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Abstract. We consider cut-and-project sets Σ(Ω) with compact acceptance window

Ω ⊂ R
d. It is known that Σ(Ω) satisfies the Meyer property, i.e. is a Delone set and

there exists a finite set F such that Σ(Ω) − Σ(Ω) ⊂ Σ(Ω) + F . The investigation

of the set F can be transformed to the problem of covering of the the difference set

Ω − Ω by open copies Ω◦. The cardinality f(Ω) of the minimal covering is called the

Meyer number of Ω. We study topological properties of the function f and show that

it is bounded on the space of convex compact sets Ω ⊂ R
d. We give estimates on the

universal upper bound of the Meyer number of Ω ⊂ R
2. We further show that f is not

bounded if we relax the condition of convexity.
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1. Introduction

Since the discovery of quasicrystals, their modeling has been the driving task for

theoretical studies of the subject. In general, a mathematical object representing atomic

positions in a material is a point set Λ ⊂ R
n constrained by two simple physically

reasonable properties - discreteness and homogenity. The common basis for all the

constructions is that Λ should satisfy the Delone property.

Definition 1.1. A set Λ ⊂ R
n is Delone, if there exist r1, r2 > 0 such that

(i) Λ is uniformly discrete: ‖x − y‖ ≥ r1 for any x, y ∈ Λ, x 6= y.

(ii) Λ is relatively dense: B(x, r2) ∩ Λ 6= ∅ for any x ∈ R
n, where B(x, r2) is the

n-dimensional ball of radius r2 centered at x.

A simple example of a Delone set in R
n is a lattice, i.e. Λ = {∑n

i=1 aixi | ai ∈ Z}
for any basis x1, . . . , xn of R

n. Lattices are characterized

Λ − Λ ⊂ Λ

which correspond to the fact that they have translational symmetries and therefore serve

for models of periodic crystals.

For models of quasicrystalline structures Meyer [6] proposed a concept that

generalizes lattices. He calls a ‘quasicrystal’ a Delone set Λ which satisfies the property

of ‘almost-lattices’

Λ − Λ ⊂ Λ + F (1)

for some finite set F . Moody [7] calls such sets ‘Meyer sets’ and shows that they

are precisely Delone harmonious sets. Lagarias in [4] provides yet another equivalent

definition of a Meyer set, i.e. a Delone set Λ such that Λ − Λ is also Delone. One of

the nice properties of Meyer sets is that they have finite local complexity, which means

that for every % > 0 there are, up to translation, finitely many ‘patches’ of the form
(

Λ ∩ B(x, %)
)

− x, for x ∈ Λ. Every such patch is embedded in

(Λ − Λ) ∩ B(0, %) ⊂ (Λ + F ) ∩ B(0, %) .

Therefore the structural complexity of the point set Λ depends on the cardinality of F .

An important topic in quasicrystal theory is diffraction described by the Fourier

transform γ̂ of the autocorrelation γ of the measure ν that represents atomic density.

What is required from mathematical models of quasicrystalline structures is that γ̂

has a discrete part, which corresponds to bright spots on the diffraction diagram that

physicists call ‘Bragg peaks’.

The relation of Meyer sets to diffraction is not at all obvious. Therefore the focus

has been made on the so-called cut-and-project sets which form a rich class of Meyer sets

that might be considered quasicrystalline in the sense of having some discrete component

in their diffraction spectrum. Their importance in modeling quasicrystals has been

pointed out by Kramer [3]. Cut-and-project sets arise as a projection of chosen points
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of a higher-dimensional lattice on a lower-dimensional ‘physical space’. The choice of

lattice point is controlled by an ‘acceptance window’ in the non-physical ‘inner space’.

An important result of Hof [2] is that any regular cut-and-project set diffracts, i.e. has

a pure point spectrum supported on a finitely generated Z-module.

The definition of cut-and-project sets which we provide below is not the most

general one (for that see [6, 7]). In our considerations both physical and inner spaces

are Euclidean. Patera in [8] shows, how to choose the lattice and the projection, in

order to obtain quasicrystal models with 5-fold symmetries, which have been observed

in nature [9]. For general introduction to quasicrystals and related problems we refer

to [10].

Definition 1.2. Let V1 and V2 be non-trivial subspaces of R
n such that V1 ⊕ V2 = R

n,

the restriction of π1 on the lattice Z
n is one-to-one, and π2(Z

n) is dense in V2, where π1,

π2 are the projections on V1 along V2, and V2 along V1, respectively. Let Ω be a compact

set with non-empty interior Ω◦. The set

Σ(Ω) := {π1(x) | x ∈ Z
n , π2(x) ∈ Ω}

is called a cut-and-project set with acceptance window Ω.

The conditions we impose on the acceptance window influence the properties of

the cut-and-project set Σ(Ω). For example for diffractivity one needs that Ω has a

boundary of Lebesgue measure zero (such cut-and-project set is called regular). Meyer

showed that all cut-and-project sets are Delone and satisfy the condition (1) of almost-

lattices, (i.e. are Meyer sets). On the other hand, he showed that a Delone set Λ is

a Meyer set if and only if there exists a cut-and-project set Σ(Ω) and a finite set F

such that Λ ⊂ Σ(Ω) + F . Since all cut-and-project sets are Meyer sets, they have finite

local complexity. Moreover, if the boundary ∂Ω of the acceptance window Ω satisfies

∂Ω ∩ π2(Z
n) = ∅, the cut-and-project set is repetitive, which means that every patch

that appears in Σ(Ω), appears infinitely often.

In our paper we focus on the Meyer property of cut-and-project sets, in particular,

the cardinality of the finite set F satisfying Σ(Ω) − Σ(Ω) ⊂ Σ(Ω) + F in dependence

on the choice of acceptance window Ω. In Section 2 we show that the problem can be

transformed to studying the property Ω−Ω ⊂ Ω + G for a finite set G. We denote the

cardinality of the minimal set G by f(Ω) and call it the Meyer number of Ω. We show

in Section 3 that on the space of all convex acceptance windows Ω the Meyer number is

bounded. Moreover, the function f on this space equipped with the Hausdorff metric is

upper semi-continuous, see Section 4. In Section 5 we show that relaxing the condition

of convexity, boundedness of f is no longer true. In Section 6 we provide estimates on

the universal upper bound on the Meyer number in dimension two. For special types of

acceptance windows we determine f(Ω), see Section 7.
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2. Meyer property of cut-and-project sets

As we have recalled, every cut-and-project set satisfies the Meyer property, i.e. is Delone

and

Σ(Ω) − Σ(Ω) ⊂ Σ(Ω) + F (2)

for some finite set F . Obviously, F ⊂ π1(Z
n) and for the finite set G := π2π

−1
1 (F ) we

have

Ω − Ω ⊂ Ω + G . (3)

The converse is however not that simple. Having G ⊂ V2 which satisfies (3), it is

not always possible to find F of the same cardinality, so that (2) holds, which comes

from the fact that G may not be a subset of π2(Z
n). However, this inconvenience can

be avoided if we study coverings of the difference set Ω−Ω by copies of the interior Ω◦.

Ω − Ω ⊂ Ω◦ + G . (4)

Having such G and due to the fact that π2(Z
n) is dense in V2, we can clearly find a

set G̃ ⊂ π2(Z
n) of the same cardinality as G and satisfying (3). Therefore we may set

F = π1π
−1
2 (G̃) to obtain (2) with |F | = |G|.

For compact sets Ω ⊂ R
d with non-empty interior we are interested in the

cardinality of the minimal finite set G satisfying (4). This cardinality is denoted by

f(Ω) and called the Meyer number of Ω. Formally,

f(Ω) := min{k ∈ N | ∃G ⊂ R
d , satisfying Ω − Ω ⊂ Ω◦ + G and |G| = k} .

The main result of the paper is stated as follows.

Theorem 2.1. For every dimension d ∈ N, there exist a constant Kd ∈ N, such that

for all convex compact sets Ω ⊂ R
d we have f(Ω) ≤ Kd.

3. Proof of boundedness of the function f

In this section we provide the proof of Theorem 2.1, which says that the function f is

bounded on the space of convex compact sets with non-empty interior in R
d. We first

need to show an important property of the function f , namely that f is invariant under

affine transformations of Ω. More precisely, we have the following proposition.

Proposition 3.1. Let A : R
d → R

d be a bijective affine map. Then f(AΩ) = f(Ω) for

every convex compact set Ω ⊂ R
d with non-empty interior.

Proof. Clearly, the value of f is invariant under translation of Ω, since (Ω+x)−(Ω+x) =

Ω − Ω for all x ∈ R
d. Thus we can consider without loss of generality A to be a non-

singular linear map. If Ω satisfies Ω − Ω ⊂ (a1 + Ω◦) ∪ · · · ∪ (ak + Ω◦), then

AΩ − AΩ = A(Ω − Ω) ⊂ (Aa1 + AΩ◦) ∪ · · · ∪ (Aak + AΩ◦) =

=
(

Aa1 + (AΩ)◦
)

∪ · · · ∪
(

Aak + (AΩ)◦
)

,
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where we have used that for a non-singular map A it holds that AΩ◦ = (AΩ)◦ and

AΩ = AΩ. Therefore f(AΩ) ≤ f(Ω). Since this was valid for arbitrary A and arbitrary

Ω, one has also f(Ω) = f(A−1AΩ) ≤ f(AΩ), which completes the proof.

Crucial for the proof of Theorem 2.1 is the following assertion taken from [5].

Theorem 3.2 (John). For every convex compact set Ω with non-empty interior in R
d

there exists a closed ellipsoid E such that E + z ⊂ Ω ⊂ dE + z, where z ∈ R
d.

Corollary 3.3. Let Ω be a convex compact set with non-empty interior in R
d. Then

f(Ω) is smaller or equal to the number of copies B(0, 1) which are needed for covering

B(0, 2d).

Proof. Using Theorem 3.2 there exists a closed ellipsoid E ⊂ R
d such that E + z ⊂

Ω ⊂ dE + z. We find a non-singular affine map A such that A(E + z) = B(0, 1) and

A(dE + z) = B(0, d). Then B(0, 1) ⊂ (AΩ)◦ ⊂ B(0, d). If n is the number of copies of

B(0, 1) needed to cover B(0, 2d), i.e.

B(0, 2d) ⊂
(

x1 + B(0, 1)
)

∪ · · · ∪
(

xn + B(0, 1)
)

,

for some x1, . . . , xn ∈ R
d, then

AΩ − AΩ ⊂ B(0, d) − B(0, d) = B(0, 2d) ⊂
(

x1 + B(0, 1)
)

∪ · · · ∪
(

xn + B(0, 1)
)

⊂
⊂

(

x1 + (AΩ)◦
)

∪ · · · ∪
(

xn + (AΩ)◦
)

.

Therefore using Proposition 3.1 we obtain f(Ω) = f(AΩ) ≤ n what was to show.

Proof of Theorem 2.1. Using Corollary 3.3 it suffices to show that for every dimension d

only a finite number of copies of B(0, 1) ⊂ R
d are needed for covering B(0, 2d). This is

clear since as a consequence of compactness of B(0, 2d) we can find a finite subcovering

of the covering

B(0, 2d) ⊂
⋃

x∈B(0,2d)

B(x, 1) .

Thus f is bounded on the space of convex compact sets in R
d with non-empty

interior.

4. Semi-continuity of f

In this section we show that the function f is upper-semi-continuous. We explain, how

this fact can serve for an alternative proof of boundedness of f . It would be an interesting

problem to study the division of the space of all convex compact sets Ω ⊂ R
d into classes

according to the value f(Ω). Semi-continuity of f may well serve this purpose.

Let us first state several facts from topology of spaces of convex sets that will be

needed. Consider R
d with Euclidean norm ‖ · ‖. One defines the distance of the set Ω

from the point x as

ρ(x, Ω) := inf{‖x − y‖ | y ∈ Ω}
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An ε-neighbourhood of the set Ω (ε > 0) is the set

Ωε := {x ∈ R
2 | ρ(x, Ω) < ε} .

Clearly, Ωε is an open set in R
d. Distance of two sets in R

2 is defined as

dist(Ω, Ω̃) := inf{ε > 0 | Ω ⊂ Ω̃ε and Ω̃ ⊂ Ωε} .

Remark 4.1. Recall that dist(Ω, Ω̃) is the so-called Hausdorff metric on the space of

all compact subsets of R
d. For more on topologies of compact sets see [1].

Let us define (−ε)-neighbourhood of a bounded convex set Ω, for ε > 0,

Ω−ε := {x ∈ Ω | ρ(x, ∂Ω) > ε} ,

where ∂Ω denotes the boundary of Ω. It is obvious from the definition that Ω−ε is an

open set.

Lemma 4.2. Let Ω and Ω̃ be bounded closed and convex subsets of R
2, such that

dist(Ω, Ω̃) < δ. Then

Ω−δ ⊂ Ω̃ ⊂ Ωδ .

Proof. The inclusion Ω̃ ⊂ Ωδ is valid for any bounded sets Ω and Ω̃ directly from the

definition of δ-neighbourhood of a set. The other inclusion, Ω−δ ⊂ Ω̃ can be shown par

absurdum. Assume that there exists x ∈ Ω−δ such that x /∈ Ω̃. The convexity of Ω

and the definition of Ω−δ imply that B(x, δ) ⊂ Ω. Since Ω̃ is closed and convex, and

x /∈ Ω̃, there exists a hyperplane H, such that Ω̃ is all contained in one of the half-spaces

bounded by H, and that x belongs to the other half-space. Therefore at least one entire

half of the ball B(x, δ) does not belong to Ω̃. This is a contradiction with Ω ⊂ Ω̃δ.

Theorem 4.3. On the family of all compact convex sets with non-empty interior the

function f is upper semi-continuous, i.e for any Ω there exists δ > 0, such that for any

Ω̃ with the property dist(Ω, Ω̃) < δ one has

f(Ω̃) ≤ f(Ω) .

Proof. Let f(Ω) = k ∈ N and Ω − Ω ⊂ P := (a1 + Ω◦) ∪ · · · ∪ (ak + Ω◦). Put

ε := inf{ρ(x, R2 \ P ) | x ∈ Ω − Ω}.

Necessarily ε > 0 and one has (Ω − Ω)ε/2 ⊂ P . For any x ∈ (Ω − Ω)ε/2 we find those of

ai + Ω◦ which contain x, say

x ∈ ais + Ω◦ , for s = 1, 2, . . . , r .

Let us define

v(x) := max
{

ρ
(

x, ∂(ais + Ω◦)
)

| s = 1, 2, . . . , r
}

. (5)
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Clearly, v(x) > 0. Moreover, v(x) is a continuous function on the compact (Ω − Ω)ε/2.

Therefore it has there its minimum, say ν,

∀x ∈ (Ω − Ω)ε/2 : v(x) ≥ ν > 0 .

This implies

(Ω − Ω)ε/2 ⊂ (a1 + Ω−ν/2) ∪ · · · ∪ (ak + Ω−ν/2) .

In order to complete the proof of Proposition 4.3, put δ = min
{

ε
4
, ν

2

}

. Let now

dist(Ω, Ω̃) < δ. Then

Ω̃ − Ω̃ ⊂ Ωδ − Ωδ ⊂ (Ω − Ω)2δ ⊂ (Ω − Ω)ε/2 ⊂

⊂
(

a1 + Ω◦

−ν/2

)

∪ · · · ∪
(

ak + Ω◦

−ν/2

)

⊂

⊂
(

a1 + Ω◦

−δ

)

∪ · · · ∪
(

ak + Ω◦

−δ) ⊂

⊂
(

a1 + Ω̃◦
)

∪ · · · ∪
(

ak + Ω̃◦
)

.

This means that f(Ω̃) ≤ k = f(Ω). Note that in the sequence of inclusions we have used

Lemma 4.2 and two obvious facts, namely that Ω−β ⊂ Ω−α and Ωα ⊂ Ωβ for 0 < α < β,

and that Ωδ − Ωδ ⊂ (Ω − Ω)2δ for δ > 0.

Theorem 4.3 can be used for an alternative proof of Theorem 2.1 as follows. For an

arbitrary convex compact set Ω ⊂ R
d with non-empty interior according to Theorem 3.2

there exists a closed ellipsoid E such that E + z ⊂ Ω ⊂ dE + z for some z ∈ R
d. Using

Proposition 3.1 we can find a convex compact set Ω̃ satisfying

B(0, 1) ⊂ Ω̃ ⊂ B(0, d) (6)

with the same Meyer number as Ω, f(Ω̃) = f(Ω). It is not difficult to show that the space

of convex compact Ω̃ ⊂ R
d satisfying (6) is a compact space with the Hausdorff metric.

Since the function f is upper semi-continuous on this compact space, f is bounded from

above on it, and therefore it is also bounded on the space of arbitrary convex Ω with

non-empty interior.

5. Unboundedness of f on the space of general compact sets

Sofar we have treated only convex compact sets in R
d. We stand in front of a natural

question. Is the function f bounded even if we relax the condition of convexity? The

answer is negative.

Proposition 5.1. There exists a sequence (Ωn)n∈N of compact sets in Rd with non-

empty interior, such that limn→∞ f(Ωn) = +∞.

Proof. We construct the counterexample of boundedness of the function f in dimension

2. Generalization to higher dimensions is straightforward. Let Ωn be compact sets with
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non-empty interior containing the line segments {(t, 0) | t ∈ [−1, 1]}, {(0, t) | t ∈ [−1, 1]}
for all n ∈ N, and such that limn→∞ vol(Ωn) = 0.

Then obviously Ωn −Ωn contains the square of side length 1 centered at the origin,

{(t1, t2) | t1, t2 ∈ [−1, 1]}. For the volume of Ωn − Ωn we thus have vol(Ωn − Ωn) ≥ 4.

Therefore

f(Ωn) ≥ vol(Ωn − Ωn)

vol(Ωn)
≥ 4

vol(Ωn)
,

which implies limn→∞ f(Ωn) = +∞, what we wanted to show.

Let us mention that we can construct the counterexample even on the sets which

are the nearest generalization of convex sets, namely star-shaped sets. (We say that

Ω ⊂ R
d is star-shaped, if there exists an x ∈ R

d such that λx + (1 − λ)y ∈ Ω for every

y ∈ Ω and all λ ∈ (0, 1).) An example of a sequence of star-shaped sets Ωn satisfying

limn→∞ f(Ωn) = +∞ and the corresponding difference sets Ωn − Ωn can be found in

Figure 1.

(1,0) 


(0,1) 


(-1,0) 


(0,-1) 


(1/n, 1/n) 


(-1/n, -1/n) 


(2,0)


(1,1)


(0,2)


Figure 1. Illustration of a sequence of star-shaped sets Ωn, n ∈ N, satisfying

limn→∞ f(Ωn) = +∞. The left hand part of the figure shows Ωn, on the right hand

side there is Ωn − Ωn.

Note also that we have omitted the proof of unboundedness of f in dimension

one. There every star-shaped set is convex, the counterexample in R must therefore be

built on non-connected sets. The construction of such a sequence of sets is simple but

technical.

6. Universal bound on the Meyer number for convex sets in the plane

In this section we provide an estimate on the value of the function f for two-dimensional

convex compact sets Ω. Corollary 3.3 gives us a method to find the universal bound Kd



The Meyer property of cut-and-project sets 9

on the Meyer number of convex sets in R
d. For the case d = 2 we have to determine the

number of copies of the open unit ball B(0, 1) needed to cover the closed ball B(0, 4).

The result is stated in the following proposition.

Proposition 6.1. Let Ω be a convex compact set in R
2. Then f(Ω) ≤ K2 ≤ 26.

Figure 2. Illustration of proof of Proposition 6.1. Six copies of the unit ball are used

to cover the central part of B(0, 4). Four more copies are needed to cover the section

of angle 2π/5.

Proof. Figure 2 shows that it is possible to cover B(0, 4) by 26 translated copies of the

ball B(0, 1). Hence, f(Ω) ≤ 26 for every convex compact set Ω with non-empty interior

in R
2.

It is conceivable that the above estimate on the uniform upper bound on f on the

space of convex compact sets is too rough. We conjecture that the maximum of the

function f is reached on a triangle.

Remark 6.2. Any triangle Ω can be transformed to an equilateral one by an affine

map. Therefore it suffices to determine the Meyer number of an equilateral triangle. If

Ω is such a triangle with side-length 1, then Ω − Ω is a regular hexagon of radius 1.

Figure 3 shows that thirteen open copies of the triangle Ω are sufficient to cover the

closed hexagon Ω − Ω, i.e. f(Ω) ≤ 13.

Most likely, 12 copies of a triangle are not sufficient to cover the hexagon and thus

f(Ω) = 13. According to our knowledge, among all two-dimensional convex sets, the

triangle has the largest Meyer number. On the other hand it is likely that f(Ω) is

smallest for Ω being an ellipse.

Remark 6.3. For every closed ellipse E in R
2 there exists an affine mapping such that

A(E) = B(0, 1). Using Proposition 3.1 we have f(E) = f(A(E)) = f(B(0, 1)). Figure 6

illustrates determining of the value of f(B(0, 1)) = f(E) = 8.

All together, we conjecture that 8 ≤ f(Ω) ≤ 13 for every convex compact set

Ω ⊂ R
2.

Naturally, we can suppose that imposing more conditions on the convex compact

set Ω will improve the bound on the value of f . Let us study the case of centrally

symmetric Ω. For this purpose we cite another result of John [5]:
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Figure 3. Let Ω be a triangle. Then f(Ω) ≤ 13.

Figure 4. The left hand part of Figure 6 shows that eight copies of a unit ball are

sufficient to cover B(0, 2). The right hand part of the figure illustrates that seven are

not sufficient, since for covering the boundary of B(0, 2) one needs six closed and not

only open unit balls. This means that if Ω is an ellipse, then f(Ω) = 8.

Theorem 6.4 (John). For every compact centrally symmetric set Ω with non-empty

interior in R
d there exists a centrally symmetric ellipsoid E such that E ⊂ Ω ⊂

√
dE.

In dimension d = 2 this theorem has the following corollary. Its proof is analogous

to the proof of Corollary 3.3.

Corollary 6.5. Let Ω be a convex compact centrally symmetric set with non-empty

interior in R
2. Then f(Ω) is smaller or equal to the number of copies B(0, 1) which are

needed for covering B(0, 2
√

2).

As a consequence, we can determine the upper bound on the value f(Ω) for all

convex compact centrally symmetric sets Ω with non-empty interior.

Proposition 6.6. Let Ω be a centrally symmetric convex compact set in R
2 with non-

empty interior. Then f(Ω) ≤ 16.
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Figure 5. Illustration of proof of Proposition 6.6. For covering the boundary of

B(0, 2
√

2) 15 translated copies of B(0, 1) are sufficient.

Proof. As a consequence of Corollary 6.5 it suffices to show that sixteen copies of

the open unit ball are sufficient for covering B(0, 2
√

2), see Figure 5. Let a1, a2 be

neighbouring vertices of a regular 15-gon centered at 0 and having radius r. By technical

calculations, it turns out that for r = 1.95 one of the points of intersection of B(a1, 1)

and B(a2, 1), in the figure denoted by P1, lies in B(0, 1) and the other one, denoted by

P2, lies out of B(0, 2
√

2). It follows that 15 unit balls cover the boundary of B(0, 2
√

2);

one more unit ball is needed to cover the middle.

7. Meyer number for regular polygons

It is interesting to determine the value of the function f on the simplest two-dimensional

shapes, namely regular polygons. As a by-product we derive that the Meyer number for

every set Ω which is not ‘far’ from a ball is bounded by 8.

Lemma 7.1. Let r > c := 2(1 + 2 cos 2π
7

)−1. Then there exist points a1, a2, . . . , a8

satisfying

B(0, 2) ⊂ B(a1, r) ∪ · · · ∪ B(a8, r) .

Figure 6. Covering of B(0, 2) with 8 translated balls B(0, c), see Lemma 7.1.
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Proof. The covering is illustrated in Figure 6. Obviously, it suffices to show that by

eight closed copies of the ball B(0, c) one covers B(0, 2). Put a8 = 0. The centers

a1, . . . , a7 of the other copies of the ball B(0, c) are situated on the vertices of a regular

heptagon of radius 2c cos π
7
. Algebraic calculations show that the boundaries of the balls

B(a1, c), B(a2, c), B(0, c) meet at one point P1, and the boundaries of the balls B(a1, c),

B(a2, c), B(0, 2) meet at a point P2. Thus B(0, 2) ⊂ B(a1, c) ∪ · · · ∪ B(a8, c) and the

statement of the lemma follows.

Proposition 7.2. Let Ω be a convex compact set in R
2 such that there exist x, y ∈ R

2

and r > 0 satisfying B(x, cr) ⊂ Ω◦ ⊂ B(y, r), where c := 2
(

1 + 2 cos(2π
7

)
)

−1
. Then

f(Ω) ≤ 8.

The above proposition can be easily applied to regular n-gons for n ≥ 7. It

remains to determine f for the regular hexagon, pentagon and the square. We do

it in a constructive way.

Remark 7.3. For Ω a regular hexagon, pentagon or square, we have f(Ω) = 9, as

illustrated in Figures 7, 8, and 9.

Figure 7. If Ω is a hexagon inscribed into a circle of radius 1, then Ω−Ω is a hexagon

inscribed into a circle of double radius. To cover the boundary of the closed hexagon

of radius 2, we need 8 open hexagons of radius 1, and to cover the center one more

open hexagon of radius 1 is necessary.

We summarize the results about the Meyer number of regular n-gons in the following

proposition.

Proposition 7.4. Let Ω be a regular n-gon. Then f(Ω) ≤ 8 for n ≥ 7, f(Ω) = 9 for

n = 4, 5, 6 and f(Ω) ≤ 13 for n = 3.

8. Conclusions

In this paper we study the Meyer property of cut-and-project sets. Their structural

complexity is dependent on the cardinality of the finite set F satisfying Σ(Ω)−Σ(Ω) ⊂
Σ(Ω) + F . We have transformed the problem to studying the Meyer number f(Ω) of

convex compact sets Ω ⊂ R
d defined as the minimal number of open copies Ω◦ needed
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Figure 8. If Ω is a pentagon inscribed into a circle of radius 1, then Ω−Ω is a regular

decagon inscribed into a circle of radius 1 +
√

3

2
. The same explanation is valid as for

hexagon.

Figure 9. If Ω is a square having sides of the length 1, then Ω − Ω is a square of

double size. To cover the upper side of the closed square of the length 2 we need 3

open squares of half-size. The same for the lower side and the middle side.

to cover the difference set Ω − Ω. The main result is that for every dimension d there

is an upper bound Kd such that f(Ω) ≤ Kd for any convex compact set Ω ⊂ R
d. For

estimates of Kd one needs (according to Corollary 3.3) to find the minimal covering of

the closed ball B(0, 2d) ⊂ R
d by unit open balls. This may be a difficult problem in

general.

We have focused on dimension d = 2 and shown that f(Ω) ≤ K2 ≤ 26 for any

convex compact set Ω ⊂ R
2. We can refine the result, if we limit our considerations

to centrally symmetric convex compact Ω ⊂ R
2, for which we have f(Ω) ≤ 16. It is

however apparent that these bounds are not reached. In order to find better estimates,

we have determined the value of the function f for some special types of convex sets

in R
2. These results lead us to conjecture that 8 ≤ f(Ω) ≤ 13 for any convex compact

Ω ⊂ R
2. For centrally symmetric convex compact sets we conjecture f(Ω) ∈ {8, 9}. It

would be interesting to study topological properties of the space of those convex centrally
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symmetric sets Ω, for which f(Ω) = 8, resp. f(Ω) = 9, in particular to describe those

Ω which in the Hausdorff topology form the boundary of classes with different Meyer

numbers.

The function f determines the minimal number of open copies Ω◦ needed to cover

the difference set Ω − Ω. Similarly, one can define a function g as the minimal number

of closed copies Ω needed for covering Ω − Ω. Obviously g(Ω) ≤ f(Ω). It is conceivable

that the sets Ω, for which g(Ω) < f(Ω) are exactly on the boundary between classes

of sets with different values of f . Upper semi-continuity of the function f could be a

useful tool in such a study.

References

[1] G. Beer, Topologies on closed and closed convex sets, Mathematics and its Applications 268,

Kluwer, Dordrecht, 1993.

[2] A. Hof, On Diffraction by Aperiodic Structures, Comm. Meth. Phys. 169, (1995) 25–43.

[3] P. Kramer and R. Neri, On Periodic and Non-periodic Space Fillings of E
m Obtained by Projection,

Acta Cryst. A 40, (1984) 580–587.

[4] J. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type, Discrete Comput.

Geom. 21, (1999) 161–191.

[5] C.G. Lekkerkerker, Geometry of numbers, John Wiley & Sons, New York 1969.

[6] Y. Meyer, Quasicrystals, Diophantine approximations and algebraic numbers, Proc. Les Houches,

March 1994, Beyond Quasicrystals, Les Editions de Physique, eds. F. Axel and D. Gratias,

Springer, 1995, pp. 3–16.

[7] R.V. Moody, Meyer sets and their duals, in Mathematics of Long Range Aperiodic Order, Proc.

NATO ASI, Waterloo, 1996, ed. R. V. Moody, Kluwer (1996) 403–441.

[8] J. Patera, Noncrystallographic root systems and quasicrystals, in Mathematics of Long Range

Aperiodic Order, Proc. NATO ASI, Waterloo, 1996, ed. R. V. Moody, Kluwer (1996) 443–465.

[9] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long range orientational order

and no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951–1953.

[10] M. Senechal, Quasicrystals and Geometry, Cambridge Univ. Press, Cambridge, UK, 1995.


