors have been described in
Section 3.3.5. RS factors are reversals of LS factors.

2. For every BS factor w and for every a ∈ Rext(w) such that wa is LS, we need to determine
the shortest BS factor containing wa as a prefix. This is easy observing Figure 3.3.

Let us comment Figure 7.3, which illustrates the derivation of explicit values of edge labels of
reduced Rauzy graphs Γ̃l, l ∈ {|zn|, . . . , |zn+1|}, n ≥ 2.

zn−101zn−1 = zn zn−110zn−1

zn−101zn−1 zn = zn−110zn−1

h

g − h

h
g − h

h

g − h

h
g − h

1

1

0

1

0

0
1

0

zn0

1zn zn1

0znzn0

0zn

zn11zn

f

f

f

f

h− f
h− f

h

h

h

h

h− f h− f

0

1

0

1

0

1

0

1

f

f

f

f

h− f
h− f

h

h

h

h

h− f h− f

0

1

0

1

1

0

0

1

zn01zn = zn+1 zn10zn

zn01zn zn+1 = zn10zn

f

f

h− f
h− f

f

f

h− f
h− f

1

1

0

10

0
1

0

1. 2.

4.3.

Fig. 7.3: Reduced Rauzy graphs Γ̃l of z for l ∈ {|zn|, . . . , |zn+1|}, n ≥ 2.

1. For l = |zn|, denote by g := ρ(zn). There are four vertices in the reduced Rauzy graph- BS
factors zn, zn, zn−101zn−1, and zn−110zn−1. Observing the factorization of z in (3.25),
it is straightforward to set the edges in the graph. Let us denote by h the label of the
edge zn → zn−110zn−1. Since zn−110zn−1 is a weak BS factor, each time we arrive in
zn−110zn−1 taking the edge zn → zn−110zn−1, we have no choice (since 1zn−110zn−1 can
only be followed by 1) and we have to take the edge zn−110zn−1 → zn. Consequently,
the label of the edge zn−110zn−1 → zn is h. As L(z) is closed under reversal, we deduce
that the labels of zn−101zn−1 → zn and zn → zn−101zn−1 are also equal to h. Using
Proposition 7.4.1, we learn that frequencies of all vertices are equal to g. Kirchhoff’s law
says that the sum of the labels of edges ending, respectively starting in any vertex equals
g. Thus, summing the labels of edges ending, respectively starting in zn−101zn−1 and
zn−110zn−1, we learn that the labels of remaining edges are equal to g−h. By Kirchhoff’s
law applied on the edges starting in zn, we learn that h = 1

2g. Consequently, there is only
one edge label 1

2g in the reduced Rauzy graph.
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2. For l = |zn|+ 1, since zn and zn are strong BS factors, there are eight vertices. Edges are
again easy to derive observing factorization of z in (3.25). Let us denote by f := ρ(0zn0),
then we obtain, by Kirchhoff’s law, the edge labels of Γ̃l: h, f, h− f .

3. For |zn| + 1 < l < |zn+1|, by Corollary 2.2.6, the edge labels do not change.

4. For l = |zn+1|, observing Figure 3.3, we see that the edges labeled by h become vertices.
By the weakness of zn01zn, we learn that f = 1

2h.

Let us resume the obtained result on the factor frequencies in the following theorem.

Theorem 7.4.2. Let z be the infinite word defined in (3.23). Then, for every n ≥ 2, we have

{ρ(e) | e ∈ Ll+1(z)} =
{1

2g} for l = |zn|,
{1

2g,
1
4g} for |zn| < l < |zn+1|,

where g = ρ(zn) = 1
2n+3 .
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Chapter 8

Balance property

In general, it is a difficult task to determine the minimal constant c for which an infinite word
is c-balanced (for a definition see Section 2.2.7). The pioneers in the study of balances were
Hedlund and Morse – they proved in particular that aperiodic balanced words coincide with
Sturmian words (Theorem 2.4.1). Linearly recurrent AR words are known to be c-balanced
for some c. However, this statement cannot be generalized for all AR words since the authors
of [31] have proved that for every c ∈ N, one can construct an AR word which is not c-balanced.
Adamczewski [1] has studied c-balanced fixed points of primitive substitutions. He has shown
that if u is a fixed point of a primitive substitution, then u is c-balanced for some constant c if
all eigenvalues of the substitution matrix different from the Perron-Frobenius eigenvalue λ are
in modulus < 1.

In case of infinite words uβ associated with quadratic Parry numbers β, thanks to the above
mentioned result of Adamczewski, we know that every uβ is c-balanced for some c. The evalu-
ation of the constant c is so far the least studied among combinatorial problems considered for
infinite words uβ . According to Remark 2.3.4, uβ is balanced if and only if β is a quadratic unit.
For infinite words uβ associated with quadratic simple Parry numbers β, i.e., having the Rényi
expansion of unity of the form dβ(1) = pq, p ≥ q ≥ 1, Turek in [106] has found the smallest
possible c such that uβ is c-balanced; this value is c = 1+ ⌊ p−1

p−q+1⌋. For other types of irrational
algebraic numbers β, the balance property has not been described yet.

In this chapter, we prove that uβ is ⌈p−1
q
⌉-balanced for β being a quadratic non-simple Parry

number. We show that this is optimal – it cannot be lowered. Our method might be applied
also for the study of balances of infinite words associated with Parry numbers of a higher degree.

8.1 uβ associated with quadratic non-simple Parry numbers

We restrict ourselves to infinite words uβ associated with non-unit quadratic non-simple Parry
numbers, i.e., fixed points of substitutions ϕ : 0 → 0p1, 1 → 0q1, 1 ≤ q < p− 1.

As the first step, we find two infinite words whose prefixes of length n are factors of uβ and
contain the maximal number of letters 0 (uβ turns out to have this property), respectively the
maximal number of letters 1 (we denote wβ the corresponding infinite word), among all factors
of uβ of length n.

Secondly, we choose suitable subsequences of prefixes of uβ and wβ so that these two subse-

quences
(
u

(n)
β

)∞
n=1

and
(
w

(n)
β

)∞
n=1

fully determine the balance property of uβ.

Finally, the study of the behavior of the sequence
(
|w(n)
β |1 − |u(n)

β |1
)∞
n=1

results in the deter-

mination of the minimal constant c such that uβ is c-balanced.
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Proposition 8.1.1. Any prefix of uβ contains at least the same number of letters 0 as any other
factor of the same length.

Proof. We prove the statement by contradiction. Let us assume that there exist some k ∈ N

and a factor v = v0v1v2 · · · vk−1 of uβ such that |u|0 < |v|0, where u = u0u1u2 · · · uk−1 is the
prefix of uβ of length k. We choose the minimal k with this property. Then

|u|0 + 1 = |v|0. (8.1)

Obviously, u contains some letter 1, therefore, it has the whole factor 0p1 as its prefix. Since
k is minimal, uk−1 = 1 and v0 = vk−1 = 0. Observation 3.4.1 together with uk−1 = 1 imply
that 0q1 is a suffix of u. Then 0q+1 is both a prefix and a suffix of v due to the minimality of k.
We again apply Observation 3.4.1 to deduce that there are uniquely determined integers j and
ℓ satisfying 0 ≤ j ≤ p− q − 1, 0 ≤ ℓ ≤ p− q − 1 such that 10jv0ℓ1 is a factor of uβ.

According to Observation 3.4.2, there exists a unique interpretation (u′, 0, 0) of u and two
interpretations (0v′, p, 0) and (1v′, q, 0) of 10jv0ℓ1. In other words, there exists a factor u′ of uβ
such that u = ϕ(u′) and a factor v′ of uβ such that 10jv0ℓ1 = 1ϕ(v′). As {ϕ(0), ϕ(1)} is a prefix
code, u′ is a prefix of uβ .

If we rewrite Equation (8.1) equivalently as |u|1 = |v|1 + 1, we obtain |ϕ(v′)|1 = |ϕ(u′)|1,
and, therefore, |u′| = |v′|. However, as the word ϕ(v′) is longer than ϕ(u′), already v′, a shorter
factor than v, satisfies |v′|0 > |u′|0, which contradicts the minimality of k.

Next, we want to find an infinite word wβ whose prefixes contain the maximal number of
letters 1. For this purpose, let us introduce a sequence of factors of uβ and let us observe some

of its properties. We define the sequence
(
w

(n)
β

)∞
n=1

by

w
(1)
β = 1

w
(n)
β = 1ϕ(w

(n−1)
β ) for n ≥ 2.

(8.2)

According to Item 1. of Lemma 3.4.3, the words w
(n)
β are factors of uβ.

Lemma 8.1.2. For all n ∈ N,

w
(n+1)
β = w

(n)
β u(n)1,

where u(n) is a prefix of uβ .

Proof. Let us proceed by induction on n. For n = 1, we have w
(2)
β = 1ϕ(w

(1)
β ) = 10q1 = w

(1)
β 0q1,

i.e., u(1) = 0q. Assume for some n ≥ 2 that w
(n)
β = w

(n−1)
β u(n−1)1, where u(n−1) is a prefix of

uβ. Then

w
(n+1)
β = 1ϕ(w

(n)
β ) = w

(n)
β u(n)1 ,

where u(n) = ϕ(u(n−1))0q is a prefix of uβ according to Observation 3.4.1.

Lemma 8.1.2 guarantees that w
(n)
β is a prefix of w

(n+1)
β and the sequence

(
|w(n)
β |
)∞
n=1

is

strictly increasing, thus

wβ = lim
n→∞

w
(n)
β (8.3)

is a well defined infinite word on {0, 1}.
It follows from the definition of w

(n)
β that this infinite word fulfils

wβ = 1ϕ(wβ). (8.4)
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Proposition 8.1.3. Any prefix of wβ contains at least the same number of letters 1 as any
other factor of the same length.

Proof. We prove the statement by contradiction. The ideas are analogous to those ones from
the proof of Proposition 8.1.1. Let us assume that there exist some k ∈ N and a factor v =
v0v1v2 · · · vk−1 of uβ such that |w|1 < |v|1, where w = w0w1w2 · · ·wk−1 is the prefix of wβ of
length k. We choose the minimal k with this property. Then

|v|1 = |w|1 + 1. (8.5)

The minimality of k implies that v0 = vk−1 = 1, and wk−1 = 0. The fact that w is a prefix of
wβ, which satisfies (8.4), implies w0 = 1.

Observation 3.4.1 together with vk−1 = 1 implies that 0q1 is a suffix of v. Due to the
minimality of k, the factor w has 0q+1 as a suffix.

Applying again Observation 3.4.1, there is a uniquely determined integer j satisfying 0 ≤
j ≤ p− q − 1 such that w0j1 is a factor of uβ.

Observation 3.4.2 guarantees that there exist two interpretations (0w′, p, 0) and (1w′, q, 0) of
w0j1. In other words, w0j1 = 1ϕ(w′) for a unique factor w′ of uβ . Moreover, since {ϕ(0), ϕ(1)}
is a prefix code, the factor w′ is a prefix of wβ. Similarly, v has two interpretations (0v′, p, 0)
and (1v′, q, 0). Hence, v = 1ϕ(v′) for a factor v′ of uβ.

Taking into account Equation (8.5), it follows that ϕ(v′) and ϕ(w′) contain the same number
of letters 1, hence, |v′| = |w′|. As ϕ(v′) is shorter than ϕ(w′), the word v′, a shorter factor than
v, contains more letters 1 than w′, which is a contradiction with the minimality of k.

We have already defined in (8.2) the sequence
(
w

(n)
β

)∞
n=1

. Furthermore, we define
(
u

(n)
β

)∞
n=1

by

u
(n)
β = prefix of uβ of length |w(n)

β |.
Let us show that these sequences fully determine the minimal constant c such that uβ is c-
balanced.

Lemma 8.1.4. Let v, v′ be factors of uβ of the same length k, let n be a positive integer such

that |w(n)
β | ≤ k < |w(n+1)

β |. Then

∣∣|v|1 − |v′|1
∣∣ ≤ |w(n)

β |1 − |u(n)
β |1.

Proof. Propositions 8.1.1 and 8.1.3 imply

∣∣|v|1 − |v′|1
∣∣ ≤ |w|1 − |u|1,

where u and w are prefixes of uβ and wβ, respectively, of length k.

Lemma 8.1.2 together with the assumption k < |w(n+1)
β | implies that w = w

(n)
β û for some

prefix û of uβ. Let us write the factor u in the form u = u
(n)
β v̂. Using Proposition 8.1.1, we get

|w|1 − |u|1 = |w(n)
β |1 − |u(n)

β |1 + |û|1 − |v̂|1 ≤ |w(n)
β |1 − |u(n)

β |1 ,

which concludes the proof of the statement.
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Fig. 8.1: Illustration of the sequence (Dn)
∞
n=1, where Dn = |w(n)

β |1 − |u(n)
β |1. The consecutive

values are connected with a line and t := ⌊p+q
q+1⌋ and T = ⌈p−1

q
⌉.

Lemma 8.1.4 enables us to deduce the optimal balance bound of uβ by investigation of the
sequence (Dn)

∞
n=1, where

Dn := |w(n)
β |1 − |u(n)

β |1.
The optimal balance bound c is then equal

c = max{Dn

∣∣ n ∈ N}. (8.6)

In the sequel, we show that the sequence (Dn)
∞
n=1 has the form depicted in Figure 8.1, which

proves that uβ is ⌈p−1
q
⌉-balanced and that this bound cannot be diminished.

To determine the value of Dn+1 using the value of Dn = |w(n)
β |1 − |u(n)

β |1, it is important to
take into account the following obvious facts.

1. Since the number of letters 0 in the word u
(n)
β is by Dn greater than in w

(n)
β , the length of

ϕ(u
(n)
β ) is by (p − q)Dn letters greater than the length of ϕ(w

(n)
β ).

2. w
(n+1)
β = 1ϕ(w

(n)
β ).

3. u
(n+1)
β is a prefix of uβ chosen so that |u(n+1)

β | = |w(n+1)
β |.

4. Since uβ is the fixed point of the substitution, ϕ(u
(n)
β ) is a prefix of uβ as well.

5. u
(n+1)
β can be obtained from ϕ(u

(n)
β ) by erasing its suffix of length (p− q)Dn − 1.

6. As the lengths of w
(n)
β and u

(n)
β are the same, ϕ(w

(n)
β ) and ϕ(u

(n)
β ) contain the same number

of letters 1.

These six simple facts imply the following recurrence relation for the sequence (Dn)
∞
n=1:

Dn+1 = 1 + |v|1 , where v is a suffix of ϕ(u
(n)
β ) and |v| = (p− q)Dn − 1. (8.7)

Consequently, to determine the value of Dn+1, one needs to know the form of the suffix of

ϕ(u
(n)
β ), hence the form of the suffix of u

(n)
β .
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Proposition 8.1.5. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1, and let t = ⌊p+q

q+1⌋ and T = ⌈p−1
q
⌉.

1. If n ≤ t, then Dn = n and u
(n)
β has the suffix 0n.

2. If t+ 1 ≤ n ≤ T + 1, then Dn = n− 1 and u
(n)
β has the suffix 0p10(n−1)(q+1)−p.

3. If T + 1 ≤ n, then Dn = T and u
(n)
β has the suffix 0T−1.

Proof. Let us show the statement by induction on n ∈ N. Let n = 1, then w
(1)
β = 1, u

(1)
β = 0,

hence, we have D1 = |w(1)
β |1 − |u(1)

β |1 = 1.
Let us suppose that for some n, 1 < n ≤ t− 1, it holds

Dn = n and u
(n)
β has the suffix 0n.

We apply the rule (8.7) to calculate Dn+1. The word ϕ(u
(n)
β ) has the suffix

ϕ(0n) = (0p1) . . . (0p1)︸ ︷︷ ︸
n times

.

We erase from this word of length (p+ 1)n the suffix v of length (p− q)n− 1. Let us show that
in this procedure, we have erased all n letters 1, i.e., |v|1 = n, and, consequently, Dn+1 = 1 +n.
To verify this statement, it suffices to prove the inequality

(p+ 1)(n − 1) + 1 ≤ (p− q)n− 1, (8.8)

which is equivalent with n ≤ p+q
q+1−1. Since n is an integer, the inequality means n ≤ ⌊p+q

q+1⌋−1 =
t− 1, which is in accordance with the induction hypothesis. Now, we have to show that at least
n+ 1 letters remain in the word ϕ(0n) after removing the suffix v of length (p− q)n− 1, i.e., we
have to verify (p + 1)n− (p− q)n+ 1 ≥ n+ 1. This inequality is easy to check.

Let us show how 2. follows from 1. For n = t, 1. implies that

Dt = t and u
(t)
β has the suffix 0t.

Clearly,
ϕ(0t) = (0p1) . . . (0p1)︸ ︷︷ ︸

t times

is a suffix of ϕ(u
(t)
β ).

In order to prove Dt+1 = t, we have to show that the suffix of length (p−q)Dt−1 = (p−q)t−1
of the word ϕ(0t) contains exactly t− 1 letters 1. So we have to prove

(p+ 1)(t − 2) + 1 ≤ (p− q)t− 1 ≤ (p+ 1)(t− 1),

or, equivalently, p
q+1 ≤ t ≤ 2p

q+1 , which is a consequence of the definition of t.

By erasing the suffix v, we have removed t − 1 letters 1 from the word ϕ(0t) which has

t letters 1. The remaining part of this word (and therefore the suffix of u
(t+1)
β ) is 0p10r, where

r = (p+ 1)(t− 1) − |v| = (q + 1)t− p.
Now, suppose that for some t+ 1 < n ≤ T , it holds

Dn = n− 1 and u
(n)
β has the suffix 0p10(n−1)(q+1)−p.
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Then ϕ(u
(n)
β ) has the suffix

ϕ(0p10(n−1)(q+1)−p) = (0p1) . . . (0p1)︸ ︷︷ ︸
p times

0q1(0p1) . . . (0p1)︸ ︷︷ ︸
(n−1)(q+1)−p times

.

We want to prove that the suffix v of ϕ(u
(n)
β ) of length (p − q)(n − 1) − 1 satisfies |v|1 = n− 1

and that u
(n+1)
β has the suffix 0p10n(q+1)−p. Before writing down the inequalities to be shown,

notice the following two facts. If we erase v from the end of ϕ(u
(n)
β ), we erase necessarily

0q1(0p1) . . . (0p1)︸ ︷︷ ︸
(n−1)(q+1)−p times

. To see this, it suffices to prove the inequality (easily feasible using (8.12))

(q + 1) + (p+ 1)
(
(n− 1)(q + 1) − p

)
≤ (p− q)(n − 1) − 1. (8.9)

At the same time, if we erase v from the end of (0p1) . . . (0p1)︸ ︷︷ ︸
p times

0q1(0p1) . . . (0p1)︸ ︷︷ ︸
(n−1)(q+1)−p times

, it still keeps

a prefix longer than p+ 1. This follows from the following inequality (easy to check)

(p− q)(n− 1) − 1 < (p+ 1)(p − 1) + (q + 1) + (p+ 1)
(
(n− 1)(q + 1) − p

)
. (8.10)

Knowing the relations (8.9) and (8.10), what we have to show are the following two inequali-
ties

(q+1)+(n−3)(p+1)+1 ≤ (p− q)(n−1)−1 ≤ (q+1)+(n−2)(p+1)−
(
n(q+1)−p

)
. (8.11)

The first one shows that |v|1 ≥ n − 1, while the second one shows that |v|1 ≤ n − 1 and that

u
(n+1)
β has the suffix 0p10n(q+1)−p. As it is easily verified for positive integers a, b

⌈a
b

⌉
≤ a

b
+
b− 1

b
,

we get

T =

⌈
p− 1

q

⌉
≤ p− 1

q
+
q − 1

q
=
p+ q − 2

q
. (8.12)

The first inequality in (8.11) is equivalent with n ≤ 2p
q+1 . Since n ≤ T ≤ p+q−2

q
it is enough to

verify that p+q−2
q

≤ 2p
q+1 , which is equivalent with (q+ 1)(q − 2) ≤ p(q− 1). This equation holds

because in our substitution p > q + 1. The second inequality in (8.11) is trivial.
Finally, let us show how 3. follows from 2. For n = T + 1, 2. implies that

u
(n)
β has the suffix 0T−1 and Dn = T. (8.13)

Consequently, the word ϕ(u
(n)
β ) has the suffix

ϕ(0T−1) = (0p1)(0p1) . . . (0p1)︸ ︷︷ ︸
(T−1) times

.

We erase from this word the suffix v of length (p− q)T − 1. Performing this procedure, we have
erased all the letters 1, i.e., T − 1 letters 1. To verify this statement, it suffices to prove the
inequality

(p + 1)(T − 2) + 1 ≤ (p− q)T − 1. (8.14)
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In order to prove that, by erasing v, there are still at least T −1 letters left in the word ϕ(0T−1),
one has to show

T − 1 ≤ (p + 1)(T − 1) − (p− q)T + 1. (8.15)

Consequently, if we verify the inequalities (8.14) and (8.15), it will be proved that Dn+1 = T

and u
(n+1)
β has the suffix 0T−1. It means, by virtue of (8.13), for an index n ≥ T + 1, we have

shown the virtue for the index n+ 1, thus, using induction, for all n ≥ T + 1.
The inequality (8.14) holds because it is equivalent with T ≤ 2p

q+1 . The inequality (8.15) is

equivalent with T ≥ p−1
q

, which is evidently satisfied as T = ⌈p−1
q
⌉.

As an immediate consequence of Proposition 8.1.5 and the relation (9.8), we have the fol-
lowing essential theorem.

Theorem 8.1.6. Let uβ be the fixed point of the substitution ϕ defined by ϕ(0) = 0p1, ϕ(1) =
0q1, where p− 1 > q ≥ 1. Then the infinite word uβ is c-balanced, where c = ⌈p−1

q
⌉. This value

c is the smallest possible.
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Chapter 9

Arithmetics of Zβ

In this chapter, we come back to the study of arithmetical properties of β-integers as introduced
in Section 2.1.6. We pursue two objectives. The first one is to determine the maximal number
L⊕(β) of β-fractional positions, which may arise as a result of addition of two β-integers, provided
the β-expansion of the sum is finite. The second aim is to point out how arithmetics can be in
service of combinatorics and vice versa. In particular, we stress the closeness of balances of uβ
and the upper and lower bound on L⊕(β), for β being a quadratic non-simple Parry number.

9.1 Arithmetics of Zβ for quadratic non-simple Parry numbers

The aim of this section is to improve the upper bound on L⊕(β) for a quadratic non-simple
Parry number β having the Rényi expansion of unity equal to dβ(1) = pqω for q ≤ p − 1. In
the case of q = p − 1, β is a quadratic unit, as explained in Section 2.3.4. For quadratic units,
it is shown in [26] that L⊕(β) = L⊗(β) = 1. We will therefore restrict ourselves to the case of
q < p− 1. In [65], one can find the following estimates

L⊕(β) ≤ 3(p+ 1) ln(p+ 1) and L⊗(β) ≤ 4(p + 1) ln(p+ 1).

We derive an improved upper bound

L⊕(β) ≤ ⌈p
q
⌉.

The shortest and lexicographically smallest sequences of coefficients of β-representations that
do not fulfill the Parry condition (2.6), in the case of β being a quadratic non-unit non-simple
Parry number, are the words

(p+ 1) and pqs(q + 1), where s ≥ 0.

Using the equation β2 = (p + 1)β − (p− q), one can easily obtain:

(p+ 1)• = 10 • (p − q) (9.1)

pqs(q + 1)• = 10s+2 • (p− q) (9.2)

Note that the β-representations on the right-hand side of the equations are the β-expansions.
For a given finite β-representation of a number x, we apply these rules in such a way that the

left side of (9.1) and (9.2) is replaced by the right side of (9.1) and (9.2), respectively. Applying
these rules, we obtain a β-representation of x which is greater with respect to the radix order,
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and, at the same time, the sum of coefficients in the new β-representation is reduced. It follows
that repeating rules (9.1) and (9.2) finitely many times, it is possible to transform any finite
β-representation of x into the β-expansion of x (which is the greatest β-representation of x with
respect to the radix order, as shown in Section 2.1.2).

Example: (p + 2)q(q + 1)• = (p + 1)00 • + 1q(q + 1)• = 10(p − q)0 • + 1q(q + 1)• =
11p(q + 1)• = 1200 • (p− q)

On the other hand, rules (9.1) and (9.2) raise the number of positions on the right-hand side of
the fractional point •. It means that the number of fractional positions in the β-expansion of x
is greater than or equal to the number of fractional positions in any β-representation of x.

Observation 9.1.1. If x, y ≥ 0 and x, y ∈ Fin(β), then fpβ(x+ y) ≥ fpβ(x).

The following lemma is the most important tool to estimate L⊕(β).

Lemma 9.1.2. Let xkxk−1 · · · x0• be the β-expansion of a positive β-integer x and let l ∈ N0.
Then either x+ βl ∈ Zβ or there exists s ≥ l such that

〈x+ βl〉β =

{
xk · · · (xs+1 + 1)0s+1 • (p− q) for l = 0,
xk · · · (xs+1 + 1)0s−l+1(xl−1 − q) · · · (x1 − q)(x0 − q − 1) • (p − q) for l ≥ 1.

Proof. Let l = 0. Suppose that x + β0 = x + 1 6∈ Zβ. Then xkxk−1 · · · (x0 + 1)• is not a β-
expansion of x + 1. Therefore, it has a suffix of the form (p + 1) or pqs−1(q + 1), where s ≥ 1.
Applying (9.1), resp. (9.2), the β-representation of x+ 1 can be rewritten as

xkxk−1 · · · x1(p + 1)• = xk · · · x2(x1 + 1)0 • (p− q)

or
xkxk−1 · · · xs+1pq

s−1(q + 1)• = xk · · · (xs+1 + 1)0s+1 • (p− q).

Now, since xk · · · x1p, respectively xk · · · xs+1pq
s, fulfills the Parry condition, we have x1 < p,

respectively xs+1 < p. It is thus readily seen that the expressions on the right-hand side fulfill
the Parry condition (2.6), i.e., they are already the β-expansions.

Let now l ≥ 1. Suppose that x+ βl 6∈ Zβ. Clearly l ≤ k. Then

xk · · · xl+1(xl + 1)xl−1 · · · x0 (9.3)

does not fulfill the Parry condition (2.6). This implies that xl takes one of three values:

(a) xl = q − 1, (b) xl = p, (c) xl = q.

(a) Let xl = q − 1. Denote s = min{i > l
∣∣ xi = p}. Obviously, xi = q for all i such that

s > i > l. Necessarily, xs+1 < p. Suppose that for all i < l, it holds xi ≥ q and x0 ≥ q+ 1.
Then we can apply (9.2) for rearranging the β-representation of x + βl in the following
way:

xk · · · xs+1pq
s−lxl−1 · · · x0• =

(xl−1 − q) · · · (x1 − q)(x0 − q − 1) • + xk · · · xs+1pq
s−1(q + 1)• =

(xl−1 − q) · · · (x1 − q)(x0 − q − 1) • + xk · · · (xs+1 + 1)0s+1 • (p − q) =

xk · · · (xs+1 + 1)0s−l+1(xl−1 − q) · · · (x1 − q)(x0 − q − 1) • (p− q)

Since the latter expression fulfills the Parry condition (2.6), we have obtained the β-
expansion of x+ βl. It remains to show that the conditions x0 ≥ q + 1 and xi ≥ q for all
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i < l are satisfied, in other words, that we had a right to the above rearranging. Firstly,
we prove by contradiction that xi ≥ q for all i < l. Denote by i0 the maximal index
smaller than l such that xi0 ≤ q − 1. Then, denote by j0 the minimal index greater than
i0 such that xj0 ≥ q + 1. Such an index exists because (9.3) does not fulfill the Parry
condition (2.6). Hence, the string (9.3) has the following form:

xk · · · xs+1pq
s−lxl−1 · · · xj0+1xj0q

j0−i0−1xi0xi0−1 · · · x0,

where xl−1, . . . , xj0 ≥ q. Using (9.2), we get the β-representation of x+ βl in the form:

xk · · · (xs+1 + 1)0s−l+1(xl−1 − q) · · · (xj0+1 − q)(xj0 − q − 1)pqj0−i0−2xi0xi0−1 · · · x0•

if j0 > i0 + 1, and

xk · · · (xs+1 + 1)0s−l+1(xl−1 − q) · · · (xj0+1 − q)(xj0 − q − 1)(xi0 + p− q)xi0−1 · · · x0•

if j0 = i0 + 1. In both cases, these β-representations are already the β-expansions, thus
we get a contradiction with the fact that x+ βl 6∈ Zβ.

Secondly, we show that x0 ≥ q + 1. We prove it again by contradiction. Suppose that
x0 = q. Then there exists t ≥ 1 such that qt is a suffix of the string xk · · · x0. Consider the
maximal t with this property. Then the β-representation of x+ βl has the following form:

xk · · · xs+1pq
s−lxl−1 · · · xt+1xtq

t•

where xi ≥ q for all i ∈ {t + 1, . . . , l − 1} and xt ≥ q + 1. Applying (9.2), we can rewrite
the β-representation as

xk · · · (xs+1 + 1)0s−l+1(xl−1 − q) · · · (xt+1 − q)(xt − q − 1)pqt−1•

This β-representation is the β-expansion, which is a contradiction with x+ βl 6∈ Zβ.

(b) Let xl = p. Then xl+1 < p and xl−1 ≤ q. Using (9.1), we obtain

xk · · · xl+1(p+ 1)xl−1 · · · x0• = xk · · · (xl+1 + 1)0(xl−1 + p− q)xl−2 · · · x0• (9.4)

Since xlxl−1 · · · x0 = pxl−1 · · · x0 ≺ pqω, we have xl−1 · · · x0 ≺ qω, and, consequently,
(xl−1 + p − q)xl−2 · · · x0 ≺ pqω. Thus, the expression on the right-hand side of (9.4) is
already the β-expansion of x+ βl, which is a contradiction with x+ βl 6∈ Zβ.

(c) Let xl = q. Since addition of 1 to the lth coefficient xl breaks the Parry condition, there
exists t ≥ l such that xk · · · x0 = xk · · · xt+1pq

t−lxl−1 · · · x0. The β-representation of x+βl,
equal to xk · · · xt+1pq

t−l−1(q + 1)xl−1 · · · x0•, can be rewritten, using (9.2), as

xk · · · (xt+1 + 1)0t−l+1(xl−1 + p− q)xl−2 · · · x0•

which is already the β-expansion of x+ βl. Thus, we arrive again at a contradiction with
x+ βl 6∈ Zβ.

Proposition 9.1.3. Let x, y ∈ Zβ, x ≥ y ≥ 0, and let all coefficients in the β-expansion of y be
≤ q. Then the β-fractional part of x+ y is either 0 or p−q

β
.
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Proof. We proceed by induction on the positive elements of Zβ. Let xk . . . x0• be the β-expansion
of x.

For y ∈ {1, . . . , q}, it follows from Lemma 9.1.2 that either x + i ∈ Zβ for all i ≤ q or one
can find the minimal i ∈ {1, . . . , q} such that 〈x + i〉β = xk · · · (xs+1 + 1)0s+1 • (p − q). In the
latter case, it is clear that also x+ j, where j ∈ {i+ 1, . . . , q}, has the fractional part p−q

β
.

Let y ≥ q + 1, 〈y〉β = ylyl−1 · · · y0•, where yl ≥ 1 and yi ≤ q for all i ∈ {0, . . . , l}. If
x+ βl ∈ Zβ, then x+ y = x̃+ ỹ, where x̃ = x+ βl and ỹ = y− βl, and the statement follows by
applying the induction hypothesis on ỹ = y − βl < y. If x+ βl 6∈ Zβ, then using Lemma 9.1.2,
we obtain

x+y = x+βl+(y−βl) = xk · · · (xs+1 +1)0s−l(yl−1)(xl−1 +yl−1−q) · · · (x0 +y0−q−1)•(p−q)
(9.5)

Moreover, yl − 1 ≤ q − 1 and (xl−1 + yl−1 − q) · · · (x0 + y0 − q − 1) � xl−1 · · · x0. Consequently,
the right-hand side of (9.5) is already the β-expansion of x+ y.

It is known that if dβ(1) is infinite, then the set Fin(β) is not closed under subtraction of
positive elements. In our case, we have for instance: β − 1 = (p− 1) • qω.

Lemma 9.1.4. Let x ≥ y ≥ 0, x, y ∈ Zβ, then x− y ∈ Zβ or x− y 6∈ Fin(β).

Proof. To prove this statement by contradiction, assume that the β-expansion of x− y is finite,
but x − y is not a β-integer, i.e., fpβ(x − y) ≥ 1. Observation 9.1.1 implies that fpβ(x) =
fpβ(x− y + y) ≥ fpβ(x− y) ≥ 1, which is a contradiction with x ∈ Zβ.

Theorem 9.1.5. Let β be a non-simple Parry number with the Rényi expansion of unity dβ(1) =
pqω, p− 1 > q ≥ 1. Then L⊕(β) ≤ ⌈p

q
⌉.

Proof. Let x, y ∈ Zβ and x, y ≥ 0. If x−y ∈ Fin(β), then necessarily fpβ(x−y) = 0, as we have
mentioned in Lemma 9.1.4. Consequently, it suffices to consider the addition x + y. Without
loss of generality, we can limit our considerations to the case x ≥ y. Clearly, y can be written as

y = y(1) + y(2) + · · · + y(s),

where s ≤ ⌈p
q
⌉ and the coefficients of y(i) are ≤ q for all i = 1, . . . , s. According to Proposi-

tion 9.1.3, if we add to a number of Fin(β) a β-integer with coefficients ≤ q, the length of the
fractional part increases at most by 1. This proves the statement.

As an immediate consequence of the previous proof, we have the following corollary.

Corollary 9.1.6. Let x, y ∈ Zβ and x, y ≥ 0. Then there exists ε ∈ {0, 1, . . . , ⌈p
q
⌉} such that

x+ y ∈ Zβ + ε
p−q
β

.

9.2 Arithmetics of Zβ and the balance property of uβ

With the results on arithmetics of Zβ from the previous section in hand, we are able to illustrate
how closely the arithmetical and combinatorial properties of Zβ are related. Particularly, we
deduce an upper bound on the constant c such that uβ is c-balanced, which turns out to be very
close to the optimal value of c given in Theorem 8.1.6.

Conversely, employing the optimal value of c from Theorem 8.1.6, we obtain a lower bound
on L⊕(β). In consequence, the characteristics L⊕(β) are determined with accuracy of ±1 for
quadratic non-simple Parry numbers β.
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9.2.1 Almost optimal balance bound on uβ

Proposition 9.2.1. The infinite word uβ is ⌈p
q
⌉-balanced. Moreover, the number of letters 0 in

any prefix of uβ is greater than or equal to the number of letters 0 in any other factor of uβ of
the same length.

Proof. Let w be a factor of uβ of length n and u be the prefix of uβ of the same length. Find
β-integers x and y, x < y, such that the sequence of distances between neighboring β-integers
in the segment of Zβ from x to y corresponds to the factor w. We recall that ∆0 = 1 and
∆1 = β − p = 1 − p−q

β
. Clearly,

y = x+ |w|0∆0 + |w|1∆1. (9.6)

The prefix u corresponds to the β-integer

z = |u|0∆0 + |u|1∆1. (9.7)

Corollary 9.1.6 implies that there exists ẑ ∈ Zβ such that

x+ z = ẑ + ε
p− q

β
= ẑ + ε(∆0 − ∆1), for some ε ∈ {0, 1, . . . , ⌈p

q
⌉}. (9.8)

Since y, ẑ ∈ Zβ, it is possible to express the distance between y and ẑ as a combination of the
lengths ∆0 and ∆1, i.e., there exist L,M ∈ N0 such that

ẑ − y = ±(L∆0 +M∆1). (9.9)

Using (9.6), (9.7), and (9.8), we get

ẑ − y = x+ z − ε(∆0 − ∆1) − x− |w|0∆0 − |w|1∆1 =

(|u|0 − |w|0 − ε)∆0 + (|u|1 − |w|1 + ε)∆1 =

(|u|0 − |w|0 − ε)∆0 − (|u|0 − |w|0 − ε)∆1

(9.10)

In the last equation, we have used the fact that the factors w and u have the same lengths, and,
consequently, |u|0 + |u|1 = |w|0 + |w|1. As ∆0 = 1 and ∆1 = 1 − p−q

β
are linearly independent

over Q, the expression of ẑ − y in (9.10) as their integer combination is unique. Since L,M are
non-negative, from (9.9) and (9.10) it follows that |u|0 − |w|0 − ε = 0, i.e.,

|u|0 = |w|0 + ε,

where ε ∈ {0, 1, . . . , ⌈p
q
⌉}, which proves both statements of the proposition.

Notice that the optimal constant c such that uβ is c-balanced, determined to be c = ⌈p−1
q
⌉

in Theorem 8.1.6, is smaller by 1 than the upper bound ⌈p
q
⌉ from Proposition 9.2.1 only in

case when q divides p − 1, otherwise both upper bounds coincide. In addition, the proof of
Proposition 9.2.1 is more elegant than the techniques used for proving Proposition 8.1.1.
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9.2.2 Lower bound on L⊕(β)

For the derivation of a lower bound on L⊕(β), we make use of the optimality of the balance
bound c = ⌈p−1

q
⌉ from Theorem 8.1.6. We apply the fact that there exist a factor w and a prefix

u of uβ of the same length such that |u|0 = |w|0 + ⌈p−1
q
⌉. Let x, y be β-integers, x < y, such

that the distances between consecutive β-integers in the segment from x to y correspond to the
word w. Furthermore, let z ∈ Zβ be the β-integer corresponding to the prefix u. Then

x+ z = y +
⌈p− 1

q

⌉
(∆0 − ∆1) = y +

⌈p− 1

q

⌉p− q

β
.

From Observation 9.1.1, it follows that

fpβ(x+ z) = fpβ

(
y +

⌈
p−1
q

⌉
p−q
β

)
≥ fpβ

(⌈
p−1
q

⌉
p−q
β

)
≥ fpβ

(⌊
p−1
q

⌋
p−q
β

)
. (9.11)

Now, we verify that fpβ
(
⌊p−1

q
⌋p−q
β

)
= ⌊p−1

q
⌋.

Lemma 9.2.2. For j = 1, . . . , ⌊p−1
q
⌋, the β-expansion of the number j p−q

β
is

〈
j p−q

β

〉

β
= (j − 1) • aj · · · a1 ,

where a1 := p− q and ai := (p− 1) − iq for i = 2, . . . , ⌊p−1
q
⌋.

Proof. The numbers ai are defined so that ai ≥ 0 and (j − 1)ajaj−1 · · · a1 ≺ pqω. Thus, the
expression (j− 1)•aj · · · a1 is the β-expansion of a positive number. Now, we have to show that

j
p− q

β
= j − 1 +

aj
β

+
aj−1

β2
+ · · · + a1

βj
.

The validity for j = 1 is trivial. It is readily seen that if the equality holds for some j < ⌊p−1
q
⌋,

then it holds also for j + 1.

Lemma 9.2.2 shows that fpβ
(
⌊p−1

q
⌋p−q
β

)
= ⌊p−1

q
⌋. Applying (9.11), we see that ⌊p−1

q
⌋ is

a lower bound on L⊕(β). To sum up, we have derived the following theorem.

Theorem 9.2.3. Let β be a non-simple Parry number with the Rényi expansion of unity dβ(1) =
pqω, p− 1 > q ≥ 1. Then ⌊

p−1
q

⌋
≤ L⊕(β) ≤

⌈
p
q

⌉
.

Let us remark that the difference between the upper bound ⌈p
q
⌉ and the lower bound ⌊p−1

q
⌋

is always 1. Our computer experiments support the conjecture L⊕(β) = ⌊p−1
q
⌋.
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Chapter 10

Asymptotic behavior of

beta-integers for Parry numbers

Parry numbers (defined in Section 2.1.4) give rise to β-integers which realize only a finite number
of distances between consecutive elements and are thus in a certain sense closest to ordinary
integers. We will illustrate affinity of N0 and Z+

β = {bn | n ∈ N0} for β being a Parry number
by proving two properties:

1. We will show that cβ := limn→∞
bn
n

exists and we will provide a simple formula for cβ.

2. For β being moreover a Pisot number such that its minimal and its Parry polynomial
(defined in Section 2.1.4) coincide, we will prove that (bn−cβn)n∈N0 is a bounded sequence.

Let us mention that exact formulae for β-integers bn, and, hence, both of the previous
asymptotic characteristics are known for β being a quadratic unit.

Proposition 10.0.4 ([59]). If β is a quadratic simple Parry unit, then

Z+
β =

{
bn = cβn+

1

β

1 − β

1 + β
+
β − 1

β

{
n+ 1

1 + β

}
, n ∈ N0

}
, where cβ =

1 + β2

β(1 + β)
. (10.1)

If β is a quadratic non-simple Parry unit, then

Z+
β =

{
bn = cβn+

1

β

{
n

β

}
, n ∈ N0

}
, where cβ = 1 − 1

β2
. (10.2)

In order to derive some information about asymptotic properties of β-integers, let us recall
the essential relation between a β-integer bn and its coding by a prefix of the associated infinite
word uβ (for the definition of uβ and the associated substitution see Section 2.3.1) revealed by
Fabre [49].

Proposition 10.0.5. Let uβ be the infinite word associated with a Parry number β, and let ϕ
be the associated substitution of β, then, for every β-integer bn, it holds

〈bn〉β = ak−1 . . . a1a0• ⇐⇒ ϕk−1(0ak−1) . . . ϕ(0a1)0a0 is a prefix of uβ of length n.

Since every prefix of uβ codes a β-integer bn, Proposition 10.0.5 implies the following corol-
lary.
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Corollary 10.0.6. Let w be a prefix of uβ, then there exist k ∈ N and a0, a1, . . . , ak−1 ∈ N0

such that
w = ϕk−1(0ak−1) . . . ϕ(0a1)0a0 ,

where ak−1 . . . a1a0• is the β-expansion of a β-integer.

Let us denote Bi := |ϕi(0)|. Then (Bi)i∈N0 is a canonical numeration system associated with
the Parry number β (defined and called β-numeration system by Bertrand [19] and studied by
Fabre [49]). For details on numeration systems consult [84]. Lemma 10.0.5 implies that the
greedy representation of an integer n in this system is given by

n =

k−1∑

i=0

aiBi if bn =

k−1∑

i=0

aiβ
i.

Applying (2.19), the sequence (Bi)
∞
i=0 may be expressed employing the substitution matrix M

of ϕ defined in (2.18) in the following way

Bi =
(

1, 0, . . . , 0
)
M i





1
1
...
1



 . (10.3)

10.1 Simple Parry numbers

Let β be a simple Parry number (for the definition see Section 2.3.1). Then the Rényi expansion
of unity is of the form dβ(1) = t1t2 . . . tm and β is the largest root of the Parry polynomial
p(x) = xm − (t1x

m−1 + t2x
m−2 + · · · + tm−1x+ tm). Let us recall that p(x) may be reducible.

Our first aim is to confirm existence and to provide a simple formula for the constant cβ
such that bn ∼ cβn. For any root γ of the Parry polynomial p(x), it is easy to verify that
(γm−1, γm−2, . . . , γ, 1) is a left eigenvector of the substitution matrix M associated with γ.
(Notice that the Parry polynomial and the characteristic polynomial coincide in this case.) On
the other hand, according to Section 2.2.13 (Perron-Frobenius theorem), the unique positive left
eigenvector (ρ0, ρ1, . . . , ρm−1) of M associated with β, fulfilling

∑m−1
i=0 ρi = 1, satisfies that ρi

is the frequency of letter i in uβ. Combining the two previous facts, we obtain for the letter
frequencies the following formula:

ρi =
βm−1−i
∑m−1

i=0 βi
. (10.4)

Let (∆0, ∆1, . . . ,∆m−1) be the right eigenvector of M associated with β such that ∆0 = 1,
then it is easy to verify that ∆i is the distance between consecutive β-integers which is coded
by letter i in the infinite word uβ (see the formula for distances in (2.8)). For our purposes, the
following easily derivable formula for distances will be useful:

∆i = βi −
i∑

j=1

tjβ
i−j , i ∈ {0, 1, . . . ,m− 1}. (10.5)

Theorem 10.1.1. Let p(x) be the Parry polynomial of a simple Parry number β. Then

cβ := lim
n→∞

bn
n

=
β − 1

βm − 1
p′(β).
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Proof. Let us denote by u the prefix of uβ of length n, then

bn = |u|0∆0 + |u|1∆1 + · · · + |u|m−1∆m−1.

Since frequencies of letters exist, limn→∞
bn
n

exists and obeys the following formula

lim
n→∞

bn
n

= ρ0∆0 + ρ1∆1 + · · · + ρm−1∆m−1.

Applying (10.4) and (10.5), we obtain

limn→∞
bn
n

= 1∑m−1
i=0 βi

(∑m−1
i=0 βm−1−i(βi −∑i

j=1 tjβ
i−j)

)

= 1∑m−1
i=0 βi

(
mβm−1 −∑m−1

j=1 tj
∑m−1

i=j βm−1−j
)

= 1∑m−1
i=0 βi

(
mβm−1 −∑m−1

j=1 tj(m− j)βm−1−j
)

= p′(β)∑m−1
i=0 βi

= β−1
βm−1p

′(β).

Corollary 10.1.2. Let the roots β = β1, β2, . . . , βm of the Parry polynomial p(x) of a simple
Parry number β be mutually different. Then

lim
n→∞

bn
n

=
β − 1

βm − 1

m∏

k=2

(β − βk).

Proof. p(x) =
∏m
i=1(x− βi), p

′(x) =
∑m

k=1

∏m
i=1,i6=k(x− βi), thus p′(β) =

∏m
i=2(β − βi).

Remark 10.1.3. If p(x) is an irreducible polynomial, then β is an algebraic integer of order m
and β2, . . . , βm are algebraic conjugates of β, and hence mutually different.

Secondly, we will study the asymptotic behavior of the sequence (bn − cβn)n∈N0 . We know
already that the limit limn→∞

bn
n

exists. Therefore, the limit of any subsequence exists and takes
the same value. In particular,

lim
n→∞

bn
n

= lim
n→∞

bBn

Bn
= lim

n→∞
βn

Bn
.

Under the assumption that all roots of p(x) are mutually different, we will find a useful expression
for Bn. Since M is diagonalizable, there is a transition matrix, say P , satisfying

PMP−1 =





β1 0 0 . . . 0
0 β2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βm




.

Using (10.3), we may write

Bn = (1, 0, . . . , 0)P−1





βn1 0 0 . . . 0
0 βn2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βnm



P





1
1
...
1



 . (10.6)
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It follows from the Perron-Frobenius theorem that β > |βi|, hence, the formula (10.6) leads to
the following expression

1

cβ
= lim

n→∞
Bn
βn

= (1, 0, . . . , 0)P−1





1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



P





1
1
...
1



 . (10.7)

Now, let us turn our attention to the difference bn − cβn.

Let 〈bn〉β = ak−1 . . . a0•, thus bn =
∑k−1

i=0 aiβ
i and n =

∑k−1
i=0 aiBi. Employing (10.6) and

(10.7), we obtain

1

cβ
bn−n =

k−1∑

i=0

ai(1, 0, . . . , 0)P−1
(





βi1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



−





βi1 0 0 . . . 0
0 βi2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βim




)
P





1
1
...
1



 =

= (1, 0, . . . , 0)P−1





0 0 0 . . . 0
0 −z2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −zm




P





1
1
...
1




, (10.8)

where zj =
∑k−1

i=0 aiβ
i
j . If we assume that β is a Pisot number, i.e., |βj | < 1 for j = 2, 3, . . . ,m,

and since the coefficients of β-expansion satisfy ai ∈ {0, . . . , ⌊β⌋}, it follows

|zj | ≤
k−1∑

i=0

|ai||βij | ≤
β

1 − |βj |
. (10.9)

Remark 10.1.4. Suppose that the Parry polynomial p(x) of a Parry number β is reducible, say
p(x) = q(x)∆r(x), where q(x) is the minimal polynomial of β, and r(x) is a polynomial of degree
at least 1. Then the product of the roots of r(x) is an integer and therefore either all roots of
r(x) lie on the unit circle or at least one among the roots of r(x) is in modulus larger than 1.
It implies that the set of zj is bounded for all j if and only if β is a Pisot number and its Parry
polynomial is the minimal polynomial of β.

According to Remark 10.1.4 and as P does not depend on n, we have shown the following
theorem.

Theorem 10.1.5. Let β be a simple Parry number. If β is moreover a Pisot number and the
Parry polynomial of β is its minimal polynomial, then (bn − cβ n)n∈N is a bounded sequence.

Now, the transition matrix P can be chosen as follows

P =





βm−1 βm−2 . . . β 1

βm−1
2 βm−2

2 . . . β2 1
...

...
. . .

...
...

βm−1
m βm−2

m . . . βm 1




, then P





1
1
...
1




=





1−βm

1−β
1−βm

2
1−β2

...
1−βm

m

1−βm




. (10.10)

In order to have, for every n ∈ N0, an explicit formula for 1
cβ
bn − n, it remains to deter-

mine (1, 0, . . . , 0)P−1, i.e., the first row of P−1. Since P−1 = 1
detP P

adj , where (P adj)1j =
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(−1)1+j detP (j, 1) and P (j, 1) is obtained from P erasing the j-th row and the 1-st column,
applying Vandermonde’s result, we get

(P−1)1j =
(−1)1+j

∏
i<k, i,k 6=j(βi − βk)∏

i<k(βi − βk)
=

1∏
k 6=j(βj − βk)

=
1

p′(βj)
. (10.11)

Notice that since p(x) does not have multiple roots, p′(βj) 6= 0. It follows from formulae (10.8),
(10.10), and (10.11) that

1

cβ
bn − n =

m∑

j=2

−zj
p′(βj)

1 − βmj
1 − βj

. (10.12)

In consequence, using the estimate (10.9), we may deduce an upper bound on |bn − cβ n|

|bn − cβ n| ≤ 2cββ
m∑

j=2

1

(1 − |βj |)2
1

|p′(βj)|
. (10.13)

Example 10.1.6. Let us illustrate previous results for the simplest simple Parry number - the
Fibonacci number β = τ . Its Rényi expansion of unity is dτ (1) = 11 and its Parry polynomial
p(x) = x2 − x− 1. The substitution matrix for the Fibonacci substitution ϕ : 0 → 01, 1 → 0 is

M =

(
1 1
1 0

)
, consequently, (Bn)n∈N0 satisfies Bn = fn for all n ∈ N0, where (fn)n∈N0 is the

Fibonacci sequence given by

fn+1 = fn + fn−1, f0 = 1, f1 = 2.

Applying Theorem 10.1.1, we get

cτ =
τ − 1

τ2 − 1
p′(τ) =

p′(τ)
τ + 1

=
2τ − 1

τ + 1
=

τ2 + 1

τ(τ + 1)
,

which is in correspondence with Proposition 10.0.4.

Let us denote the second root of p(x) (the Galois conjugate of τ) by τ ′, τ ′ = 1−
√

5
2 = 1/τ . If

〈bn〉β = ak−1 . . . a1a0•, then ai ∈ {0, 1}, and, using (10.8), (10.10), and (10.11),

bn − cτ n = cτ ( 1
2τ−1 ,

1
2τ ′−1)

(
0 0
0 −z2

)(
1 + τ
1 + τ ′

)
=

1 − τ

τ(τ + 1)

k−1∑

i=0

ai(τ
′)i.

Since τ ′ = 1−
√

5
2 , i.e., |τ ′| < 1, the sequence |bn − cτ n|n∈N is bounded and we may easily

determine an upper bound (taking into account that τ ′ < 0)

1 − τ

τ3
≤ τ − 1

τ(τ + 1)

∞∑

i=1

(τ ′)2i−1 ≤ cτ n− bn ≤ τ − 1

τ(τ + 1)

∞∑

i=0

(τ ′)2i =
1

τ3
,

thus, comparing the upper and lower bound, we deduce

|bn − cτ n| ≤
1

τ3
,

which is again in correspondence with Proposition 10.0.4, where we have replaced the fractional

part
{
n+1
1+β

}
with 1 in order to get an upper bound on |bn − cτ n|.
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10.2 Non-simple Parry numbers

Let β be a non-simple Parry number (for the definition see Section 2.3.1). Then the Rényi ex-
pansion of unity is of the form dβ(1) = t1t2 . . . tm(tm+1 . . . tm+p)

ω with m, p chosen to be minimal
and β is the largest root of the Parry polynomial p(x) = (xp − 1)

(
xm − t1x

m−1 − · · · − tm
)
−

tm+1x
p−1 − · · · − tm+p−1x− tm+p. Let us recall that p(x) may be reducible.

Similarly as in the case of simple Parry numbers, our first goal is to derive a simple formula
for the constant cβ such that bn ∼ cβn. For any root γ of the Parry polynomial p(x), the vector

(
γm−1(γp − 1), γm−2(γp − 1), . . . , (γp − 1)︸ ︷︷ ︸

m components

, γp−1, . . . , γ, 1︸ ︷︷ ︸
p components

)

is a left eigenvector of the substitution matrix M associated with γ. (Notice that the Parry
polynomial and the characteristic polynomial coincide also in this case.) On the other hand,
according to Section 2.2.13 (Perron-Frobenius theorem), the unique positive left eigenvector
(ρ0, ρ1, . . . , ρm+p−1) of M associated with β such that

∑m+p−1
i=0 ρi = 1 satisfies that ρi is the

frequency of letter i in uβ. Combining the two previous facts, we obtain for the letter frequencies
the following formula:

ρi =
̺i∑m−1

i=0 βi(βp − 1) +
∑p−1

i=0 β
i

=
̺i(β − 1)

βm(βp − 1)
, (10.14)

where
̺i = βm−1−i(βp − 1) for 0 ≤ i ≤ m− 1,
̺i = βm+p−1−i for m ≤ i ≤ m+ p− 1.

Let (∆0, ∆1, . . . ,∆m+p−1) be the right eigenvector of M associated with β such that ∆0 = 1,
then it is easy to verify that ∆i is the distance between consecutive β-integers which is coded
by letter i in the infinite word uβ (see the formula for distances in (2.8)). Similarly as for simple
Parry numbers, also for non-simple Parry numbers, the following formula for distances holds
and will be useful:

∆i = βi −
i∑

j=1

tjβ
i−j , i ∈ {0, 1, . . . ,m+ p− 1}. (10.15)

Theorem 10.2.1. Let p(x) be the Parry polynomial of the non-simple Parry number β. Then

cβ := lim
n→∞

bn
n

=
β − 1

βm(βp − 1)
p′(β).

Proof. Analogously as for simple Parry numbers, limn→∞
bn
n

exists and we have

lim
n→∞

bn
n

= ρ0∆0 + ρ1∆1 + · · · + ρm+p−1∆m+p−1.

Applying (10.14) and (10.15), we obtain limn→∞
bn
n

=
β − 1

βm(βp − 1)
(A+B), where

A =

m−1∑

i=0

βm−1−i(βp − 1)
(
βi −

i∑

j=1

tjβ
i−j) and B =

m+p−1∑

i=m

βm+p−1−i(βi −
i∑

j=1

tjβ
i−j).
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It is then straightforward to prove that

A = (βp − 1)
(
mβm−1 −∑m−1

j=1 tj(m− j)βm−j−1
)
,

B = pβm+p−1 + p
∑m−1

j=1 tjβ
m+p−1−j +

∑p−1
j=1(p − j)tm+jβ

p−j−1,

A+B = p′(β).

Remark 10.2.2. If we consider the infinite Rényi expansion of unity d∗β(1) instead of the “clas-
sical” Rényi expansion of unity dβ(1), we have in the simple case d∗β(1) = (t1 . . . tm−1(tm − 1))ω,
thus the length l of the preperiod is 0 and the length L of the period is m, and in the non-simple
case, d∗β(1) = dβ(1) = t1t2 . . . tm(tm+1 . . . tm+p)

ω, hence the length l of the preperiod is m and
the length L of the period is p. With this notation, the formulae for cβ from Theorems 10.1.1
and 10.2.1 may be rewritten, for both simple and non-simple Parry numbers, in a unique way
as

cβ =
β − 1

βl(βL − 1)
p′(β).

Corollary 10.2.3. Let the roots β = β1, β2, . . . , βm+p of the Parry polynomial p(x) of a non-
simple Parry number β be mutually different. Then,

lim
n→∞

bn
n

=
β − 1

βm(βp − 1)

m+p∏

k=2

(β − βk).

Proof. An analogy of the proof of Corollary 10.1.2.

Remark 10.2.4. If p(x) is an irreducible polynomial, then β is an algebraic integer of order
m+ p and β2, . . . , βm+p are algebraic conjugates of β, and hence mutually different.

Secondly, in an analogous way as in the simple Parry case, we will investigate the asymptotic
behavior of the sequence (bn − cβn)n∈N0 . As we know already that the limit limn→∞

bn
n

exists,
we may rewrite it in terms of the subsequence (Bn),

lim
n→∞

bn
n

= lim
n→∞

bBn

Bn
= lim

n→∞
βn

Bn
.

Under the assumption that all roots of p(x) are mutually different, we will express Bn in an
easier form. As M is diagonalizable, there is a transition matrix, say P , satisfying

PMP−1 =





β1 0 0 . . . 0
0 β2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βm+p




.

Using (10.3), we may write

Bn = (1, 0, . . . , 0)P−1





βn1 0 0 . . . 0
0 βn2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βnm+p




P





1
1
...
1




. (10.16)
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It follows from the Perron-Frobenius theorem that β > |βi|, hence, the formula (10.16) results
in the following expression

1

cβ
= lim

n→∞
Bn
βn

= (1, 0, . . . , 0)P−1





1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



P





1
1
...
1



 . (10.17)

Now, let us focus our attention on the difference bn − cβn.

Let 〈bn〉β = ak−1 . . . a0•, thus bn =
∑k−1

i=0 aiβ
i and n =

∑k−1
i=0 aiBi. Employing (10.16) and

(10.17), we obtain

1

cβ
bn−n =

k−1∑

i=0

ai(1, 0, . . . , 0)P−1
(





βi1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




−





βi1 0 0 . . . 0
0 βi2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βim+p




)
P





1
1
...
1




=

= (1, 0, . . . , 0)P−1





0 0 0 . . . 0
0 −z2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −zm+p




P





1
1
...
1




, (10.18)

where zj =
∑k−1

i=0 aiβ
i
j . If β is a Pisot number, i.e., |βj | < 1 for j = 2, 3, . . . ,m+ p, and since the

coefficients of β-expansion satisfy ai ∈ {0, . . . , ⌊β⌋}, we have

|zj | ≤
k−1∑

i=0

|ai||βij | ≤
β

1 − |βj |
. (10.19)

According to Remark 10.1.4 and since P does not depend on n, we have shown the following
theorem.

Theorem 10.2.5. Let β be a non-simple Parry number. If β is moreover a Pisot number and
the Parry polynomial of β is its minimal polynomial, then (bn− cβ n)n∈N is a bounded sequence.

The transition matrix P is in this case equal to

P =





βm−1(βp − 1) βm−2(βp − 1) . . . (βp − 1) βp−1 . . . β 1

βm−1
2 (βp2 − 1) βm−2

2 (βp2 − 1) . . . (βp2 − 1) βp−1
2 . . . β2 1

...
...

. . .
...

...

βm−1
m+p(β

p
m+p − 1) βm−2

m+p(β
p
m+p − 1) . . . (βpm+p − 1) βp−1

m+p . . . βm+p 1



 .

Hence,

P





1
1
...
1




=





βm(1−βp)
1−β

βm
2 (1−βp

2 )
1−β2

...
βm

m+p(1−βp
m+p)

1−βm+p




. (10.20)

In order to have, for all n ∈ N, an explicit formula for 1
cβ
bn − n, it remains to determine

(1, 0, . . . , 0)P−1, i.e., the first row of P−1. By contrast to the simple Parry case, the matrix
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P is not in the Vandermonde’s form. However, we notice that its determinant is equal to
a Vandermonde determinant through a simple addition of columns. More precisely, we start
with the addition of the last column to the m-th column, the last but one column to the
(m − 1)-st column and so forth. It is readily seen that this procedure leads after m steps to
a Vandermonde matrix of order m+ p with the same determinant as P .

So detP =
∏
i<k(βi − βk). The expression of (P−1)1j , j ∈ {1, . . . ,m+ p}, is then given by

(P−1)1j =
(−1)1+j

∏
i<k, i,k 6=j(βi − βk)∏

i<k(βi − βk)
=

1∏
k 6=j(βj − βk)

=
1

p′(βj)
. (10.21)

Notice that since p(x) does not have multiple roots, p′(βj) 6= 0.
We obtain applying expressions (10.18), (10.20), and (10.21)

1

cβ
bn − n =

m+p∑

j=2

−zj
p′(βj)

βmj (1 − βpj )

1 − βj
. (10.22)

In consequence, we may deduce an upper bound on |bn − cβ n|

|bn − cβ n| ≤ 2cββ

m∑

j=2

1

(1 − |βj |)2
1

|p′(βj)|
. (10.23)

Example 10.2.6. Let us illustrate the previous results for the simplest non-simple Parry number
β with the Rényi expansion of unity dβ(1) = 21ω and the Parry polynomial p(x) = x2 − 3x+ 1,

i.e., β = τ2 = 3+
√

5
2 . The substitution matrix for the associated substitution ϕ : 0 → 001, 1 → 01

is the square of the Fibonacci substitution matrix, i.e., Mϕ =

(
2 1
1 1

)
. Consequently, (Bn)n∈N

is just a subsequence of the Fibonacci sequence (fn)n∈N (defined in Example 10.1.6) given by
Bn = f2n.

Applying Theorem 10.2.1, we get

cβ =
β − 1

β(β − 1)
p′(β) =

p′(β)

β
=

2β − 3

β
= 1 − 1

β2
,

which is in correspondence with Proposition 10.0.4.

Let us denote the second root of p(x) by β′, β′ = 3−
√

5
2 . Let 〈bn〉β = ak−1 . . . a1a0•, then

ai ∈ {0, 1, 2} and

bn − cβ n = cβ ( 1
2β−3 ,

−1
2β′−3)

(
0 0
0 −z2

)(
β
β′

)
=

−1

β2

k−1∑

i=0

ai(β
′)i.

Since β′ = 3−
√

5
2 , i.e., 0 < β′ < 1, the sequence (bn − cβ n)n∈N is bounded and we may easily

determine an upper bound (taking into account that coefficients in β-expansions satisfy the Parry
condition)

|bn − cβ n| ≤
1

β2

(

2 +

∞∑

i=1

(β′)i
)

=
1

β2

(
2 +

β′

1 − β′

)
=

1

β2

(
2 +

1

β − 1

)
=

1

β
,

which is in correspondence with the estimate we get if we replace the fractional part
{
n
β

}
with 1

in Proposition 10.0.4.
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Chapter 11

Schrödinger operators with

aperiodic potentials

Schrödinger equation, the fundamental equation of quantum mechanics, was proposed by the
Austrian physicist Erwin Schrödinger in 1926. It is also often called the Schrödinger wave
equation. It describes how the wavefunction of a quantum mechanical system evolves over time.
It is of central importance in non-relativistic quantum mechanics, for both elementary particles,
such as electrons, and systems of particles, such as atoms and molecules.

The one-dimensional form of the Schrödinger equation, for a single particle of mass m in the
presence of potential V , reads:

i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂2x
ψ(x, t) + V (x)ψ(x, t) ≡ (Hψ)(x, t), (11.1)

where H is a Hamiltonian operator, called the Schrödinger operator, a self-adjoint operator
describing the total energy of the system. The Schrödinger equation defines the behavior of
ψ, but does not interpret ψ. It was Max Born who introduced a successful interpretation of
|ψ|2 as the probability distribution of the position of a pointlike object and ψ as the probability
amplitude.

The most interesting states of any quantum system are those states in which the system has
a definite total energy, and it turns out that for these states, the wave function is a standing
wave, analogous to the familiar standing waves on a string. For example, a single electron in
an unexcited atom is described in quantum mechanics by a static spherically symmetric wave
surrounding the nucleus.

When the time-dependent Schrödinger equation is applied to these standing waves, it reduces
to a simpler equation called the time-independent Schrödinger equation:

(Hψ)(x) = − ~2

2m

d2

d2x
ψ(x) + V (x)ψ(x) = Eψ(x). (11.2)

This time-independent equation lets us find the wave functions of the standing waves and the
corresponding allowed energies. Possible energies E of the particle in question correspond to
the eigenvalues, or, more precisely, to the spectral values (pure point spectrum plus absolutely
continuous plus singular continuous spectrum) of the time-independent Schrödinger operator H.

The task to treat the Schrödinger equation, both time-dependent and time-independent,
analytically or numerically turns out to be hard. In consequence, discrete approximations are
of great importance.
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One of the most popular discretization methods is the so-called tight-binding approximation.
In the tight binding model, it is assumed that the full Hamiltonian H of the system may be
approximated by the Hamiltonian Hat of an isolated atom centered at each atom. The atomic
orbitals Ψn, which are eigenfunctions of the single atom Hamiltonian Hat, are supposed to be
very small at distances exceeding the interatomic distance. This is what is meant by tight-
binding. A solution Ψ to the time-independent single electron Schrödinger equation is then
assumed to be a linear combination of the atomic orbitals Ψn. The search for the appropriate
linear combination of the atomic orbitals leads to the study of the discrete Schrödinger operator
H on l2(Z) defined by:

(Hψ)(n) := ψ(n + 1) + ψ(n − 1) + ωnψ(n),

where (ωn)n∈Z takes only a finite number of values. Notice that this operator is bounded, in
contrast to the continuous Schrödinger operator.

The spectral type of the discrete Schrödinger operatorH (consult Appendix A) has important
consequences for the transport properties of the system: if H has an absolutely continuous
spectrum, we expect a conductor, while if H has a pure point spectrum, we expect to have
an insulator. The singular continuous spectrum was considered somewhat exotic and it is still
much less understood than the other spectral types. However, for aperiodic potentials, a purely
singular continuous spectrum occurs quite commonly and it is expected to give rise to interesting
new transport phenomena.

In the sequel, we exclusively treat discrete Schrödinger operators, we call them Schrödinger
operators for short.

11.1 Schrödinger operators modeling quasicrystals

Since the discovery of quasicrystals, besides searching for appropriate structural models, a lot of
effort has been devoted to the study of Schrödinger operators with purely singular continuous
spectra, describing the behavior of an electron in one-dimensional quasicrystalline potentials
being intermediate between periodic (leading to absolutely continuous spectrum) and disordered
(leading to pure point spectrum).

All investigated one-dimensional Schrödinger operators with potentials generated by primi-
tive substitutions exhibit this so far unusual spectral type and it is conjectured that all such
operators have purely singular continuous spectra. While the absence of absolutely continuous
spectrum has been proved in full generality (Kotani’s theory), the absence of pure point spectrum
is not understood in similar generality. However, no counterexample is known, so we suppose
that the case of our interest – Schrödinger operators with potentials generated by substitutions
associated with Parry numbers – will manifest purely singular continuous spectrum.

Since Kotani’s theory concerning the absence of absolutely continuous spectrum and the
result of Lenz [81] describing the Lebesgue measure and the topology of the spectrum are valid
for a larger class of Schrödinger operators than just for the operators with potentials generated
by primitive substitutions, we present first a more general framework of ergodic families of
Schrödinger operators. Afterwards, we summarize consequences for Schrödinger operators with
potentials generated by primitive substitutions and we recall and apply several methods for
excluding pure point spectrum – they are based on local symmetries in the potential, i.e.,
block repetition (Gordon-type arguments) and mirror symmetry (palindromic criteria by Hof et
al.). Finally, we give a detailed description of a particular case of Schrödinger operators with
potentials generated by substitutions associated with Parry numbers.
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11.2 Ergodic families of Schrödinger operators

The concept of ergodic families of Schrödinger operators is required for the application of
Kotani’s theory concerning the absence of absolutely continuous spectrum and of an essen-
tial theorem saying that almost all Schrödinger operators belonging to the same ergodic family
have the same spectrum and spectral type.

In order to define an ergodic family, we need to introduce some basics from ergodic theory.
Let Ω be a compact metric space and let T : Ω → Ω be a homeomorphism. The pair (Ω, T ) is
called a topological dynamical system. Given some ω ∈ Ω, the set {T nω | n ∈ Z} is called the
orbit of ω. Denote by B(Ω) the Borel σ-algebra on Ω. A Borel probability measure µ is said
to be T -invariant if µ(T (B)) = µ(B) for every B ∈ B(Ω). A Borel set B is called T -invariant
if T (B) = B. In the field of ergodic theory, the following notions are of particular importance.
We call a T -invariant measure ergodic if every T -invariant set has measure zero or one. We say
that a topological dynamical system (Ω, T ) is

• minimal if the orbit of every ω ∈ Ω is dense in Ω,

• uniquely ergodic if there exists a unique ergodic measure,

• strictly ergodic if it is both minimal and uniquely ergodic.

It is well known that if there exists a unique T -invariant measure µ, then µ is ergodic (see [109]).

Given a uniquely ergodic topological dynamical system (Ω, T ) and a measurable function
g : Ω → R, one may associate with every ω ∈ Ω a biinfinite sequence Vω : Z → R by Vω(n) =
g(T nω). This sequence is regarded as the potential of a discrete Schrödinger operator Hω on
l2(Z) defined by

(Hωψ)(n) := ψ(n + 1) + ψ(n − 1) + Vω(n)ψ(n). (11.3)

The family (Hω)ω∈Ω is called an ergodic family of Schrödinger operators. Let us admit that
ergodic families of Schrödinger operators may be defined also for topological dynamical systems
which are not uniquely ergodic, it suffices to fix an ergodic measure. However, the restriction to
topological dynamical systems with a unique T -invariant measure suppresses the dependence of
ergodic families on the choice of measure and is sufficient for our further purposes.

The following essential theorem by Pastur [93] justifies the choice of this framework stating
that the spectrum and the spectral type of Schrödinger operators in an ergodic family are µ-
almost surely ω-independent.

Theorem 11.2.1. Let (Hω)ω∈Ω be an ergodic family of Schrödinger operators. Then there
exist sets Ω0 ⊂ Ω, Σ, Σpp, Σsc, Σac ⊂ R such that µ(Ω0) = 1 and σ(Hω) = Σ, σpp(Hω) =
Σpp, σsc(Hω) = Σsc, σac(Hω) = Σac for every ω ∈ Ω0.

Absolutely continuous spectrum for almost all Schrödinger operators in an ergodic family
may be excluded applying Kotani’s theory.

Theorem 11.2.2 (Kotani). Let (Hω)ω∈Ω be an ergodic family of Schrödinger operators. If the
potentials Vω are aperiodic and take only finitely many values for all ω ∈ Ω, then Σac = ∅
(keeping the notation from Theorem 11.2.1).
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11.3 Schrödinger operators associated with subshifts

Let us turn our attention to a particular dynamical system – subshift – which allows us, in the
special case of minimal subshifts, to strengthen Theorem 11.2.1.

Let A be an alphabet. We define the shift T : AZ → AZ by (Tω)(n) = ωn+1 for ω ∈ AZ. In
this context, we recall that AZ is a compact metric space (the metric on AZ is defined analogously
as the metric on AN0 given in (10.5); for a precise definition see [83]).

Let Ω be a closed and T -invariant subset of AZ. Then (Ω, T ) is a topological dynamical
system, called subshift. We will consider subshifts generated as follows. Given an infinite word
u ∈ AN0, we define Ωu to be the set of all biinfinite words whose language is a subset of L(u),
i.e.,

Ωu = {ω ∈ AZ | L(ω) ⊂ L(u)}.
Clearly, Ωu is closed and T -invariant. Moreover, unique ergodicity and minimality can be
characterized in a combinatorial way (see [95]). The subshift (Ωu, T ) is

• uniquely ergodic if and only if frequencies ρ of factors of u exist,

• minimal if and only if u is uniformly recurrent.

In the uniquely ergodic case, the unique T -invariant measure fulfills

µ({ω ∈ Ωu | ωk . . . ωk+|w|−1 = w}) = ρ(w)

for every w ∈ L(u) and for every k ∈ Z (in other words, for every cylinder [w] in Ωu). As
cylinders generate the Borel σ-algebra on Ωu, µ is completely determined by factor frequencies
of u.

In correspondence with (11.3), let us define Schrödinger operators with potentials generated
by subshifts. Let A = {0, 1, . . . , d} and let u be an infinite word on A such that frequencies of
its factors exist. We define then, for each ω = (ωn)n∈Z ∈ Ωu, a discrete Schrödinger operator
Hω on l2(Z) by

(Hωψ)(n) := ψ(n+ 1) + ψ(n − 1) + ωnψ(n). (11.4)

The following strengthening (proved by Reed and Simon in [97] and by Last and Simon in [78])
of Theorem 11.2.1 holds for strictly ergodic subshifts (Ωu, T ).

Theorem 11.3.1. Let u be a uniformly recurrent infinite word on A = {0, 1, . . . , d} such that
frequencies of its factors exist, i.e., (Ωu, T ) is a strictly ergodic subshift. Then there exist sets
Σ, Σac ⊂ R such that the ergodic family (Hω)ω∈Ωu of Schrödinger operators defined in (11.4)
satisfies σ(Hω) = Σ and σac(Hω) = Σac for every ω ∈ Ωu.

Let us remark that strict ergodicity of a subshift does not imply constancy of its pure
point spectrum σpp or singular continuous spectrum σsc. Combining Theorem 11.2.2 and The-
orem 11.3.1, absolutely continuous spectrum may be excluded for operators with potentials
generated by aperiodic minimal subshifts.

Corollary 11.3.2. Let u be an aperiodic uniformly recurrent infinite word on A = {0, 1, . . . , d}
such that frequencies of its factors exist and let (Hω)ω∈Ωu be the ergodic family of Schrödinger
operators defined in (11.4). Then σac(Hω) = ∅ for every ω ∈ Ωu.

In case of linearly recurrent words u, the Lebesgue measure and the topology of the spectrum
have been revealed by Lenz [81].
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Theorem 11.3.3. Let u be an aperiodic linearly recurrent infinite word on A = {0, 1, . . . , d}
such that frequencies of its factors exist. Then Σ is a Cantor set of Lebesgue measure zero.

Let us remark that the assumption of linear recurrence may be replaced by a weaker as-
sumption of uniform positivity of weights, which requires existence of C > 0 such that

lim inf
|v|→∞, v∈L(u)

#{occurrences of w in v}
|v| |w| ≥ C for every w ∈ L(u).

However, with respect to our particular interest in potentials generated by primitive substitu-
tions, the restriction to the slightly rougher result provided in Theorem 11.3.3 is sufficient.

11.4 Schrödinger operators with potentials generated by primi-

tive substitutions

Let us first explain why all results from Section 11.3 are valid also for Schrödinger operators
with potentials generated by primitive substitutions, and, second, let us list some methods for
excluding pure point spectrum.

Ergodic families of Schrödinger operators with potentials generated by primitive substitu-
tions are of the form (Hω)ω∈Ωϕ , where ϕ is a primitive substitution on A = {0, 1, . . . , d} and
Ωϕ := Ωu for any fixed point u of ϕ. This definition is correct since Proposition 2.2.8 says
that all fixed points of a primitive substitution have the same language. (Ωϕ, T ) is then called
a substitution dynamical system associated to ϕ. In reference to Section 2.2.13, fixed points of
primitive substitutions are linearly recurrent and frequencies of their factors exist, the following
corollary concerning their spectra is deduced combining Theorem 11.3.1, Corollary 11.3.2, and
Theorem 11.3.3.

Corollary 11.4.1. Let ϕ be a primitive substitution on A = {0, 1, . . . , d} with aperiodic fixed
points and let (Hω)ω∈Ωϕ be the ergodic family of Schrödinger operators with potentials generated
by ϕ. Then the following statements hold:

• There exists a Cantor set Σ ⊂ R of Lebesgue measure zero such that σ(Hω) = Σ for every
ω ∈ Ωϕ.

• Absolutely continuous spectrum is empty; that is, σ(Hω) = σpp(Hω) ∪ σsc(Hω) for every
ω ∈ Ωϕ.

As a consequence, when studying the spectral type ofHω, we only need to distinguish between
pure point spectrum and singular continuous spectrum. So far, no Schrödinger operators with
potentials generated by a primitive substitution with other than purely singular continuous
spectra are known. The next part of this section introduces several methods allowing to exclude
pure point spectrum for such operators.

Define Ωc := {ω ∈ Ωϕ | σpp(Hω) = ∅}. The methods are usually discriminated according to
the absence of eigenvalues they provide (see for instance a survey by Damanik [35]). We say
that the absence of eigenvalues is:

• uniform if Ωc = Ωϕ,

• almost sure if µ(Ωc) = 1,

• generic if Ωc is a dense Gδ, i.e., a countable intersection of open sets which is dense in Ωϕ.
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The following implications are valid:

uniform absence ⇒ almost sure absence ⇒ generic absence.

All known methods for excluding eigenvalues are based either on translation symmetry - block
repetition (Gordon type arguments), or based on mirror symmetry - palindromic structure (Hof
et al. [70]).

Uniform absence of eigenvalues

To get a result on uniform absence of eigenvalues, it is in general necessary to consider
each ω individually and to apply pointwise methods. The first method was proposed by
Deylon and Petritis [42].

Theorem 11.4.2 (Three-block method). Assume that there exist ω ∈ Ωϕ and a sequence
nk → ∞ satisfying, for every k,

ωj−nk
= ωj = ωj+nk

, 1 ≤ j ≤ nk,

then σpp(Hω) = ∅.

Nevertheless, it was shown by Damanik in [37] that the three-block Gordon argument
cannot prove more than an almost sure statement in the sense that for every minimal
aperiodic subshift Ω, there exists an element ω ∈ Ω such that ω does not have the infinitely
many three block structure needed for an application of Theorem 11.4.2.

To present a result of Jitomirskaya and Simon [73], we need to know that ω ∈ AZ is
called strongly palindromic if ω contains palindromes w(i) of length li centered at ki → ∞
such that li grows exponentially fast with respect to ki, i.e., there exists B > 0 such that
Bki/li → 0.

Theorem 11.4.3. If ω ∈ Ωϕ is strongly palindromic, then σpp(Hω) = ∅.

Almost sure absence of eigenvalues

Since Ωc is T -invariant, µ(Ωc) is either 1 or 0 by ergodicity of µ. Hence, for a result on
almost sure absence of eigenvalues, it suffices to bound µ(Ωc) by a positive number from
below.

Let us denote by L(ϕ) := L(u) for any fixed point u of a primitive substitution ϕ. This
definition is correct since all fixed points of a primitive substitution have the same language.
The index of a factor w in L(ϕ) is defined by

ind(w) = sup{r ∈ Q | wr ∈ L(ϕ)}, (11.5)

where wr denotes the word (xy)mx, where m ∈ N, w = xy, and r = m + |x|/|w|. The
following result is due to Damanik [37].

Theorem 11.4.4. Let L(ϕ) contain a factor w with ind(w) > 3, then µ(Ωc) = 1.

Generic absence of eigenvalues

In order to establish a result on generic absence of eigenvalues, it is sufficient to exclude
eigenvalues for just one ω ∈ Ωϕ, as claimed by Damanik [35].
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Proposition 11.4.5. If Ωc is non-empty, then Ωc is a dense Gδ.

The first result is based on block repetition and it is a consequence of Theorem 11.4.2 and
Proposition 11.4.5.

Corollary 11.4.6 (Three-block method). Assume that there exist ω ∈ Ωϕ and a sequence
nk → ∞ satisfying, for every k,

ωj−nk
= ωj = ωj+nk

, 1 ≤ j ≤ nk,

then Ωc is a dense Gδ.

The second result by Hof et al. [70] is based on mirror symmetry.

Theorem 11.4.7. Let L(ϕ) contain infinitely many palindromes. Then Ωc is a dense Gδ.

11.5 Substitutions associated with Parry numbers

Substitutions associated with Parry numbers have been defined in Section 2.3.2. In both cases
– for simple and non-simple Parry numbers – ϕ is a primitive substitution. In consequence, all
results from Section 11.4 hold true, in particular, Corollary 11.4.1 remains valid. Since β-integers
having only a finite number of distances between neighbors – which happens solely for Parry
numbers β – are considered as appropriate models for one-dimensional quasicrystals, we tend
to show that the spectra of Schrödinger operators with potentials generated by substitutions
associated with Parry numbers are purely singular continuous.

Let us apply methods excluding pure point spectrum when possible.

Uniform absence of eigenvalues

The spectra of Schrödinger operators with potentials generated by Sturmian sequences are
known to be purely singular continuous (proved by Damanik and Lenz [38]). According
to Remark 2.3.4, the fixed points of substitutions ϕ associated with Parry numbers β are
Sturmian words if and only if

• β is a simple Parry number with dβ(1) = p1, p ∈ N, thus ϕ(0) = 0p1, ϕ(1) = 0,

• β is a non-simple Parry number with dβ(1) = p(p − 1)ω , thus ϕ(0) = 0p1, ϕ(1) =
0p−11.

Almost sure absence of eigenvalues

For almost sure results, we need to study the index of factors in L(ϕ), defined by (11.5).

Lemma 11.5.1. Let t1 ≥ 2 in the case of ϕ associated with simple Parry numbers or
t1 ≥ 3 in the case of ϕ associated with non-simple Parry numbers, then L(ϕ) contains
a factor of index > 3.

Proof. If ϕ associated with a simple Parry number satisfies t1 ≥ 2, then either t1 + tm ≥ 4
and 0000 is a factor of L(ϕ) with ind(0000) = 4, or t1 = 2 and tm = 1 (since tm is non-zero
and t1 ≥ tm according to (2.6)), hence t1 + tm = 3 and 0001 ∈ L(ϕ). Let j := min{i ≥
1 | ti+1 > 0}. Such j exists since tm = 1. It is readily seen that ϕj(0)ϕj(0)ϕj(0)0tj+1 is
a factor of L(ϕ) with index > 3. The proof of the statement for the non-simple Parry case
is analogous.
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Combining Lemma 11.5.1 with Theorem 11.4.4, we obtain the following corollary.

Corollary 11.5.2. Let t1 ≥ 2 in the case of ϕ associated with simple Parry numbers or
t1 ≥ 3 in the case of ϕ associated with non-simple Parry numbers, then µ(Ωc) = 1.

Generic absence of eigenvalues

In Section 4.2.6, it is shown that L(ϕ), for a substitution ϕ associated with a simple Parry
number β, contains an infinite number of palindromes if and only if β is a confluent Parry
number, i.e., the substitution is of the form

ϕ(0) = 0t1, ϕ(1) = 0t2, . . . , ϕ(m− 2) = 0t(m− 1), ϕ(m− 1) = 0s,

where t ≥ s ≥ 1.

Among non-simple Parry numbers, in reference to Section 4.3, there are infinitely many
palindromes in L(ϕ) only for the quadratic case, i.e., if the substitution is of the form

ϕ(0) = 0p1, ϕ(1) = 0q1, p− 1 ≥ q ≥ 1.

Combining this fact with Theorem 11.4.7, we deduce the following corollary.

Corollary 11.5.3. Let ϕ be a substitution associated with a confluent simple Parry num-
ber β or a quadratic non-simple Parry number β, then Ωc is a dense Gδ in Ωϕ.

Let us conclude that the spectrum of the Schrödinger operator with potential generated by
a substitution associated with a Parry number is purely singular continuous if the fixed point
of the substitution is a Sturmian word. On one hand, we are able to say more, on the other
hand, there are still many pending cases left. Let us take into account all possible parameters
ti corresponding to a Rényi expansion of unity, i.e., obeying the rule from (2.4). We summarize
for which parameters ti, the pure point spectrum is absent almost surely and generically, and,
for which ti, the problem is still open:

Simple Parry case

• If t1 ≥ 2, then the pure point spectrum is almost surely absent.

• If t1 = 1 = t2 = · · · = tm, then the pure point spectrum is generically absent. (In the
quadratic case, the absence is even uniform.)

• If t1 = 1 = tm, and at least one ti = 0, then we do not know.

Non-simple Parry case

• If t1 ≥ 3, then the pure point spectrum is almost surely absent.

• If t1 = 2 and t2 = 1, i.e., β is quadratic, then the pure point spectrum is uniformly
absent.

• If t1 = 2 and β is at least cubic, then we do not know.
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Chapter 12

Diffraction on beta-integers

This closing chapter is devoted to a very important tool for the study of crystalline structure –
diffraction of X-rays, electrons, or, neutrons by crystals. We have already pointed out its im-
portance in the introduction. It was the electron diffraction that enabled in 1984 the discovery
of quasicrystals. As the diffraction image inherits the symmetries of its atomic pattern, crystal-
lographers observed that periodicity is not necessary for producing Bragg peaks on a diffraction
image; periodicity is not equivalent with long range order.

In what follows, we prefer to leave the real word of 3-dimensional atomic structures and to
pass instead to the mathematical diffraction on one-dimensional structures (basics summarized
in Appendix B), in particular, to a theoretical one-dimensional model of quasicrystals: beta-
integers. We tend to summarize briefly all known results that may be possibly applied in order
to describe the diffraction spectrum of beta-integers. In addition, we suggest some directions of
a further study of diffraction on beta-integers, using the asymptotic behavior of beta-integers
deduced in Chapter 10.

12.1 Diffraction on finite and infinite sets

Let us sketch out why diffraction on infinite sets of atoms is described by the Fourier transform
of the autocorrelation (defined in Appendix B and denoted ibidem by γ̂). Consider, in the
space, an assembly of N identical structureless atoms at positions x1, . . . , xN on a straight line.
This assembly is usually modeled by a bounded measure µN =

∑N
j=1 δxj

. If this assembly is
irradiated by X-rays, eventually another kind of radiation, then its intensity is given by

IN (K) =
∣∣
N∑

j=1

e−2πi〈xj ,K〉∣∣2,

where K = k′ − k is the scattering vector and k and k′ are the wavevectors of the incident

and scattered plane wave, respectively. Note that IN = |µ̂N |2 = ̂(µN ∗ µ̃N ). The convolution
product µN ∗ µ̃N is known as the “autocorrelation”. (Note that the autocorrelation as defined
in Appendix B is zero for any bounded measure!) The sequence (IN ) does not converge as
N → ∞, not vaguely to a measure and not even in the sense of distributions. In consequence,
this notion has to be modified for infinite systems. One considers the sequence (IN/N), the
scattering power per atom. If the infinite system has a unique autocorrelation γ in the sense of
Appendix B, then (IN/N) converges vaguely to γ̂/γ({0}) as N → ∞ (observe that γ({0}) is the
particle density).

Like any positive measure, γ̂ can have a pure point part, an absolutely continuous part, and
a singular continuous part. The pure point part (in addition to the point mass at 0, which

131



is always present) is interpreted as a sign of order, the absolutely continuous part as a sign
of disorder, and the singular continuous part as a kind of order between quasiperiodicity and
randomness.

12.2 Pure point diffraction and dynamical spectra

Let us only briefly mention a possible reformulation of the problem of proving pure pointedness
of a diffraction spectrum. Following the standard method of associating a dynamical system
with an aperiodic structure (see for instance [103]), we may deduce some information on the
diffraction spectrum of a structure knowing the dynamical spectrum of the associated system.

1. A key observation made by Dworkin [48] is that pure pointedness of a dynamical spectrum
implies pure pointedness of the corresponding diffraction spectrum.

2. According to Section 2.2.13, one may associate with every primitive substitution a self-
similar Delone set Λ. Then, if the dynamical spectrum of the associated dynamical system
is pure point, then the diffraction spectrum of Λ is pure point as well.

3. Much attention is paid to the so-called Pisot discrete spectrum conjecture which claims that
every Pisot type substitution gives rise to a dynamical system with pure point spectrum.
Recently, the case of binary substitutions has been settled affirmatively by Hollander and
Solomyak [72]. For more letters, it remains unanswered.

Since the notions of Pisot and Parry numbers coincide in the quadratic case, it is a straightfor-
ward consequence of the above listed known results that the diffraction spectrum of Zβ is pure
point for every quadratic Parry number β.

12.3 Diffraction on one-dimensional cut and project sets

Cut-and-project sets have been defined in the introduction and their role of suitable models for
quasicrystals have been highlighted. It was proved by Hof [68], through the dynamical systems
approach, that regular C&P sets have pure point diffraction spectrum.

Let us mention how the diffraction measure of a one-dimensional C&P set Σ looks like. In
reference to Section 2.4.4, there exist two distinct irrational parameters ǫ, η and a bounded
interval Ω such that

Σ = Σǫ,η(Ω) = {a+ bη | a, b ∈ Z, a+ bǫ ∈ Ω}.
Applying Hof’s result, we learn that the diffraction measure of µ =

∑
x∈Σ δx is unique and is

given by

γ̂Σ =
∑

(a,b)∈Z2

|c(a,b)|2δa+bǫ,

where

c(a,b) =
dens(Σ)

vol(Ω)

∫

Ω
e2πi(a+bǫ)ydy.

The density of Σ is defined by dens(Σ) = limR→∞
(−R,R)∩Σ

2R . Since the density of Σ is pro-

portional to the volume of Ω, the expression dens(Σ)
vol(Ω) depends only on the choice of η, ǫ and

is independent from the choice of Ω. This property is related to the uniform distribution of
π2(Z

2) in V2. We see that the support of the diffraction measure is a dense set. Nevertheless, it
holds for any positive constant α that the set of Bragg peaks with intensity greater than α, i.e.,
{a+ bǫ | |c(a,b)|2 > α}, is uniformly discrete.
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12.4 Diffraction on beta-integers

Let us first treat such sets Zβ that are close to the C&P sets, i.e., whose non-negative part Z+
β

coincides with the non-negative part of a C&P set. Such numbers β have been determined by
Gazeau, Masáková, and Pelantová in [61].

Proposition 12.4.1. The non-negative part of the set Zβ coincides with the non-negative part
of a C&P set Σǫ,η(Ω) if and only if β is a quadratic Pisot unit.

Acording to Remark 2.3.4, there are two types of quadratic Pisot units among Parry numbers:

1. simple Parry numbers β with dβ(1) = p1, p ≥ 1,

2. non-simple Parry numbers β with dβ(1) = p(p− 1)ω, p ≥ 2.

The characterization of Z+
β and Z−

β in terms of C&P sets from [61] reads,

in the simple Parry case, Z+
β = Σβ′,β(−1, β) ∩ R+, Z−

β = Σβ′,β(−β, 1) ∩ R−,
in the non-simple Parry case, Z+

β = Σβ′,β[0, β) ∩ R+, Z−
β = Σβ′,β(−β, 0] ∩ R−.

Another important property of Pisot quadratic units β is that Zβ is a Meyer set. More precisely,
it has been proved in [55] that

in the simple Parry case, Zβ − Zβ ⊂ Zβ + {0,±(1 − 1
β
)},

in the non-simple Parry case, Zβ − Zβ ⊂ Zβ + {0,± 1
β
}.

In analogy with Hof’s results for C&P sets, together with the fact that Zβ is a Meyer set,
we expect the diffraction spectrum of Zβ in the case of quadratic Pisot units β to be pure point.
Our expectation is correct, as justified by the result on dynamical spectra cited in Section 12.2.
Let us recall a method by Gazeau and Verger-Gaugry from [59] of determining the diffraction
spectrum support and the values of intensity. This method works even for weighted Dirac combs
supported by Zβ = {bn | n ∈ Z} for a quadratic Parry unit β.

We illustrate the method only for simple Parry units since the non-simple case is an analogy.
Let us consider the Dirac comb µ =

∑
n∈Z

δbn . According to Appendix B, µ is a translation
bounded measure. In consequence, µ is a tempered measure and its Fourier transform

µ̂(q) =
∑

n∈Z

e−2πiqbn (12.1)

is a tempered distribution. With the help of Proposition 10.0.4, we can express the Fourier
exponential in (12.1) for n ≥ 0 as follows

e−2πiqbn = e−2πiqncβ e
−2πiq 1

β

{
n
β

}

. (12.2)

The function x → {x} is periodic of period 1, so is the piecewise continuous function e−iqα{x}.
We expand (12.2) in Fourier series:

e−2πiqbn = e−2πiqncβ
∑

m∈Z

cm(q) e
2πim

{
n
β

}

, (12.3)

where the coefficients may be easily calculated and the convergence is punctual in all non-integer

points; in particular, it is punctual in all points
{
n
β

}
. Since

e2πim{x} = e2πimx e−2πim⌊x⌋ = e2πimx,
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we get the following Fourier expansion:

e−2πiqbn =
∑

m∈Z

cm(q) e
−2πin

(
qcβ−m

β

)

. (12.4)

Finally, implanting (12.4) in (12.1) and exchanging the order of summation, we obtain the
following expression (to be understood in the weak sense):

µ̂(q) =
∑

m∈Z

cm(q)
∑

n∈Z

e
−2πincβ

(
q− 1

cβ

m
β

)

. (12.5)

Finally, applying a well-known equality (in the distributional sense) mentioned in Example B.0.4
in Appendix B, we are led to the following formula for the Fourier transform of µ:

µ̂(q) =
1

cβ

∑

m,n∈Z

cm(q)δ(q − 1
cβ

m
β
− n

cβ
). (12.6)

The right-hand side of the above equality is a translation bounded measure. Unfortunately, the
equality is to be understood in the weak, not vague sense. At this moment, we are forced to
leave a rigorous way, provided we want to continue the description of the diffraction spectrum.
In accordance with a popular, but never proved, conjecture of Bombieri and Taylor [20], the
right-hand side of (12.6) and the diffraction measure γ̂ have the same support, and, moreover,
|µ̂({x})|2 = γ̂({x}) for each point x ∈ R. Knowing that the diffraction spectrum is pure point,
this conjecture leads to its complete description.

To conclude, let us give some instructions for possible further investigation of the diffraction
spectra of the set Zβ = {bn | n ∈ Z} for Parry numbers β in general. The above described
method for the transformation of the Fourier transform of µ into a weighted Dirac comb, in the
distributional sense, is based on a precise formula for the n-th β-integer in the case of Pisot
quadratic units β. To be specific, it is important to have the following form bn = cβn+ {α(n)}.
We have provided a precise formula for bn in both simple (10.12) and non-simple (10.22) Parry
case. The only problem, but probably very hard to solve, is the dependence of the formula for
bn on the β-expansion of bn. We propose to start with some concrete examples of quadratic
non-unit Parry numbers.
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Chapter 13

Conclusion and open problems

This thesis embodies three main areas of interest – combinatorics, arithmetics, and application
in physics of β-integers. We do not want to sum up again the most important results since it has
been already done in details in the preface. We use this place instead as a list of open problems
and perspectives of further research on β-integers, ordered in accordance with the three studied
domains.

Combinatorics

The complexity of infinite words uβ associated with Parry numbers β has been determined
so far only for confluent simple Parry numbers, simple Parry numbers with the Rényi
expansion dβ(1) = t1t2 . . . tm with t1 > max{t2, . . . , tm−1}, and quadratic non-simple
Parry numbers. It is desirable to derive the complexity, or, at least, to describe special
factors of infinite words uβ associated with Parry numbers β for more classes of Parry
numbers. This task seems to be rather difficult and technical, but it is still possible to
search for suitable upper and lower bounds on the complexity C(n), eventually only for
large lengths n, of infinite words uβ associated with Parry numbers.

The palindromic complexity has been derived for infinite words uβ associated with con-
fluent simple Parry numbers and with quadratic non-simple Parry numbers. These are
the only classes of β for which the language L(uβ) is closed under reversal. It is a largely
open problem to deduce the palindromic structure for the other Parry numbers; hence, for
infinite words uβ containing only a finite number of distinct palindromes.

The equivalence of the notion of fullness and opulence has been proved for all infinite
words with language closed under reversal. It would be interesting to show whether this
result may be extended for all recurrent words.

We have characterized infinite words with m return words for every factor, in terms of
complexity and bispecial factors, for m = 3. We have also pointed out that this characte-
rization does not hold form ≥ 4. It is therefore challenging to find another characterization
for m ≥ 4 as elegant as the one we provided for m = 3.

Observing the evolution of reduced Rauzy graphs of infinite words uβ associated with
quadratic non-simple Parry numbers, we have obtained the sets of their factor frequencies.
It is possible to use an analogous method also for other infinite words uβ. However, it is
not at all evident how to avoid technicalities.

The only Parry numbers β, for which an optimal balance bound on uβ has been found,
are the quadratic ones. We have proposed a method which may be applied also for Parry
numbers of higher degrees.
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Arithmetics

We have highlighted close relation between the balance property and arithmetical proper-
ties of β-integers for quadratic non-simple Parry numbers β. It is our great wish to show
that such proximity of combinatorics and arithmetics has much more general validity.

We have shown that the maximal number L⊕(β) of β-fractional positions which may occur
if two β integers are added, provided the sum has a finite β-expansion, is bounded from
below and from above as follows

⌊
p−1
q

⌋
≤ L⊕(β) ≤

⌈
p
q

⌉
.

We aim to confirm our conjecture that L⊕(β) = ⌊p−1
q
⌋. It would be convenient to deduce

also a good upper and lower bound on L⊗(β) for quadratic non-simple Parry numbers.
More generally, good estimates on L⊕(β) and L⊗(β) are desirable for Parry numbers of
higher degrees as well.

Application in physics

We studied the asymptotic behavior of β-integers for Parry numbers β. We have stated
that the n-th β-integer bn behaves asymptotically as cβn for all Parry numbers β and that
the sequence (bn − cβn) is bounded for Pisot numbers β having the same minimal and
Parry polynomial. We conjecture that this implication may be reversed. Our further aim
is to study the asymptotic behavior of β-integers also for non-Parry algebraic numbers β.
Among non-Parry numbers, one may distinguish two cases:

• If the length of blocks of zero’s in dβ(1) is bounded, say by a length L, then the β-integers
form a Delone set since the shortest distance between consecutive points is at least 1

βL and
the largest distance is 1.

• If dβ(1) contains strings of zero’s of unbounded length, then the set of distances between
consecutive β-integers have 0 as its accumulation point, see Equation (2.8). It means that
in this case, the β-integers do not form a Delone set.

The first question to be answered in both cases is whether the limit bn/n does exist for
some non-Parry numbers β. We think that the following two references will be very helpful
in the advanced study of asymptotic behavior of β-integers: Schmidt [100] in case of Salem
numbers β and Gazeau and Verger-Gaugry [60] in case of Perron numbers β.

We have indicated in our treatise on diffraction that the method revealing the diffraction
spectra of β-integers for quadratic Parry units might be extended to general Parry numbers,
using the results concerning their asymptotic behavior. Another widely open problem is
to prove the Bombieri-Taylor conjecture for a larger class of measures µ. So far, a result of
Hof claims that this conjecture holds under the hypothesis that µ̂ is a translation bounded
measure. However, this problem is out of our sphere of activity. It concerns theory of
distributions and measure theory.

We have dealt with one more possible application in physics – infinite words uβ associ-
ated with Parry numbers β as models of potentials of discrete Schrödinger operators. If
a Schrödinger operator with aperiodic potential has a purely singular continuous spectrum,
then its potential models a quasicrystalline material. So far, all examined Schrödinger ope-
rators with potentials generated by primitive substitutions have had this type of spectrum.
Therefore, we tend to show for all Schrödinger operators with potentials generated by in-
finite words uβ associated with Parry numbers β that their spectrum is purely singular
continuous. We have solved this problem only partially.
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In an “idle land” state has remained an eventual application of the results of this thesis
for random number generators and in non-standard wavelet analysis.
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Appendix A

Glance at functional analysis

We will indeed only take a glance at a specific part of functional analysis. We assume that the
reader is familiar with basic notions from functional analysis and measure theory. For details,
proofs, and more general statements of theorems, [97] is recommended for consultation.

The main aim is to sketch out a decomposition of the spectrum of a linear bounded operator
on a Hilbert space, interesting from the point of view of quantum mechanics, in particular, for
the study of discrete Schrödinger operators.

Let X be a Banach space and B(X ) the Banach algebra of bounded operators on X . A complex
number λ belongs to the spectrum σ(T ) of an operator T ∈ B(X ), if T − λI has no bounded
inverse. Spectrum σ(T ) is a compact non-empty subset of C. Three mutually disjoint subsets
of σ(T ) are usually distinguished according to the reason of non-inversibility of T − λI: point
spectrum σp(T ) consisting of eigenvalues of T , continuous spectrum σc(T ), and residual spectrum
σr(T ).

If H is a complex Hilbert space, we may introduce the continuous functional calculus, which
enables us, for a fixed self-adjoint operator T ∈ B(H), to associate with a vector h ∈ H the
so-called spectral measure µh via the Riesz-Markov representation theorem. Then, applying
a refined Lebesgue decomposition theorem, we decompose the spectral measure µh. Finally,
having extended the continuous functional calculus to the Borel functional calculus, we may
translate the measure decomposition to the searched spectral decomposition.

Self-adjoint operator

We recall that the adjoint operator T ∗ of an operator T ∈ B(H) is defined by

〈x, T ∗y〉 := 〈Tx, y〉 for all x, y ∈ H,

where 〈x, y〉 denotes the scalar product of x, y ∈ H. It is easy to verify that σr(T ) ⊂
σp(T

∗) ⊂ σr(T )∪σp(T ). In particular, for a self-adjoint operator T = T ∗, it holds σ(T ) ⊂ R

and σr(T ) = ∅ and the norm of T is equal to the spectral radius

||T || = sup
λ∈σ(T )

|λ|.

Continuous functional calculus

Two most important ingredients of the continuous functional calculus are:
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1. If T is self-adjoint, then, for any polynomial p, the operator norm obeys

||p(T )|| = sup
λ∈σ(T )

|p(λ)|.

2. The Stone-Weierstrass theorem stating that the family of polynomials (with complex
coefficients) is dense in C(σ(T )), the complex continuous functions on σ(T ).

When endowed with the supremum norm, C(σ(T )) is a Banach space. So the mapping
p → p(T ) is an isometric homomorphism from a dense subset of C(σ(T )) to the Banach
space B(H). Extending the mapping by continuity gives a bounded linear operator, called
the continuous functional calculus, defined, for every f ∈ C(σ(T )), by

f → f(T ) := lim
n→∞

pn(T ),

where (pn)n∈N is a sequence of polynomials such that pn →
n→∞

f uniformly.

Riesz-Markov representation theorem

For a fixed h ∈ H and a fixed self-adjoint operator T ∈ B(H), the functional f → 〈h, f(T )h〉
is a positive linear functional on C(σ(T )). Positivity means that if f(x) ≥ 0 for all
x ∈ σ(T ), then 〈h, f(T )h〉 ≥ 0.

We recall the Riesz-Markov representation theorem restricted to real compact spaces.

Theorem A.0.2 (Riesz-Markov representation theorem). Let Y be a real compact space.
For any positive linear functional ψ on C(Y ), there is a unique non-negative Borel regular
measure µ on Y such that ψ(f) =

∫
Y
fdµ for all f ∈ C(Y ).

Regularity of the measure µ means that for every Borel set E in Y , we have µ(E) =
inf{µ(U) | E ⊂ U ⊂ Y, U open}, or, equivalently, µ(E) = sup{µ(K) | K ⊂ E, K compact}.
According to the Riesz-Markov representation theorem, there exists a unique non-negative
Borel regular measure µh on σ(T ) such that

∫

σ(T )
fdµh = 〈h, f(T )h〉

for all f ∈ C(σ(T )). This measure is sometimes called the spectral measure associated
with h ∈ H.

Borel functional calculus

The spectral measures can be used to extend the continuous functional calculus to the
Borel functional calculus, i.e., to define g(T ) ∈ B(H) for every bounded Borel function g
on R. We may define, for every bounded Borel measurable function g,

〈h, g(T )h〉 :=

∫

σ(T )
gdµh.

Then, using the polarization identity for the scalar product on H

4〈k, g(T )h〉 = 〈k + h, g(T )(k + h)〉 − 〈k − h, g(T )(k − h)〉−
−i〈k + ih, g(T )(k + ih)〉 + i〈k − ih, g(T )(k − ih)〉,

we get the value of 〈k, g(T )h〉 for every k ∈ H, which determines uniquely g(T )h.
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Lebesgue decomposition theorem

Suppose µ is a non-negative Borel measure on R. Denote by S the set of pure points of µ,
i.e., S = {x ∈ R | µ({x}) 6= 0}. Since µ is a Borel measure (µ(K) < ∞ for any compact
set K ⊂ R), S is a countable set. Define µpp(E) := µ(E ∩ S) =

∑
x∈E∩S µ({x}) for every

Borel set E ⊂ R. Then, µpp is a non-negative Borel measure on R. In addition, define
µc := µ− µpp. It is also a non-negative Borel measure with the property µc({x}) = 0 for
all x ∈ R (it has no pure points). It implies that any non-negative Borel measure µ on R

may be uniquely decomposed into a sum µ = µpp + µc, where µc is a continuous measure,
i.e., µc has no pure points, while µpp is a pure point (also called discrete) measure, i.e.,
µpp(E) =

∑
x∈E µpp({x}) for every Borel set E ⊂ R.

Consider the Lebesgue measure λ on R. We say that µ is absolutely continuous with
respect to the Lebesgue measure λ, we write µ ≪ λ, if µ(E) = 0 whenever λ(E) = 0 for
a Borel set E ⊂ R. Whereas µ and λ are mutually singular, we write µ ⊥ λ, if there exists
a Borel set E ⊂ R such that µ(E) = 0 = λ(R − E).

Let us recall a refinement of the Lebesgue decomposition theorem.

Theorem A.0.3 (Lebesgue decomposition theorem). Let µ be a non-negative Borel mea-
sure on R and λ the Lebesgue measure. Then the following statements hold:

• There exists a unique decomposition

µ = µac + µs, µac ≪ λ, µs ⊥ λ.

• The decomposition may be refined by

µs = µsc + µpp,

where µsc is continuous and µpp is pure point.

In the previous theorem, µsc is called singular continuous part of µ since it is the continuous
part of the singular component of µ.

Let h ∈ H and µh be the corresponding spectral measure on σ(T ). Clearly, µh is a finite
non-negative Borel measure, and, similarly, the restriction of the Lebesgue measure λ to
σ(T ) is a finite non-negative Borel measure on (σ(T ),Bσ(T )). According to the Lebesgue
decomposition theorem, µh can be decomposed as:

µh = µac + µsc + µpp,

where µac is absolutely continuous with respect to the Lebesgue measure λ, µsc and µpp are
singular with respect to λ, µsc is a continuous measure, and µpp is a pure point measure.

Orthogonal decomposition of Hilbert space

Choose any h ∈ H and a self-adjoint operator T ∈ B(H) and consider the associated
spectral measure µ := µh. Let us recall that the support of a Borel measure µ on R is
defined to be the set of all points x in R for which every open neighborhood of x has
positive measure, i.e., supp µ := {x ∈ R | x ∈ N open in R ⇒ µ(N) > 0}. Support of
any measure is a closed, therefore a Borel set. Since measures µac, µsc, µpp are mutually
singular, they have mutually disjoint supports Mac,Msc,Mpp.
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We define Hac = χMac(T )H, Hsc = χMsc(T )H, and Hpp = χMpp(T )H, where χE denotes
the characteristic function of E. It is easy to see that Hac consists of vectors whose spectral
measure is absolutely continuous with respect to the Lebesgue measure. Similarly for Hsc

and Hpp. These spaces are linear and mutually orthogonal. Moreover χMac(T )+χMsc(T )+
χMpp(T ) = I. We deduce that

H = Hac ⊕Hsc ⊕Hpp.

Spectral decomposition with respect to spectral measure

Let us now study the spectra of restrictions of T to Hac,Hsc, and Hpp. They form the
searched decomposition of spectrum σ(T ). The restrictions make sense since Hac,Hsc, and
Hpp are T -invariant. Spectrum of T restricted to

1. Hac is called the absolutely continuous spectrum of T , σac(T ),

2. Hsc is called the singular continuous spectrum of T , σsc(T ),

3. Hpp is called the pure point spectrum of T , σpp(T ).

The point spectrum of T fulfills σp(T ) = σpp(T ). In consequence, the spectrum of T is
a union of the following form

σ(T ) = σac(T ) ∪ σsc(T ) ∪ σp(T ).
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Appendix B

Mathematical diffraction theory

The answer to the question which distributions of matter diffract is still incomplete, and many
results are heuristic, short of rigorous mathematical explanation. Here, we prefer to focus on
basic and rigorous mathematical theory of diffraction. This section is entirely inspired by Baake’s
lecture notes [8].

Mathematical diffraction theory is concerned about the spectral properties of the Fourier
transform of the autocorrelation measure of translation bounded complex measures. Let us
therefore first introduce and discuss the notions involved. We will restrict ourselves to one-
dimensional sets since we consider exclusively one-dimensional models of quasicrystals.

Translation bounded measures

Let Cc(R) be the space of complex-valued continuous functions with compact support.
A complex measure µ on R is a linear functional on Cc(R) with the additional condition
that for every compact set K ⊂ R, there is a constant aK such that

|µ(f)| ≤ aK ||f ||∞

for every f ∈ Cc(R) with support in K, here ||f ||∞ = supx∈K |f(x)| is the supremum norm
of f . The term “complex measure” for such a linear functional is adequate: the Riesz-
Markov representation theorem A.0.2 claims that complex measures as defined above are
in a one-to-one correspondence with regular complex Borel measures. In particular, we
write µ(A) (measure of a set) and µ(f) (measure of a function) for simplicity. A measure µ
is called positive if µ(f) ≥ 0 for all f ≥ 0. For every measure µ, there is a smallest positive
measure, denoted by |µ|, such that |µ(f)| ≤ |µ|(f) for all non-negative f ∈ Cc(R), and |µ|
is called the total variation (or absolute value) of µ. For our purposes, it is convenient to
work with a subset of complex measures. A measure µ is said to be translation bounded if
for every compact K ⊂ R there is a constant bK > 0 such that

sup
x∈R

|µ|(x+K) ≤ bK .

For instance, if Λ is a uniformly discrete set, the weighted Dirac comb

µΛ =
∑

x∈Λ

w(x)δx, (B.1)

where δx is the Dirac measure at point x, is clearly translation bounded if the coefficients
w(x) satisfy supx∈Λ |w(x)| <∞.
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Autocorrelation

If f and g are in Cc(R), one can define their convolution by

(f ∗ g)(x) :=

∫

R

f(x− y)g(y)dy,

which can be extended to the case of one function bounded and the other one integrable.
Recall that the convolution of two measures µ and ν is again a measure, given by

(µ ∗ ν)(f) :=

∫

R×R

f(x+ y)dµ(x)dν(y),

which is well defined if at least one of the two measures has compact support, or is a finite
measure, while the other is translation bounded.

For R > 0, let IR = [−R,R] and denote µR the restriction of a measure µ to the interval

IR. Denote by µ̃ the measure associated with a measure µ by µ̃(f) = µ(f̃) for every
f ∈ Cc(R), where f̃(x) = f(−x) for all x ∈ R. Since µR has compact support,

γR :=
µR ∗ µ̃R

2R

is well defined. Let us define vague convergence. We say that a measure γ is a vague
limit of γR if for every f ∈ Cc(R), we have γ(f) = limR→∞ γR(f). Every vague limit
point of γR, as R → ∞, is called an autocorrelation of µ. If the limit of γR exists, the
unique autocorrelation is called the natural autocorrelation of µ and is denoted γµ. If the
natural autocorrelation of a translation bounded measure exists, it is known to be also
translation bounded. Let us mention that adding or removing finitely many points from
Λ, or points of density 0, does not change γµ, if it exists. Let us focus on the weighted
Dirac comb µ defined in (B.1) with Λ being a discrete set of finite local complexity (thus
a uniformly discrete set). Let us assume for the moment that its natural autocorrelation
γµ exists and is unique (this is not always true, as shown by a counterexample constructed

by Lagarias and Pleasants in [77]). A simple calculation shows that µ̃ =
∑

x∈Λw(x)δ−x.
Since δx ∗ δy = δx+y, we get

γµ =
∑

z∈Λ−Λ

η(z)δz , (B.2)

where the autocorrelation coefficient η(z), for z ∈ Λ − Λ, is given by the limit

η(z) = lim
R→∞

1
2R

∑

x ∈ Λ ∩ IR,
x− z ∈ Λ

w(x)w(x − z).

Conversely, if the above limit exists for all z ∈ Λ, the natural autocorrelation exists,
too, because Λ − Λ is discrete and closed by assumption, and (B.2) thus uniquely defines
a translation bounded measure of positive type. This is one of the advantages of using
sets of finite local complexity.

Fourier transform and distributions

The Fourier transform will enable us to tie the previous with the theory of tempered
distributions. Let S(R) be the space of Schwartz functions, i.e., rapidly decreasing C∞-
functions. This space certainly contains all C∞-functions with compact support, but also
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functions such as p(x) exp(−x2), where p is an arbitrary polynomial. By the Fourier
transform of a Schwartz function ψ, we mean

(Fψ)(x) = ψ̂(x) :=

∫

R

e2πixyψ(y)dy,

which is again a Schwartz function. The Fourier transform F is a linear bijection from
S(R) onto itself, and is bi-continuous. The Fourier transform of convolution takes a simple

form ̂(ψ1 ∗ ψ2) = ψ̂1 · ψ̂2.

A tempered distribution is a continuous linear functional on the Schwartz space. According
to the definition of Schwartz space, it is obvious that every tempered distribution is also
a “classical” distribution, i.e., a continuous linear functional on C∞-functions with compact
support. The definition of the Fourier transform of a tempered distribution T is given by

T̂ (ψ) := T (ψ̂) for all ψ ∈ S(R).

The weak convergence of tempered distributions Tn → T implies the weak convergence of
their Fourier transforms T̂n → T̂ . By weak convergence, we mean limn→∞ Tn(ψ) = T (ψ)
for all ψ ∈ S(R).

Example B.0.4. The Fourier transform of the Dirac measure δx at x is given for all
ψ ∈ S(R) by

δ̂x(ψ) =

∫

R

e−2πixyψ(y)dy,

which rewritten in the distributional sense reads δ̂x(y) = e−2πixy.

The so-called Dirac comb δΓ =
∑

x∈Γ δx, where Γ is a lattice, i.e., Γ = {αn | n ∈ Z} for
some α > 0, obeys the Poisson summation formula for distributions

δ̂Γ = 1
α
δΓ∗ ,

where Γ∗ is the reciprocal lattice, i.e., Γ∗ = {n
α
| n ∈ Z}. From the previous two equalities,

we deduce the following equality, to be understood in the distributional sense

∑

k∈Γ

e−2πixk = 1
α
δΓ∗(x).

Measures and distributions

Measures are defined as linear functionals on continuous functions of compact support,
while tempered distributions as linear functionals on the Schwartz space.

Measures need not be tempered distributions. In the case that a measure is a tempered
distribution as well, we call it a tempered measure. Every translation bounded measure is
tempered, so this does not cause any problem in our study.

Conversely, a tempered distribution need not define a measure. If we start with a tempered
measure µ, then its Fourier transform need not be a measure. However, if µ is of positive
type (also called positive definite) in the sense that µ(ψ ∗ ψ̃) ≥ 0 for all ψ ∈ S(R), then
µ̂ is a positive measure by the Bochner-Schwartz theorem. Every autocorrelation γ is, by
construction, a measure of positive type, so that γ̂ is a positive measure. We will call
γ̂ the diffraction measure. The observed intensity pattern is represented by this positive
measure γ̂ that tells us which amount of intensity is present in a given volume.
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Decomposition of measures

Taking the Lebesgue measure as a reference, the Lebesgue decomposition theorem A.0.3
allows us to decompose the positive measure γ̂ uniquely into three parts,

γ̂ = γ̂pp + γ̂sc + γ̂ac,

where the most interesting part is the most countable set γ̂pp, called the Bragg part of
the spectrum. If the spectrum of γ̂µ consists only of Bragg peaks, then µ corresponds to
a crystalline structure. The absolutely continuous part γ̂ac is usually called diffuse scat-
tering in crystallography, and, logically, describes the diffuse background of the diffraction
image. The term “singular continuous” does not appear in the standard crystallographic
literature.
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Journal de théorie des nombres de Bordeaux 5 (1993), 123–137

[34] D. Damanik, Local symmetries in the period-doubling sequence, Discrete Appl. Math. 100
(2000), 115–121

[35] D. Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrys-
tals, in Directions in Mathematical Quasicrystals, Eds. M. Baake and R. V. Moody, CRM
Monograph Series 13, AMS, Providence, RI (2000), 277–304

[36] D. Damanik, Strictly ergodic subshifts and associated operators, /Spectral theory and
mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday/, Proc. Sym-
pos. Pure Math. 76 (2007), 505–538

[37] D. Damanik, Singular continuous spectrum for a class of substitution Hamiltonians II.,
Lett. Math. Phys. 54 (2000), 25–31

[38] D. Damanik, D. Lenz, Uniform spectral properties of one-dimensional quasicrystals, I.
Absence of eigenvalues, Commun. Math. Phys. 207 (1999), 687–696

[39] D. Damanik, D. Zare, Palindrome complexity bounds for primitive substitution sequences,
Discrete Math. 222 (2000), 259–267

[40] D. Damanik, L.Q. Zamboni, Combinatorial properties of Arnoux-Rauzy subshifts and ap-
plications to Schrödinger operators, Rev. Math. Phys. 15 (2003), 745–763

[41] M. Dekking, On the Thue-Morse measure, Acta Univ. Carolin. Math. Phys. 33 (1992),
35–40

[42] F. Deylon, D. Petritis, Absence of localization in a class of Schrödinger operators with
quasiperiodic potential, Commun. Math. Phys. 103 (1986), 441–444

[43] X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca
and Rauzy, Theoret. Comput. Sci. 255 (2001), 539–553

[44] X. Droubay, G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci. 223
(1999), 73–85

[45] F. Durand, Lecture on Cobham’s theorem and Nd-subshifts for CANT 2006, Liège
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[58] Ch. Frougny, Z. Masáková, E. Pelantová, Infinite special branches in words associated with
beta-expansions, to appear in J. Autom. Lang. Comb. (2005)

[59] J.-P. Gazeau, J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on beta-
lattices with beta a quadratic unitary Pisot number, Ann. Inst. Fourier 56 (2006), 2437–
2461

[60] J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron num-
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Henri Poincaré 3 (2002), 1003–1018

[80] J.-Y. Lee, B. Solomyak, Pure point diffractive substitution Delone sets have the Meyer
property, Ann. Henri. Poincare 3 (2002), 1003–1018

[81] D. Lenz, Singular continuous spectrum of Lebesgue measure zero for one-dimensional qua-
sicrystals, Comm. Math. Phys. 227 (2002), 119–130

[82] D. Levine, P.J. Steinhardt, Quasicrystals I: Definitions and structure, Phys. Rev. B 34
(1986), 596–616

[83] M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics, Cambridge Univer-
sity Press, 1983

[84] M. Lothaire, Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 2002

[85] M. Lothaire, Applied combinatorics on words, volume 105 of Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 2005

[86] A. de Luca, S. Varricchio, Some combinatorial properties of the Thue-Morse sequence,
Theoret. Comput. Sci. 63 (1989), 335–348

150



[87] Y. Meyer, Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond
Quasicrystals, Eds. F. Axel and D. Gratias, Springer-Verlag, Berlin (1995), 3–16

[88] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland, Amsterdam, 1972

[89] R. V. Moody, J. Patera, Quasicrystals and icosians, J. Phys. A: Math. Gen. 26 (1993),
2829–2853

[90] J.-J. Pansiot, Bornes inférieures sur la complexité des facteurs des mots infinis engendrés
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