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a b s t r a c t

Brlek and Reutenauer conjectured that any infinite word u with language closed under
reversal satisfies the equality 2D(u) =


+∞

n=0 Tu(n) in which D(u) denotes the defect of u
and Tu(n) denotesCu(n+1)−Cu(n)+2−Pu(n+1)−Pu(n), whereCu andPu are the factor
and palindromic complexity of u, respectively. This conjecture was verified for periodic
words by Brlek and Reutenauer themselves. Using their results for periodic words, we have
recently proved the conjecture for uniformly recurrent words. In the present article we
prove the conjecture in its general version by a new method without exploiting the result
for periodic words.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Brlek and Reutenauer conjectured in [6] a nice equality which combines together the factor complexity Cu, the
palindromic complexity Pu, and the palindromic defect D(u) of an infinite word u. It sounds as follows.

Brlek–Reutenauer Conjecture. If u is an infinite word with language closed under reversal, then

2D(u) =

+∞
n=0

Tu(n),

where Tu(n) = Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n).

Brlek and Reutenauer proved ibidem that their conjecture holds for periodic infinite words. It is known from [7] that
the Brlek–Reutenauer conjecture holds for words with zero defect. In [3], we proved the conjecture for uniformly recurrent
words. In our proof, we constructed for any uniformly recurrent word uwhose language is closed under reversal a periodic
word v with language closed under reversal such that D(u) = D(v) and Tu(n) = Tv(n) for any n. Then we used validity of
the conjecture for periodic words.

In this paper, we will prove that the Brlek–Reutenauer conjecture holds in full generality without exploiting the result
for periodic words. Since both sides of the equality in the Brlek–Reutenauer conjecture are non-negative, validity of the
conjecture will be shown if we prove the following two theorems.

Theorem 1. If u is an infinite word with language closed under reversal such that both D(u) and


+∞

n=0 Tu(n) are finite, then

2D(u) =

+∞
n=0

Tu(n). (1)
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Theorem 2. If u is an infinite word with language closed under reversal, then

D(u) < +∞ if and only if
+∞
n=0

Tu(n) < +∞.

In [3], which is devoted mainly to the uniformly recurrent words, we already stated in the section Open problems one part
of Theorem 2, namely that D(u) < +∞ implies


+∞

n=0 Tu(n) < +∞ . As pointed out in [4], there is a gap in our proof, and
its corrected version can be found in [2]. In order to make the present paper self-sustained so that the reader understands
and checks all steps of the proof without having all previous papers at hand, we recall necessary notations and statements
together with the proofs of the essential ones.

2. Preliminaries

By A we denote a finite set of symbols called letters; the set A is therefore called an alphabet. A finite string w =

w0w1 . . . wn−1 of letters from A is said to be a finite word, its length is denoted by |w| = n. Finite words over A together
with the operation of concatenation and the empty word ϵ as the neutral element form a free monoid A∗. The map

w = w0w1 . . . wn−1 → w = wn−1wn−2 . . . w0

is a bijection on A∗, the word w is called the reversal or the mirror image of w. A word w which coincides with its mirror
image is a palindrome.

Under an infinite word we understand an infinite string u = u0u1u2 . . . of letters from A. A finite word w is a factor of
a word v (finite or infinite) if there exist words p and s such that v = pws. If p = ϵ, then w is said to be a prefix of v, if s = ϵ,
then w is a suffix of v.

The language L(v) of a finite or an infinite word v is the set of all its factors. Factors of v of length n form the set denoted
by Ln(v). We say that the language of an infinite word u is closed under reversal if L(u) contains with every factor w also
its reversal w.

For any factor w ∈ L(u), there exists an index i such that w is a prefix of the infinite word uiui+1ui+2 . . . . Such an index
is called an occurrence of w in u. If each factor of u has infinitely many occurrences in u, the infinite word u is said to be
recurrent. It is easy to see that if the language of u is closed under reversal, then u is recurrent (a proof can be found in [9]).
For a recurrent infinite word u, we may define the notion of a complete return word of any w ∈ L(u). It is a factor v ∈ L(u)
such that w is a prefix and a suffix of v and w occurs in v exactly twice.

If any factorw ∈ L(u)has only finitelymany complete returnwords, then the infinitewordu is calleduniformly recurrent.
The factor complexity of an infinite word u is the map Cu : N → N defined by the prescription Cu(n) := #Ln(u). To

determine the first difference of the factor complexity, one has to count the possible extensions of factors of length n. A right
extension of w ∈ L(u) is a letter a ∈ A such that wa ∈ L(u). Of course, any factor of u has at least one right extension.
A factorw is called right special ifw has at least two right extensions. Similarly, one can define a left extension and a left special
factor. We will deal mainly with recurrent infinite words u. In such a case, any factor of u has at least one left extension.

In [8] it is shown that any finite word w contains at most |w| + 1 distinct palindromes (including the empty word). The
defect D(w) of a finite word w is the difference between the utmost number of palindromes |w| + 1 and the actual number
of palindromes contained in w.

In accordance with the terminology introduced in [8], the factor with a unique occurrence in another factor is called
unioccurrent.

The following corollary gives an insight into the birth of defects.

Corollary 3 ([8]). The defect D(w) of a finite wordw is equal to the number of prefixesw′ ofw for which the longest palindromic
suffix of w′ is not unioccurrent in w′. In other words, if b is a letter and w a finite word, then D(wb) = D(w) + δ, where δ = 0 if
the longest palindromic suffix of wb occurs exactly once in wb and δ = 1 otherwise.

Corollary 3 implies that D(v) ≥ D(w) whenever w is a factor of v. It enables to give a reasonable definition of the defect
of an infinite word (see [5]).

Definition 4. The defect of an infinite word u is the number (finite or infinite)

D(u) = sup{D(w):w is a prefix of u}.

Let us point out two facts.

(1) If we consider all factors of a finite or an infinite word u, we obtain the same defect, i.e.,

D(u) = sup{D(w):w ∈ L(u)}.

(2) Any infinite word with finite defect contains infinitely many palindromes.

Using Corollary 3 and Definition 4, we obtain immediately the following corollary.



122 L’. Balková et al. / Theoretical Computer Science 475 (2013) 120–125

Corollary 5. Let u be an infinite word with language closed under reversal. The following statements are equivalent.

(1) The defect of u is finite.
(2) There exists an integer H such that the longest palindromic suffix of any prefix w of length |w| ≥ H occurs in w exactly once.

For the longest palindromic suffix of a word w we will sometimes use the notation lps(w).
The number of palindromes of a fixed length occurring in an infinite word is measured by the so called palindromic

complexity Pu, the map which assigns to any non-negative integer n the number

Pu(n) := #{w ∈ Ln(u):w is a palindrome}.

Denote

Tu(n) = Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n).

The following proposition is proven in [1] for uniformly recurrent words; however, as also noted in [6], the uniform
recurrence is not needed in the proof and it holds for any infinite word with language closed under reversal.

Proposition 6 ([1]). If u is an infinite word with language closed under reversal, then

Tu(n) ≥ 0 for all n ∈ N. (2)

Let u be an infinite word with language closed under reversal. Using the proof of Proposition 6, those n ∈ N for which
Tu(n) = 0 can be characterized in the graph language. Before doing that we need to introduce some more notions.

An n-simple path e is a factor of u of length at least n + 1 such that the only special (right or left) factors of length n
occurring in e are its prefix and suffix of length n. If w is the prefix of e of length n and v is the suffix of e of length n, we
say that the n-simple path e starts in w and ends in v. We will denote by Gn(u) an undirected graph whose set of vertices is
formed by unordered pairs (w, w) such that w ∈ Ln(u) is right or left special. We connect two vertices (w, w) and (v, v)
by an unordered pair (e, e) if e or e is an n-simple path starting in w or w and ending in v or v. Note that the graph Gn(u)
may have multiple edges and loops.

Lemma 7. If u is an infinite word with language closed under reversal and n ∈ N, then Tu(n) = 0 if and only if both of the
following conditions are met.

(1) The graph obtained from Gn(u) by removing loops is a tree.
(2) Any n-simple path forming a loop in the graph Gn(u) is a palindrome.

Proof. It is a direct consequence of the proof of Theorem 1.2 in [1] (recalled in this paper as Proposition 6). �

3. Proof of Theorem 1

The aim of this section is to prove Theorem 1, i.e., to prove the Brlek–Reutenauer conjecture under the additional
assumption that the defect D(u) of an infinite word u and the sum


∞

n=0 Tu(n) are finite. As observed in [6], it is easy to
prove the ‘‘finite analogy’’ of the conjecture, which deals only with finite words. We will also make use of this result.

Theorem 8 ([6]). For every finite word w we have

2D(w) =

|w|
n=0

Tw(n),

where Tw(n) = Cw(n + 1) − Cw(n) + 2 − Pw(n + 1) − Pw(n) and the index w means that we consider only factors of w.

It may seem that the Brlek–Reutenauer conjecture for an infinite word u can be obtained from Theorem 8 by a
‘‘limit transition’’. However, this transition would be far from being kosher. The following lemmas enable us to avoid the
incorrectness.

Lemma 9. Let u be an infinite word with language closed under reversal and finite defect. If q is its prefix satisfying D(u) = D(q),
then for H = |q| + 1 one has

Cu(H) − Pu(H) = 2#{x ∈ L(u): x is a palindrome shorter than H which is not contained in q}.

Proof. Let us define a mapping f : S → T , where

S = {x ∈ L(u): x /∈ L(q), |x| < H, x = x}

and

T =

{w, w}:w ∈ LH(u), w ≠ w


.

Let x be a palindrome from S and i be the first occurrence of x in u. Put w = ui+|x|−H · · · ui+|x|−1. It means that w is a factor
of u of length H and x is a suffix of w. Since H > |x|, the factor w is not a palindrome — otherwise it contradicts the fact that
i is the first occurrence of the palindrome x. We put f (x) = {w, w}.
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To show that f is surjective, we consider w ∈ LH(u) such that w ≠ w. Let p be the prefix of u which ends in the first
occurrence of w or w in u. Since |p| ≥ H = |w| > |q|, we have according to Corollary 3 that D(q) = D(p) and consequently,
lps(p) is unioccurrent in p, which implies that lps(p) is not a factor of q. Moreover, lps(p) is shorter than H — otherwise it
contradicts the choice of the prefix p. We found x = lps(p) ∈ S such that f (x) = {w, w}, i.e., f is surjective.

To show that f is injective, we consider two palindromes y, z ∈ S and we denote f (y) = {wy, wy} and f (z) = {wz, wz}.
From the definition of wx we know that the palindrome x occurs as a factor of wx exactly once, namely as its suffix. It means
that x equals lps(wx). Let us suppose that f (y) = f (z). We have to discuss two cases.

(1) Case wy = wz . It gives lps(wy) = lps(wz) and thus y = z.
(2) Case wy = wz . It implies that y is a prefix of wz and z is a prefix of wy. The fact that y is a prefix of wz forces the first

occurrence of wy to be strictly smaller than the first occurrence of wz . Simultaneously, since z is a prefix of wy, the first
occurrence of wz is strictly smaller than the first occurrence of wy - a contradiction.

Consequently, the assumption f (y) = f (z) implies z = y and the mapping f is injective as well.
Existence of the bijection f between the finite sets T and S means #T = #S. Since from the definition of T it follows that

Cu(H) − Pu(H) = 2#T , the equality stated in the lemma is proven. �

Remark 10. As it was pointed out by Bojan Bašić, Lemma 9 may be stated in a more general form for H > |q|, then the
equality changes to

Cu(H) − Pu(H) = 2#{x ∈ L(u): x /∈ L(q), |x| < H, x = x} − 2(H − |q| − 1).

Thanks to him, we added the assumption H = |q| + 1 in Lemma 9 necessary for the validity of the statement.

Lemma 11. Letu be an infinite wordwith language closed under reversal and finite defect. If q is its prefix satisfying D(u) = D(q),
then for any prefix p of u such that |p| > |q| the number

#{x ∈ L(p): x is a palindrome of length at most |q| which is not contained in q} +

|p|
n=|q|+1

Pp(n)

equals |p| − |q|.

Proof. At first we will show the equality

|p| − |q| = #{x ∈ L(p) \ L(q): x = x}. (3)

Let us denote by u(i) the prefix of u of length i. For any palindrome x ∈ L(p) \ L(q) we find the minimal index i such that
x occurs in u(i). Since x ∈ L(p) \ L(q), we have |q| < i ≤ |p|. Thus we map any element of {x ∈ L(p) \ L(q): x = x} to an
index i ∈ {|q| + 1, |q| + 2, . . . , |p|}.

Let us look at the details of this mapping. The minimality of i guarantees that x is unioccurrent in u(i). Palindromicity of
x gives that x = lps(u(i)). It implies that no two different palindromes are mapped to the same index i, i.e., the mapping is
injective.

Since D(q) = D(u), according to Corollary 3, lps(u(i)) is unioccurrent in u(i) and thus lps(u(i)) /∈ L(q). Thus any index i
such that |q| < i ≤ |p| has its preimage x = lps(u(i)). Therefore the mapping is a bijection and its domain and range have
the same cardinality as stated in (3).

To finish the proof, we split elements of {x ∈ L(p) \ L(q) : x = x} into two disjoint parts: elements of length smaller
than or equal to |q| and elements of length greater than |q|. Since

#{x ∈ L(p) \ L(q) : x = x, |x| > |q|} = #{x ∈ L(p) : x = x, |x| > |q|} =

|p|
n=|q|+1

Pp(n) ,

the statement of Lemma 11 is proven. �

Now we can complete the proof of Theorem 1.

Proof of Theorem 1. Finiteness of defect means that there exists a constant L ∈ N such that D(u) = D(q) for any prefix q
of uwhich is longer than or of length equal to L. On the other hand, finiteness of the sum


+∞

n=0 Tu(n) together with the fact
0 ≤ Tu(n) ∈ Z for any n ∈ N implies that there exists a constant M ∈ N such that Tu(n) = 0 for any n > M . Let us fix an
integer H > max{L,M} and denote by q the prefix of u of length |q| = H − 1. Consequently,

Tu(n) = 0 for any n ≥ H and D(u) = D(q).

In order to show the equality (1), it thus remains to show 2D(q) =
H−1

n=0 Tu(n).
Let us consider a prefix p of u containing all factors of length H . In this case p is longer than q, thus it holds by Corollary 3

that D(q) = D(p). Using Theorem 8, we have

2D(p) =

|p|
n=0

Tp(n) =

H−1
n=0

Tp(n) +

|p|
n=H

Tp(n) =

H−1
n=0

Tu(n) +

|p|
n=H

Tp(n),



124 L’. Balková et al. / Theoretical Computer Science 475 (2013) 120–125

where the last equality is due to the fact that p contains all factors of length H . It remains to prove that
|p|

n=H Tp(n) = 0. Let
us rewrite the sum by definition.

|p|
n=H

Tp(n) =

|p|
n=H


Cp(n + 1) − Cp(n) + 2 − Pp(n + 1) − Pp(n)


= −Cp(H) + 2(|p| − H + 1) − 2

|p|
n=H

Pp(n) + Pp(H)

= −Cu(H) + 2(|p| − H + 1) − 2
|p|

n=H

Pp(n) + Pu(H), (4)

where in the last equality we again used the fact that p contains all factors of length H . This fact also allows us to rewrite
the set {x ∈ L(p) : x /∈ L(q), x = x, |x| ≤ |q|} from Lemma 11 as {x ∈ L(u) : x /∈ L(q), x = x, |x| < H}. Denote the
cardinality of this set by B.

In this notation, Lemmas 9 and 11 say

Cu(H) − Pu(H) = 2B and B +

|p|
n=H

Pp(n) = |p| − H + 1.

This implies that the last expression in (4) is zero as desired. �

4. Proof of Theorem 2

If an infiniteword u is periodicwith language closed under reversal, thenD(u) < +∞ and


+∞

n=0 Tu(n) < +∞, as shown
in [6]. Consequently, we will limit our considerations in the sequel to aperiodic words.
Proposition 12. If u is an aperiodic infinite word with language closed under reversal and N is an integer, then Tu(n) = 0 for
all n ≥ N if and only if for any factor w such that |w| ≥ N, any factor longer than w beginning in w or w and ending in w or w,
with no other occurrences of w or w, is a palindrome.
Proof. (⇐): Let us show for any n ≥ N that the assumptions of Lemma 7 are satisfied. We have to show two properties of
Gn(u) for any n ≥ N .
(1) Any loop in Gn(u) is a palindrome.

Since any loop e in Gn(u) at a vertex (w, w) is a word longer than w beginning in a special factor w or w and ending in
w or w, with no other occurrences of w or w, the loop e is a palindrome by the assumption.

(2) The graph obtained from Gn(u) by removing loops is a tree.
Or equivalently, we have to show that in Gn(u) there exists a unique path between any two different vertices (w′, w′)
and (w′′, w′′). Let p be a factor of u such that w′ or w′ is its prefix, w′′ or w′′ is its suffix and p has no other occurrences
of w′, w′, w′′, w′′. Let v be a factor starting in p, ending in w′ or w′ and containing no other occurrences of w′ or w′. By
the assumption the factor v is a palindrome, thus p is a suffix of v. It is then a direct consequence of the construction of
v that the next factor with the same properties as p, i.e., representing a path in the undirected graph Gn(u) between w′

and w′′, which occurs in u after p, is p. This shows that there is only one such path.

Consequently, Lemma 7 implies that Tn(u) = 0 for any n ≥ N .
(⇒): First we prove an auxiliary claim.
Claim. If u is an aperiodic infinite word with language closed under reversal and N is an integer such that Tu(n) = 0 for all
n ≥ N, then for any w such that |w| ≥ N and any factor v longer than w beginning in w and ending in w or w, with no other
occurrences of w or w, there exists a letter a ∈ A such that v has prefix wa and suffix aw.

It is clear that repeated application of the previous claim to factorsw of length gradually increased by one gives the proof
of implication (⇒) of Proposition 12.

We split the proof of the auxiliary claim into two cases.

• Case 1: Assume that w is a special factor.
If v does not contain any other special factor of length n = |w| except for w and w, then v is a loop in the graph Gn(u)

and according to Lemma 7, the factor v is a palindrome. Necessarily, v begins in wa for some letter a and ends in aw.
Suppose now that v = v0v1 · · · vm contains a special factor z ≠ w, w of length n at the position i, i.e., z = vivi+1 · · ·

vn+i−1. Without loss of generality, we consider the smallest index i with this property. The pair (z, z) is a vertex in the
graph Gn(u) and a prefix of v, say e, corresponds to an edge in Gn(u) starting in (w, w) and ending in (z, z). Since the
graph Gn(u) is a tree, the word v which corresponds to a walk from (w, w) to the same vertex (w, w) has a suffix f
representing an edge in Gn(u) connecting again vertices (z, z) and (w, w). It means that the suffix f starts in z or z and
ends in w or w. Since Gn(u) has no multiple edges connecting distinct vertices, necessarily f = e, which already gives
the claim.
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• Case 2: Assume w is not a special factor.
It means that there exists a unique letter a such that wa belongs to the language of u. As the language is closed under

reversal, the factor w has a unique left extension, namely a. If v starts in w and ends in w, then the claim is proven.
It remains to exclude that v begins and ends in a non-palindromic factor w. Suppose this situation happens. In this

case, there exists a unique q such that wq is a right special factor and it is the shortest right special factor having the
prefix w. The factor wq has only one occurrence of the factor w — otherwise we can find a shorter prolongation of w
which is right special. Since w is a suffix of v, we deduce that |wq| < |v|. Because wq is the shortest right special factor
with prefix w, the factor vq belongs to the language and its prefix and suffix wq is a special factor. According to already
proven Case 1, we have wq = wq = qw. It means together with the inequality |wq| < |v| that w is contained in v as
well — a contradiction. �

The proof of the implication (⇒) of Proposition 12 is taken from [10], where we showed a more general statement for
an infinite word whose language is closed under a larger group of symmetries.
Corollary 13. Let u be an aperiodic infinite word with language closed under reversal and let N be an integer. If Tu(n) = 0 for
all n ≥ N, then the occurrences of w and w in u alternate for any factor w of u of length at least N.

The following lemma builds a bridge between Corollary 5 and Proposition 12.
Lemma 14. Let u be an aperiodic infinite word with language closed under reversal. There exists H ∈ N such that the longest
palindromic suffix of any prefix w of u of length |w| ≥ H occurs in w exactly once if and only if there exists N ∈ N such that for
any factor w with |w| ≥ N, any factor longer than w beginning in w or w and ending in w or w, with no other occurrences of w
or w, is a palindrome.
Proof. (⇒): We will show that N may be set equal to H . Let us proceed by contradiction. Suppose there exists a factor
w ∈ L(u) such that |w| ≥ H and there exists a non-palindromic factor of u longer than w beginning in w or w and ending
in w or w, with no other occurrences of w or w. Let us find the first non-palindromic factor of the above form in u and let us
denote it as r . Let p be the prefix of u ending in the first occurrence of r in u, i.e., p = tr for someword t and r is unioccurrent
in p. Denote by s the longest palindromic suffix of p. By the assumption, s is unioccurrent in p. No matter how long the suffix
s is, we will obtain a contradiction.
(1) If |s| ≤ |w|, then we have a contradiction to the unioccurrence of s.
(2) If |r| > |s| > |w|, then we can find at least 3 occurrences of w or w in r which is a contradiction to the form of r .
(3) The equality |r| = |s| contradicts the fact that we supposed r to be non-palindromic.
(4) Finally, if |r| < |s|, then there is an occurrence of the mirror image of r which is a non-palindromic factor having the

same properties as r which occurs before r and contradicts the choice of p.

(⇐): Take a prefix containing all factors of length N . Set H equal to its length. Let us show that any prefix p of length
greater than or equal to H has lps(p) of length greater than or equal to N . Consider a suffix of p of length N , sayw. Eitherw is
a palindrome, then lps(p) is of length greater than or equal toN . Orw is not a palindrome, thenwe find a suffix of p beginning
in w and containing exactly two occurrences of w or w. Such a suffix exists since all factors of length N are contained in p.
By assumptions, such a suffix is a palindrome, hence lps(p) is longer than N .

Any prefix p of u of length greater than or equal to H has lps(p) unioccurrent. Assume there are more occurrences of
lps(p) in p and consider its suffix v starting in the last-but-one occurrence of lps(p). Since the length of lps(p) is greater than
or equal to N , the factor v is a palindrome by assumptions, which contradicts the choice of lps(p). �

Proof of Theorem 2. For periodic words, the statement was shown in [6]. If u is aperiodic, then the statement is a direct
consequence of Lemma 14, Corollary 5, and Proposition 12. �
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