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1. Introduction

This Letter takes up the study of β-integers initiated by the investigation of their asymp-
totic properties in [1]. Similarly as in the previous Letter, we restrict our consideration to
β-integers realizing only a finite number of distinct distances between neighbors; β is then
called a Parry number. For Parry numbers, the set of β-integers forms a discrete aperiodic
Delone set with a self-similarity factor β and of finite local complexity. It follows herefrom
that β-integers are suitable for modeling materials with aperiodic long range order, the
so-called quasicrystals [2]. Classical crystals are solid materials containing arbitrarily long
periodic repetitions of a single motif. Quasicrystals do not share this property.

In this Letter, we are interested in the maximal possible repetition of one motif oc-
curring in β-integers. It turns out to be suitable to reformulate and study this problem in
terms of combinatorics on words.

For Parry numbers, coding distinct distances between neighboring nonnegative β-
integers with distinct letters, one obtains a right-sided infinite word uβ over a finite
alphabet. The reformulation of our task in the language of combinatorics on words has the
following reading: For a given factor w of the infinite word u = uβ, find the longest prefix
v of the infinite periodic word wω = wwwwww . . . such that v occurs as a factor in u = uβ.
The ratio of the lengths of v and w is called the index of the factor w in u = uβ and is
denoted by ind(w). Let us note that ind(w) is not necessarily an integer. Denote by k the
lower integer part bind(w)c of the index of w, then the word wk, i.e., the concatenation of
k words w, is usually called the maximal integer power of w.

The index of any infinite word u can be naturally defined as

ind(u) = sup{ind(w)
∣∣ w factor of u}.

Explicit values of the index are known only for few classes of infinite words. The index
of Sturmian words has been studied in many papers [3, 4, 5, 6], the complete solution
to the problem was provided independently by Carpi and de Luca [7] and by Damanik
and Lenz [8]. Recently, the index of infinite words has reinforced its importance: Damanik
in [9] considers discrete one-dimensional Schrödinger operators with aperiodic potentials
generated by primitive morphisms and he establishes purely singular continuous spectrum
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with probability one provided that the potentials (infinite words) have the index greater
than three. Let us stress that infinite words uβ associated with Parry numbers belong to
the class of infinite words generated by primitive morphisms, too.

The study of spectra of discrete Schrödinger operators with aperiodic potentials ge-
nerated by primitive substitutions has been in the center of attention of mathematical
physicists since the publication of the paper of A. Hof, O. Knill, B. Simon from 1995 [10].
They have shown how the spectra are connected with one of the combinatorial characteris-
tics of infinite words, namely the presence of arbitrarily long palindromes. Thus, the index
of infinite words is another combinatorial characteristics for the investigation of spectra. It
confirms that combinatorics on words has found new applications in mathematical physics.

Here we study the index of infinite words uβ for quadratic non-simple Parry numbers
β. These words are determined by integer parameters p, q, where p > q ≥ 1. We provide
an explicit formula for ind(uβ). In the particular case of p = q + 1, the infinite word
uβ is Sturmian and our result may be deduced also from the well-known formula for the
index of Sturmian words. We have chosen the word uβ associated with quadratic non-
simple Parry numbers β for our study of the index of non-Sturmian words since for such
infinite words, we dispose of detailed knowledge on arithmetical properties of β-integers
and combinatorial properties of the associated infinite words uβ [11, 12].

The Letter is organized in the following way. In Section 2, we introduce necessary
notions from combinatorics on words and we cite a relevant result on the index of Sturmian
words. In Section 3, we provide the background on infinite words uβ coding β-integers for
β being a non-simple quadratic Parry number. In Section 4, we determine the maximal
integer power occurring in uβ (Theorem 4.6). Section 5 is devoted to the index of uβ

(Theorem 5.3) and to the comparison of our result with the formula for the index of
Sturmian words.

2. Preliminaries

An alphabet A is a finite set of symbols, called letters. Throughout this paper, the binary
alphabet A = {0, 1} is used. The string w = w1w2 . . . wk, where wi ∈ A for each i =
1, 2, . . . , k, is called a word of length k on A. The length of w is then k and it is denoted
by |w| = k. The set of all finite words together with the operation of concatenation forms
a monoid; its neutral element is the empty word ε. We denote this monoid A∗. An infinite
sequence u = u0u1u2 . . . of symbols from the alphabet A is called an infinite word. A finite
word w is said to be a factor of the (finite or infinite) word v if there exists a finite word
v′ and a finite or infinite word v′′ such that v = v′wv′′. If v′ is the empty word, then w
is called a prefix of v, if v′′ is the empty word, then w is a suffix of v. If v = v′w, then
vw−1 denotes the word v′ obtained from v by erasing its suffix w. The set of all factors of
an infinite word u is said to be the language of u and is denoted L(u). An infinite word u
is called recurrent if every of its factors occurs infinitely many times in u and u is called
uniformly recurrent if for every of its factors w, the set of all factors in L(u) that do not
contain w as their factor is finite. In other words, every sufficiently long element of L(u)
contains w as its factor.

The number of factors of the infinite word u gives us insight into its variability. The
function Cu : N 7→ N that to every n associates the number of distinct factors of length n
occurring in u is called the factor complexity of the infinite word u. An infinite periodic
word u = www . . ., where w is a finite word, is usually denoted wω. Its factor complexity
Cu is bounded; it is readily seen that Cu(n) ≤ |w|. Similarly, the factor complexity of
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an eventually periodic word u = w′wω, where w′, w are finite words, is bounded. The
necessary and sufficient condition for an infinite word to be aperiodic is the validity of the
equation Cu(n) ≥ n+1 for all n ∈ N [13]. Infinite aperiodic words satisfying Cu(n) = n+1
for all n ∈ N are called Sturmian words; these are thus infinite aperiodic words of the
lowest possible factor complexity. Sturmian words are the best known aperiodic words;
a survey on their properties may be consulted in [14]. In particular, any Sturmian word is
uniformly recurrent.

For determination of the factor complexity of an infinite word u, an essential role is
played by special factors. We recall that a factor w of an infinite word u over a binary
alphabet {0, 1} is called left special if 0w and 1w are both factors of u, w is called right
special if w0 and w1 are both factors of u, and w is said to be bispecial if w is both left
special and right special.

The crucial notion of our study is the index of a factor w in a given infinite word
u. Let us define first the integer power of w. For any k ∈ N, the k-th power of w is the
concatenation of k words w, usually denoted wk. Analogously for r ∈ Q, r ≥ 1, we call
a word v the r-th power of the word w if there exists a proper prefix w′ of w such that

v = w . . . w︸ ︷︷ ︸
brc−times

w′ and r = brc+
|w′|
|w| .

For instance, (011)2
1
3 = 0110110. The r-th power of w is denoted wr.

Our aim is to find, for a given factor w of an infinite word u, the highest power of w
occurring in u. We will be interested exclusively in aperiodic uniformly recurrent words.
Such words contain for every factor w only r-th powers of w with r bounded by a constant
depending on w, see [15]. Therefore, for aperiodic uniformly recurrent words u, it makes
sense to define the index of w in u as

ind(w) = max{r ∈ Q | wr ∈ L(u)} .

The word wind(w) is called the maximal power of w in u, the word wbind(w)c the maximal
integer power of w in u. The index of the infinite word u is defined as

ind(u) = sup{ind(w)
∣∣ w ∈ L(u)} .

Let us remark that an aperiodic uniformly recurrent word u can have an infinite index;
even among Sturmian words, one can find words with an infinite index. The language of
every Sturmian word is characterized by an irrational parameter α ∈ (0, 1), called slope.
If α is the slope of a Sturmian word u, then the word obtained by exchanging letters in u
has the slope 1− α and has evidently the same index as u. Consequently, we may assume
without loss of generality that α > 1

2 . In order to determine the index of a Sturmian
word, we need to express α in the form of its continued fraction. Since 1

2 < α < 1, the
continued fraction of α equals [0; 1, a2, a3, . . .]. The results of [7] and [8] say that the index
of a Sturmian word u with slope α is equal to

ind(u) = 2 + sup
{
an+2 +

qn − 2
qn+1

| n ∈ N
}
, (1)

where qn is the denominator of the n-th convergent of α.
Now, let us describe a large class of uniformly recurrent words: fixed points of primitive

morphisms. This class includes infinite words uβ associated with Parry numbers β. The
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map ϕ : A∗ 7→ A∗ is called a morphism if ϕ(wv) = ϕ(w)ϕ(v) for every w, v ∈ A∗. One
may associate with ϕ the morphism matrix Mϕ satisfying

(Mϕ)ab = number of letters b occurring in ϕ(a),

for any pair of letters a, b ∈ A.
Knowing for any a ∈ A the number of letters a occurring in a factor w, we may obtain

the same information for ϕ(w) by a simple formula. We mention the formula only for
the binary alphabet A = {0, 1} we are interested in. It follows from the definition of the
morphism matrix that for every factor w ∈ A∗

(|ϕ(w)|0, |ϕ(w)|1) = (|w|0, |w|1)Mϕ. (2)

where |v|a denotes the number of letters a occurring in a word v. Clearly, a similar formula
holds for any finite alphabet.

A morphism is said to be primitive if a power of Mϕ has all elements strictly positive.
In other words, matrices of primitive morphisms fulfill the assumptions of the Perron-
Frobenius theorem [16].

The action of the morphism ϕ may be naturally extended to an infinite word u =
u0u1u2 . . . by

ϕ(u0u1u2 . . .) = ϕ(u0)ϕ(u1)ϕ(u2) . . .

An infinite word u is called a fixed point of ϕ if ϕ(u) = u. It is known that any fixed point
of a primitive morphism is uniformly recurrent and that any left eigenvector corresponding
to the dominant eigenvalue of Mϕ is proportional to the densities of letters in any fixed
point of ϕ [17].

3. Infinite words associated with β-integers

Here, we provide the description of infinite words uβ associated with quadratic non-simple
Parry numbers in terms of fixed points of primitive morphisms. We keep the notation
from our precedent Letter [1], where the number theoretical background on β-integers and
associated infinite words uβ is available. Nevertheless, to make this Letter self-contained,
we will recall all notions needed for understanding of our results. In this section we also de-
duce some important properties of uβ, in particular, a transformation generating bispecial
factors of uβ. Bispecial factors turn out to be essential for our main aim – determination
of the maximal integer powers of factors and determination of the index of uβ.

A non-simple quadratic Parry number β is the larger root of x2 − (p + 1)x + p− q,
where p > q ≥ 1. Its Rényi expansion of unity is dβ(1) = pqω. The set of β integers has
two distances between neighbors: ∆0 = 1 and ∆1 = β− p. Consequently, the infinite word
uβ coding distances between neighboring β-integers is binary.

As we have already said, the reader may find the notions of the Rényi expansion
of unity, β-integers, distances between neighbors in Zβ etc. in our precedent Letter [1].
However, in order to follow the ideas in the sequel, it is sufficient to know that uβ is the
unique fixed point of a morphism canonically associated with parameters p, q characterizing
non-simple quadratic Parry numbers β. Therefore we will use the result of [18] for an
equivalent definition of uβ.

Definition 3.1. Let β is the larger root of x2 − (p + 1)x + p− q, where p > q ≥ 1. The
unique fixed point of the morphism

ϕ(0) = 0p1, ϕ(1) = 0q1 (3)
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will be denoted uβ.

The infinite word uβ starts as follows

uβ = 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1 . . . 0p1 . . . 0p1︸ ︷︷ ︸
p times

0q1

︸ ︷︷ ︸
p times

0p1 . . . 0p1︸ ︷︷ ︸
q times

0q1 . . . (4)

The morphism matrix Mϕ is
(

p 1
q 1

)
and ϕ is thus obviously primitive. Computing the left

eigenvector of Mϕ corresponding to the dominant eigenvalue β, we get the densities 1− 1
β

and 1
β of letters 0 and 1, respectively.

Remark 3.2. In the paper [11], it is shown that the factor complexity C of uβ satisfies

if p > q + 1, then {C(n + 1)− C(n) | n ∈ N} = {1, 2},

if p = q + 1, then {C(n + 1)− C(n) | n ∈ N} = {1}.
Therefore, uβ is Sturmian if and only if p = q + 1.

First of all, some simple, but very important properties of the morphism ϕ are observed.

Observation 3.3. Let 10k1 be a factor of uβ, then k = p or k = q.

Observation 3.4. Let v be any factor of uβ containing at least one 1. Then there exists
k1, 0 ≤ k1 ≤ p, such that 0k11 is a prefix of v and there exists k2, 0 ≤ k2 ≤ p, such that
10k2 is a suffix of v. The fact that ϕ(0) and ϕ(1) end in 1 and contain only one letter 1
implies that there exists a unique word w in {0, 1}∗ satisfying v = 0k11ϕ(w)0k2. Clearly,
w is a factor of uβ.

Of significant importance is the map T : {0, 1}∗ → {0, 1}∗ defined by

T (w) = 0q1ϕ(w)0q. (5)

The map T helps to generate bispecial factors that play a crucial role in the determina-
tion of the index of factors. Therefore, the rest of this section is devoted to the description
of properties of T .

Lemma 3.5. Let T be the map defined in (5).

1. For every w ∈ L(uβ), it holds that T (w) ∈ L(uβ).

2. Let w be a factor of uβ and let a, b ∈ A, then awb ∈ L(uβ) if and only if aT (w)b ∈
L(uβ).

3. Let v be a bispecial factor of uβ containing at least one letter 1, then there exists
a unique factor w such that v = T (w).

4. Let w, v be factors of uβ, then w is a prefix of v if and only if T (w) is a prefix of T (v).

5. Let w, v be factors of uβ, then w is a suffix of v if and only if T (w) is a suffix of T (v).
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Proof. 1. Take an arbitrary factor w ∈ L(uβ). Then w is extendable to the right, and, since
uβ is recurrent, w is also extendable to the left. In other words, there exists a, b ∈ {0, 1}
such that awb is also a factor of uβ. As uβ is a fixed point of ϕ, the image ϕ(awb) belongs
to L(uβ). Finally, T (w) is a factor of uβ because T (w) is a subword of ϕ(awb).

2. Let 1w1 be a factor of L(uβ), then 01w1 is as well a factor of uβ. Applying ϕ, we
learn that ϕ(01w1) = ϕ(0)T (w)1 is a factor of uβ, which proves that 1T (w)1 belongs to
L(uβ). The other cases 0w0, 0w1, 1w0 are analogous.

Let 0T (w)1 ∈ L(uβ), using Observation 3.3, the word v = 10p1ϕ(w)0q1 is also a factor
of uβ. Applying Observation 3.4, v = 1ϕ(0w1) and 0w1 is an element of L(uβ). All the
other cases 0T (w)0, 1T (w)0, 1T (w)1 are similar.

3. Observation 3.3 implies that each bispecial factor v containing at least one letter 1
has the prefix 0q1 and the suffix 10q. According to Observation 3.4, there exists a unique
w such that v = T (w).

4. The implication ⇒ is obvious noticing that 0q is a prefix of ϕ(a) for a ∈ {0, 1}. The
opposite implication ⇐ follows taking into account that ϕ(1) is not a prefix of ϕ(0) and
ϕ(0) is not a prefix of ϕ(1a) for any a ∈ {0, 1}.

5. The implication ⇒ is obvious noticing that 0q1 is a suffix of ϕ(a) for a ∈ {0, 1}.
The opposite implication ⇐ follows taking into account that 1ϕ(1) is not a suffix of ϕ(0)
and ϕ(0) is not a suffix of ϕ(x1) for any x ∈ {0, 1}∗.

4. Integer powers in uβ

Even if we want to describe the maximal integer powers of factors of uβ, it turns out to
be useful to study first the relation between bispecial factors and the maximal rational
powers of factors.

Lemma 4.1. Let u be an infinite uniformly recurrent word over an alphabet A. Let wkw′
be its factor for some proper prefix w′ of w and some positive integer k. Let us denote by
P1, P2, P3 the following statements:

P1 The factor w has the maximal index in u among all factors of u with the same length
|w| and wkw′ is the maximal power of w in u.

P2 There exist a, b ∈ {0, 1} such that

awkw′b ∈ L(u) and w′b is not a prefix of w and a is not a suffix of w.

P3 All the following factors are bispecial:

w′, ww′, www′, . . . , wk−1w′.

Then P1 implies P2 and P2 implies P3.

Proof. P1 ⇒ P2 : As u is recurrent, there exists a such that awkw′ is a factor of u.
Since wkw′ is the maximal power of w, the letter a is not a suffix of w, otherwise the factor
awa−1 (usually called a conjugate of w) would have a larger index than w. On the other
hand, if wkw′b is a factor of w, then w′b is not a prefix of w, otherwise it contradicts the
fact that wkw′ is the maximal power of w in u.

P2 ⇒ P3 : Since w′ is a proper prefix of w, there exists x ∈ A such that w′x is
a prefix of w. Denote by y the last letter of w. Obviously, x 6= b and y 6= a. As awjw′x is
a prefix of awkw′b and ywjw′b is a suffix of awkw′b, both awjw′x and ywjw′b are in L(u)
for all j, 0 ≤ j ≤ k − 1. It follows that all factors listed in P3 are bispecial.
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In this section, our aim is to describe the maximal integer powers occurring in uβ.
Since the letter 0 has the maximal index p, we may restrict our consideration to k-th
powers of factors of uβ with k ≥ p. Crucial for the determination of the index of uβ are
Propositions 4.2 and 4.5.

Proposition 4.2. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the
morphism (3). Assume p > 3. Let w be a factor of uβ containing at least two 1s and
w′ be a proper prefix of w. Denote v = wkw′ for some k ∈ N, k ≥ p. If there exist
a, b ∈ {0, 1} so that

avb ∈ L(uβ) and w′b is not a prefix of w and a is not a suffix of w,

then there exist a unique w̃ of length ≥ 2 and a proper prefix w̃′ of w̃ such that

w = 0q1 ϕ(w̃)(0q1)−1 and v = T (ṽ) = T (w̃kw̃′); (6)

moreover,

aṽb ∈ L(uβ) and w̃′b is not a prefix of w̃ and a is not a suffix of w̃.

In order to prove Proposition 4.2, we will use the following lemma.

Lemma 4.3. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the morphism (3).
The following statements hold:

1. If 0(x1)`x0 ∈ L(uβ) for some integer ` ≥ 2, then ` = 2 and x = 0q.

2. If 1(x0)`x1 ∈ L(uβ) for some integer ` ≥ p− 1 and p ≤ 2q, then x is the empty word
ε.

Proof. 1. At first, we exclude the case when x contains a non-zero letter. Suppose that
the letter 1 occurs in x. Since the factors 0x1 and 1x0 belong to L(uβ), it follows
that x is bispecial. By Lemma 3.5 Item 3., x starts in 0q1 and ends in 10q. Therefore
10q10q1 ∈ L(uβ). As 10q10q1 = 1ϕ(11), we have according to Observation 3.4 that
11 ∈ L(uβ) – a contradiction.

Now consider x = 0s for some s ∈ N. Then 0x1, 1x1 ∈ L(uβ), which implies by
Observation 3.3 that s = q. If ` was at least 3, then 1x1x1 = 10q10q1 ∈ L(uβ), which
leads to the same contradiction as before.

2. Again we start with the case of x containing the letter 1. Since factors 1x0 and 0x1
belong to the language L(uβ), it follows that x is bispecial. Hence x starts in 0q1 and
ends in 10q. Since 10q00q1 ∈ L(uβ), by Observation 3.3, we have p = 2q + 1. This
contradicts the assumption p ≤ 2q.

Suppose now that x = 0s for some s ∈ N. Since 1(x0)`x1 = 1(0s+1)`0s1 is a factor
of uβ, Observation 3.3 gives that (s + 1)` + s ≤ p, which is impossible if s ≥ 1 and
` ≥ p− 1. Therefore s = 0 and x is the empty word.

Proof of Proposition 4.2. The factor w contains at least two 1s. Since w and v = wkw′
satisfy Item P2 of Lemma 4.1, both ww′ and www′ are bispecial, and therefore start in 0q1
and end in 10q. Consequently, their form is ww′ = T (x) and www′ = T (y), where x, y 6= ε.
According to Lemma 3.5 Item 5., x is a suffix of y, i.e., y = zx for some z 6= ε. Observing
ww′ = 0q1ϕ(x)0q and www′ = 0q1ϕ(z)ϕ(x)0q, it follows directly that w = 0q1ϕ(z)(0q1)−1.

Let us, at first, show that
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1. either z is a prefix of x,

2. or z = x1,

3. or z = x0.

Assume z = tdz′ and x = t(1 − d)x′ for a word t ∈ {0, 1}∗ and for a letter d. Then
w = 0q1ϕ(t)ϕ(d)ϕ(z′)(0q1)−1 is a prefix of ww′ = 0q1ϕ(t)ϕ(1 − d)ϕ(x′)0q. If z′ 6= ε, we
have a contradiction immediately. If z′ = ε, then t 6= ε knowing that z contains at least
two letters (w contains at least two 1s).

− If d = 1, then w = 0q1ϕ(t) and ww′ = 0q1ϕ(t)0p1ϕ(x′)0q, thus w′ starts in 0p1,
which is not a prefix of w – a contradiction.

− If d = 0, then w = 0q1ϕ(t)0p−q and ww′ = 0q1ϕ(t)0p−q02q−p1ϕ(x′)0q, thus w′ starts
in 02q−p1, which is not a prefix of w because p 6= q – a contradiction again.

The situation z = xz′ for some z′ of length ≥ 2 cannot occur because it implies |w| > |ww′|.
Consequently, one of the situations 1., 2., or 3. occurs.

1. If z is a prefix of x, i.e., x = zx′′, then ww′ = 0q1ϕ(z)ϕ(x′′)0q and w = 0q1ϕ(z)(0q1)−1,
thus w′ = 0q1ϕ(x′′)0q. Then v = wkw′ = 0q1ϕ(zkx′′)0q, therefore w̃ = z, w̃′ = x′′. As
w′ is a proper prefix of w, it follows by Lemma 3.5 Item 4 that w̃′ is a proper prefix
of w̃.

2. Assume z = x1, then w = 0q1ϕ(x) and ww′ = 0q1ϕ(x)0q, thus w′ = 0q. Then
v = 0q1ϕ((x1)k−1x)0q. Since w′0 is not a prefix of w and 0 is not a suffix of w, the
assumptions imply that 0v0 ∈ L(uβ). By Observation 3.3, we have 1ϕ(0(x1)k−1x0) ∈
L(uβ). Since k − 1 ≥ 3, we deduce by Lemma 4.3 that 0(x1)k−1x0 is not a factor of
uβ. It contradicts Observation 3.4. Hence, the case z = x1 does not occur.

3. If z = x0, then w = 0q1ϕ(x)0p−q and ww′ = 0q1ϕ(x)0q, thus w′ = 02q−p, which
can happen only for p ≤ 2q. Then v = 0q1ϕ((x0)k−1x)0q. Since w′1 is not a prefix
of w and 1 is not a suffix of w, the assumptions imply that 1v1 ∈ L(uβ). Hence,
1ϕ(1(x0)k−1x1) ∈ L(uβ). However, by Lemma 4.3, it follows that x = ε. Then z = 0,
which contradicts the condition |z| ≥ 2. Thus, the case z = x0 does not occur.

Let us finally note that the very last statement on the extensions of ṽ follows from
Lemma 3.5 Items 2., 4., and 5.

Remark 4.4. Proposition 4.2 does not take into account uβ given by parameters p = 2, q =
1, p = 3, q = 2, and p = 3, q = 1. In the two first cases, uβ is a Sturmian word. Therefore,
exclusion of the first two cases does not mean any loss. For the case of p = 3, q = 1, in
the proof of Proposition 4.2, we cannot exclude the situation 2.; in this case, Lemma 4.3
Item 1. implies either the validity of (6) or of

w = 01ϕ(01)(01)−1 v = T (01010).

Proposition 4.2 thus claims that for every factor w ∈ L(uβ) containing at least two 1s
such that its k-th power wk is a factor of uβ with k ≥ p, there exists a shorter factor w̃
such that its k-th power w̃ is also in the language of uβ. As a consequence, in order to
determine the maximal integer power present in uβ, it is sufficient to study the index of
factors w containing only one letter 1.
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Proposition 4.5. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the
morphism (3). Let w be a factor of uβ containing one letter 1 and of the maximal index
ind(w) among all factors of length |w| and such that ind(w) ≥ p ≥ 3. Denote k := bind(w)c
and v = wkw′ the maximal power of w. Then

w = 0q1 ϕ(0)(0q1)−1 and v = T (0p)

and
ind(w) = p +

2q + 1
p + 1

.

Proof. According to Lemma 4.1, ww′ is a bispecial factor. Lemma 3.5 Item 3. claims that
ww′ starts in 0q1. Therefore w = 0q10s with s ∈ {0, p−q} (Observation 3.3). The case s = 0
does not occur since www = 0q10s0q10s0q10s ∈ L(uβ) and 0q10q10q1 = 0q1ϕ(11), but
11 6∈ L(uβ) – a contradiction to Observation 3.4. Hence w = 0q10p−q = 0q1ϕ(0)(0q1)−1. It
remains to determine the form of v. Again, since ww′ is bispecial, ww′ ends in 10q. As w′
is a prefix of w, at most one 1 occurs in w′.

− Suppose w′ contains 1, then w′ starts in 0q1 and ends in 10q, thus w′ = 0q10q. This
is possible only in case when p−q−1 ≥ q, i.e., p ≥ 2q+1. Then, v = (0q10p−q)k0q10q.
Consequently, v = 0q1ϕ(0k)0q = T (0k). On one hand, Observations 3.3 and 3.4 imply
that k ≤ p. On the other hand, since v is the maximal power of w, it follows that
k ≥ p.

− Assume w′ does not contain 1. Since ww′ ends in 10q and w = 0q10p−q, the only
possibility for w′ is w′ = 02q−p. This comes in question only for p ≤ 2q. Then v =
(0q10p−q)k02q−p = 0q1ϕ(0k−1)0q = T (0k−1). The same arguments as in the previous
case imply that k − 1 = p.

Clearly, ind(w) = |v|
|w| = p + 2q+1

p+1 .

Let us state the main result of this section.

Theorem 4.6. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the mor-
phism (3). Assume p ≥ 3.

− If p ≤ 2q, then there exists a factor w 6= ε satisfying wp+1 ∈ L(uβ) and no (p+2)-nd
power of any factor belongs to the language L(uβ).

− If p > 2q, then there exists a factor w 6= ε satisfying wp ∈ L(uβ) and no (p + 1)-st
power of any factor belongs to the language L(uβ).

Proof. Proposition 4.2 implies that in order to determine the maximal integer power
present in uβ, we can restrict our consideration to powers of factors containing only one
letter 1. When we compute the integer part bind(w)c of such factors w in Proposition 4.5,
we find that the maximum is p + 1 if p ≤ 2q and p otherwise.

5. Index of uβ

The task of this section is to compute the index of uβ, i.e.,

ind(uβ) = sup{ind(w)
∣∣ w ∈ L(uβ)}.
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We already know that ind(uβ) ≥ p. Using Lemma 4.1, it suffices to study rational powers
v = wkw′ of factors w with the property P2. As a direct consequence of Propositions 4.2
and 4.5, we have the following corollary.

Corollary 5.1. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the mor-
phism (3). Assume p > 3. The index of uβ is given by the following formula

ind(uβ) = sup{ind(w(n))
∣∣ n ∈ N},

where
w(0) = 0, w(n+1) = 0q1ϕ(w(n))(0q1)−1. (7)

Moreover, the maximal power of w(n) is v(n), where

v(0) = 0p, v(n+1) = T (v(n)). (8)

In the sequel, let us determine the index of w(n) for every n ∈ N.

Lemma 5.2. The number of 0s and 1s in the words w(n) and v(n) satisfy

(|w(n)|0, |w(n)|1) = (1, 0)Mn
ϕ ,

(|v(n)|0, |v(n)|1) = (p + 1, 2q+1−p
q )Mn

ϕ − (1, 2q+1−p
q ),

where Mϕ =
(

p 1
q 1

)
is the morphism matrix.

Proof. As w(n) is a conjugate of ϕ(w(n−1)), the first formula holds by (2). Let us show the
second one by induction on n.
For n = 0,

(|v(0)|0, |v(0)|1) = (p, 0) = (p + 1, 2q+1−p
q )− (1, 2q+1−p

q ).

For n > 0,
(|v(n)|0, |v(n)|1) = (|v(n−1)|0, |v(n−1)|1)Mϕ + (2q, 1) =

by the induction assumption,

=
[
(p + 1, 2q+1−p

q )Mn−1
ϕ − (1, 2q+1−p

q )
]
Mϕ + (2q, 1) = (p + 1, 2q+1−p

q )Mn
ϕ − (1, 2q+1−p

q ).

Since the eigenvalues β and β′ of Mϕ are roots of the Parry polynomial x2 − (p +
1)x + (p− q), it is straightforward to show that ~x1 = (β − 1, 1) is a left eigenvector of Mϕ

corresponding to β and ~x2 = (β′ − 1, 1) is a left eigenvector of Mϕ corresponding to β′.
The index of w(n) may be expressed as follows

ind(w(n)) =
|v(n)|
|w(n)| =

(p + 1, 0)Mn
ϕ ( 1

1 ) + (0, 2q+1−p
q )Mn

ϕ ( 1
1 )− (1, 2q+1−p

q ) ( 1
1 )

(1, 0)Mn
ϕ ( 1

1 )
,

ind(w(n)) = p + 1 +
2q+1−p

q (α1 ~x1 + α2 ~x2)Mn
ϕ ( 1

1 )− 3q+1−p
q

(γ1 ~x1 + γ2 ~x2)Mn
ϕ ( 1

1 )
,

where α1 ~x1 + α2 ~x2 = (0, 1) and γ1 ~x1 + γ2 ~x2 = (1, 0). Using the fact that ~x1 and ~x2 are
eigenvectors of Mϕ, we have

ind(w(n)) = p + 1 +
2q+1−p

q (α1β
n ~x1 ( 1

1 ) + α2β
′n ~x2 ( 1

1 ))− 3q+1−p
q

γ1βn ~x1 ( 1
1 ) + γ2β′n ~x2 ( 1

1 )
.
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It is easy to calculate that α1 = 1−β′
β−β′ , α2 = β−1

β−β′ , γ1 = 1
β−β′ , γ2 = −1

β−β′ , and ~x1 ( 1
1 ) = β,

~x2 ( 1
1 ) = β′. The final formula for the index of w(n) has the form

ind(w(n)) = p + 1 +
2q+1−p

q

(
(1− β′)βn+1 − (1− β)β′n+1

)− 3q+1−p
q (β − β′)

βn+1 − β′n+1
=

= p + 1 +
2q + 1− p

q
(1− β′) +

β − β′

q(βn+1 − β′n+1)︸ ︷︷ ︸
>0

(
(2q + 1− p)β′n+1 − (3q + 1− p)

)

︸ ︷︷ ︸
A(n)

.

Using the fact 0 < β′ < 1 < β, we determine the limit

lim
n→∞ ind(w(n)) = p + 1 +

2q + 1− p

q
(1− β′) = p + 1 +

2q + 1− p

β − 1
.

This limit is the supreme of {ind(w(n))
∣∣ n ≥ 0} if and only if A(n) < 0 for all n ∈ N. It

is an easy exercise to show that A(n) = (2q + 1− p)(β′n − 1)− q < 0 for all n ∈ N if and
only if p ≤ 3q + 1, otherwise A(n) > 0 for all sufficiently large n.

Let us sum up the results in a theorem.

Theorem 5.3. Let p, q be integers, p > q ≥ 1, and uβ be the fixed point of the mor-
phism (3). Assume p > 3. Then the index of uβ satisfies
for p ≤ 3q + 1

ind(uβ) = p + 1 +
2q + 1− p

β − 1
,

otherwise there exists n0 ∈ N such that

ind(uβ) = ind(w(n0)) > p + 1 +
2q + 1− p

β − 1
.

Remark 5.4. Similarly as in the previous section, we have to treat the case of p = 3
and q = 1 separately. According to Remark 4.4, we have to determine the index of (w(n))
defined in (7), but moreover the index of (ŵ(n)) defined recursively by

ŵ(0) = 01ϕ(01)(01)−1, ŵ(n+1) = 0q1ϕ(ŵ(n))(0q1)−1.

Using the same technique as before, we obtain

sup{ind(ŵ(n))
∣∣ n ∈ N} = β < 4 = sup{ind(w(n))

∣∣ n ∈ N}.

Hence, Theorem 5.3 holds in fact also in this case.

At the conclusion, let us compare in case of Sturmian words uβ the formula for
ind(w(n)) with the formula (1) for the index of general Sturmian words. As we have already
stated, uβ is Sturmian if and only if p = q + 1, i.e., β is the larger root of the polynomial
x2 − (p + 1)x + 1. For such β, we have

ind(uβ) = p + 1 +
2p− 1
β − 1

= β + 1 .

In order to apply the formula from (1), we need to determine the slope α of the
Sturmian word uβ. Since α > 1

2 is the density of the more frequent letter, according to
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Section 3, α = 1− 1
β . Let us use some basic properties of continued fractions available at

any book on Number Theory to determine the continued fraction of this value. Since

1− 1
β

=
1

1 + 1
β−1

=
1

1 + 1
p−1+1− 1

β

,

one obtains β = [0; 1, (p − 1), 1, (p − 1), . . .] = [0; 1, (p− 1)]. Denominators qn of the
convergents of β fulfill therefore the following recurrent relations

q2n+1 = (p− 1)q2n + q2n−1 and q2n = q2n−1 + q2n−2

with initial values q1 = 1, q2 = p, q3 = p + 1. By mathematical induction on n, it may be
shown easily that

q2n−1 =
1

β − β′
(
βn − β′n

)
and q2n =

1
β − β′

(
(1− β′)βn+1 − (1− β)β′n+1

)
.

As it holds for coefficients of the continued fraction of β that a2n−1 = 1 and a2n = p− 1,
it suffices to consider even n in (1). We obtain then finally

a2n+2 + 2 +
q2n − 2
q2n+1

= p + 1 +
(
(1− β′)βn+1 − (1− β)β′n+1

)− 2(β − β′)
βn+1 − β′n+1

,

which is exactly ind(w(n)). This result holds for all parameters p, q satisfying p = q + 1,
even for p ≤ 3. Consequently, Theorem 5.3 is in fact valid for all parameters p, q with
p > q ≥ 1.

Acknowledgements

The authors acknowledge financial support by Czech Science Foundation GA ČR 201/05/0169,
by the grants MSM6840770039 and LC06002 of the Ministry of Education, Youth, and
Sports of the Czech Republic.

References
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