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Abstract. In this paper we introduce the well distributed occurrences
(WDO) combinatorial property for infinite words, which guarantees good
behavior (no lattice structure) in some related pseudorandom number
generators. An infinite word u on a d-ary alphabet has the WDO prop-
erty if, for each factor w of u, positive integer m, and vector v ∈ Zd

m,
there is an occurrence of w such that the Parikh vector of the prefix
of u preceding such occurrence is congruent to v modulo m. We prove
that Sturmian words, and more generally Arnoux-Rauzy words and some
morphic images of them, have the WDO property.

Introduction

The combinatorial problem studied in this paper comes from random number
generation. Pseudorandom number generators aim to produce random numbers
using a deterministic process. No wonder they suffer from many defects. The
most usual ones – linear congruential generators – are known to produce periodic
sequences having a defect called lattice structure. Guimond et al. [2] proved
that when two linear congruential generators are combined using infinite words
coding certain classes of quasicrystals or, equivalently, of cut-and-project sets,
the resulting sequence is aperiodic and has no lattice structure.

We have found a combinatorial condition – well distributed occurrences, or
WDO for short – that guarantees absence of lattice structure if two arbitrary
generators having the same output alphabet are combined using an infinite word
having the WDO property. The WDO property for an infinite word u over an
alphabet A means that for any integer m and any factor w of u, the set of Parikh
vectors modulo m of prefixes of u preceeding the occurrences of w coincides with
{0, 1, . . . ,m − 1}|A| (see Definition 2.1). In other words, among Parikh vectors
modulo m of such prefixes one has all possible vectors. Besides giving generators
without lattice structure, the WDO property is an interesting combinatorial
property of infinite words itself.
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We have proved first that Sturmian words have well distributed occurrences,
and then we have shown this property for Arnoux-Rauzy words. The proof for
Sturmian words is based on different ideas than the one for Arnoux-Rauzy words,
therefore we will provide in the sequel both of them.

In the next section, we deal with pseudorandom number generation, thus
establishing the motivation for our work. Next, in Section 2, we give the ba-
sic combinatorial definitions needed for our main results, including the WDO
property. Finally, in the last two sections, we prove that the property holds for
Sturmian and Arnoux-Rauzy words, respectively.

1 Motivation in Pseudorandom Number Generation

For the sake of our discussion, any infinite sequence of integers can be understood
as a pseudorandom number generator (PRNG); see also [2].

Let X = (xn)n∈N and Y = (yn)n∈N be two PRNGs with the same output
M ⊂ N and the same period m ∈ N, and let u = u0u1u2 . . . be a binary infinite
word, i.e., an infinite sequence over {0, 1}.

The PRNG
Z = (zn)n∈N (1)

based on u is obtained by the following algorithm:

1. Read step by step the letters of u.
2. When you read 0 for the i-th time, copy the i-th symbol from X to the end

of the constructed sequence Z.
3. When you read 1 for the i-th time, copy the i-th symbol from Y to the end

of the constructed sequence Z.

Of course, it is possible to generalize this construction – using infinite words over
a multiliteral alphabet, one can combine more than two PRNGs.

1.1 Lattice Structure

Let X = (xn)n∈N be a PRNG whose output is a finite set M ⊂ N. We say that
X has the lattice structure if there exists t ∈ N such that

{(xi, xi+1, . . . , xi+t−1)
∣∣ i ∈ N}

is covered by a family of parallel equidistant hyperplanes and at the same time,
this family does not cover the whole lattice

M t = {(a1, a2, . . . , at)
∣∣ ai ∈M for all i ∈ {1, . . . , t}}.

It is known that all linear congruential generators have the lattice structure.
Recall that a linear congruential generator (xn)n∈N is given by a,m, c ∈ N and
defined by the recurrence relation xn+1 = axn + c mod m. Let us mention
a famous example of a PRNG with a striking lattice structure. For t = 3, the
set of triples of RANDU, i.e., {(xi, xi+1, xi+2)

∣∣ i ∈ N} is covered by only 15
equidistant hyperplanes, see Figure 1.



Infinite Words with Well Distributed Occurrences 3

Fig. 1. The triples of RANDU – the linear congruential generator with a = (216 +
3),m = 231, c = 0 – are covered by as few as 15 parallel equidistant planes.

1.2 Combinatorial Condition on Absence of the Lattice Structure

Guimond et al. in [2] have shown that PRNGs based on infinite words coding
a certain class of cut-and-project sets have no lattice structure. A crucial part
of their proof is the following lemma.

Lemma 1.1. Let Z be the PRNG from (1) based on an aperiodic infinite word.
If there exist for any a, b ∈ M and for any ` ∈ N an `-tuple z such that both
za and zb are (`+ 1)-tuples of the sequence Z, then Z does not have the lattice
structure.

We have found the following combinatorial condition on binary infinite words
guaranteeing that the assumptions of the previous lemma are met: we say that
a binary aperiodic infinite word u over the alphabet {0, 1} has well distributed
occurrences (or has the WDO property) if u satisfies for any m ∈ N and any
factor w of u the following condition. If we denote i0, i1, . . . the occurrences of
w in u, then{(

|u0u1 · · ·uij−1|0, |u0u1 · · ·uij−1|1
)

mod m | j ∈ N
}

= Z2
m ,

where modm is applied elementwise.
See the next section for the definition of aperiodicity, factor occurrences, and

the WDO property for general alphabets.
The WDO property for binary words thus ensures no lattice structure for

PRNGs defined in (1).

Theorem 1.2. Let Z be the PRNG from (1) based on a binary aperiodic infinite
word having the WDO property. Then Z has no lattice structure.
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We omit the proof of this theorem for the sake of brevity.
Moreover, we have shown that the class of infinite words satisfying the WDO

property for binary words is larger than the class described in [2] (see Section 3).

2 Combinatorics on Words and the WDO Property

By A we denote a finite set of symbols called letters; the set A is therefore
called an alphabet. A finite string w = w1w2 . . . wn of letters from A is said to
be a finite word, its length is denoted by |w| = n and |w|a denotes the number
of occurrences of a ∈ A contained in w. The empty word, a neutral element for
concatenation of finite words, is denoted ε and it is of zero length.

Under an infinite word we understand an infinite sequence u = u0u1u2 . . . of
letters from A. A finite word w is a factor of a word v (finite or infinite) if there
exist words p and s such that v = pws. If p = ε, then w is said to be a prefix
of v; if s = ε, then w is a suffix of v. The set of factors and prefixes of v are
denoted by Fact(v) and Pref(v), respectively. If v = ps for finite words v, p, s,
then we write p = vs−1 and s = p−1v.

An infinite word u over the alphabet A is called eventually periodic if it is of
the form u = vwω, where v, w are finite words over A and ω denotes an infinite
repetition. An infinite word is called aperiodic if it is not eventually periodic.

For any factor w of an infinite word u, every index i such that w is a prefix
of the infinite word uiui+1ui+2 . . . is called an occurrence of w in u.

The factor complexity of an infinite word u is a map Cu : N 7→ N defined
by Cu(n) := the number of factors of length n contained in u. The factor com-
plexity of eventually periodic words is bounded, while the factor complexity of
an aperiodic word u satisfies Cu(n) ≥ n + 1 for all n ∈ N. A right extension of
a factor w of u over the alphabet A is any letter a ∈ A such that wa is a factor
u. Of course, any factor of u has at least one right extension. A factor w is called
right special if w has at least two right extensions. Similarly, one can define a left
extension and a left special factor. A factor is bispecial if it is both right and left
special. An aperiodic word contains right special factors of any length.

The Parikh vector of a finite word w over an alphabet {0, 1, . . . , d − 1} is
defined as (|w|0, |w|1, . . . , |w|d−1). For a finite or infinite word u = u0u1u2 . . . ,
we denote by Prefn u the prefix of length n of u, i.e., Prefn u = u0u1 . . . un−1.

Let us generalize the combinatorial condition on infinite words that guaran-
tees no lattice structure for pseudorandom number generators from binary to
multiliteral alphabets.

Definition 2.1 (The WDO property). We say that an aperiodic infinite
word u over the alphabet {0, 1, . . . , d − 1} has well distributed occurrences (or
has the WDO property) if u satisfies for any m ∈ N and any factor w of u the
following condition. If we denote i0, i1, . . . the occurrences of w in u, then{(

|u0u1 · · ·uij−1|0, . . . , |u0u1 · · ·uij−1|d−1
)

mod m | j ∈ N
}

= Zdm ;

that is, the Parikh vectors of Prefij (u) for j ∈ N, when reduced modulo m, give
the whole Zdm.
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We define the WDO property for aperiodic words since it clearly never holds
for periodic ones.

With the above notation, it is easy to see that if a recurrent infinite word u
has the WDO property, then for every vector v ∈ Zdm there are infinitely many
values of j such that the Parikh vector of Prefij (u) is congruent to v modulo m.

Example 2.2. The Thue-Morse word t = 0110100110010110 · · · , which is a fixed
point of the morphism 0 7→ 01, 1 7→ 10, does not satisfy the WDO property.
Indeed, take m = 2 and w = 00, then w occurs only in odd positions ij so that
(|t0 · · · tij−1|0+|t0 · · · tij−1|1) = ij is odd. Thus, e.g., (|t0 · · · tij−1|0, |t0 · · · tij−1|1)
mod 2 6= (0, 0), and hence {(|t0 · · · tij−1|0, |t0 · · · tij−1|1) mod 2 | j ∈ N} 6= Z2

2.

Example 2.3. We say that an infinite word u over an alphabet A, |A| = d, is
universal if it contains all finite words over A as its factors. It is easy to see that
any universal word satisfies the WDO property. Indeed, for any word w ∈ A∗
and any m there exists a finite word v such that if we denote i0, i1, . . . , ik the
occurrences of w in v, then{(

|Prefijv|0, . . . , |Prefijv|d−1
)

mod m | j ∈ {0, 1, . . . , k}
}

= Zdm .

Since u is universal, v is a factor of u. Denoting by i an occurrence of v in u,
one gets that the positions i+ ij are occurrences of w in u. Hence{(

|Prefi+iju|0, . . . , |Prefi+iju|d−1
)

mod m | j ∈ {0, 1, . . . , k}
}

=

= (|Prefiu|0, . . . , |Prefiu|d−1) +

+
{(
|Prefijv|0, . . . , |Prefijv|d−1

)
mod m | j ∈ {0, 1, . . . , k}

}
= Zdm .

Therefore, u satisfies the WDO property.

3 Sturmian Words

In this section, we show that Sturmian words have well distributed occurrences.

Definition 3.1. An aperiodic infinite word u is called Sturmian if its factor
complexity satisfies Cu(n) = n+ 1 for all n ∈ N.

So, Sturmian words are by definition binary and they have the lowest possible
factor complexity among aperiodic infinite words. Sturmian words admit various
types of characterizations of geometric and combinatorial nature. One of such
characterizations is via irrational rotations on the unit circle. In [4] Hedlund and
Morse showed that each Sturmian word may be realized measure-theoretically
by an irrational rotation on the circle. That is, every Sturmian word is obtained
by coding the symbolic orbit of a point on the circle of circumference one under a
rotation Rα by an irrational angle5 α, 0 < α < 1, where the circle is partitioned
into two complementary intervals, one of length α and the other of length 1−α.
And conversely each such coding gives rise to a Sturmian word.
5 Measured by arc length (thus equivalent to 2πα radians).
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Definition 3.2. The rotation by angle α is the mapping Rα from [0, 1) (identi-
fied with the unit circle) to itself defined by Rα(x) = {x+α}, where {x} = x−bxc
is the fractional part of x. Considering a partition of [0, 1) into I0 = [0, 1− α),
I1 = [1− α, 1), define a word

sα,ρ(n) =

{
0, if Rnα(ρ) = {ρ+ nα} ∈ I0,
1, if Rnα(ρ) = {ρ+ nα} ∈ I1.

One can also define I ′0 = (0, 1 − α], I ′1 = (1 − α, 1], the corresponding word is
denoted by s′α,ρ.

For more information on Sturmian words we refer to [3, Chapter 2].

Theorem 3.3. Let u be a Sturmian word on {0, 1}. Then u has Property WDO.

Proof. In the proof we use the definition of Sturmian word via rotation. The
main idea is controlling the number of 1’s modulo m by taking circle of length
m, and controlling the length taking the rotation by mα.

For the proof we will use an equivalent reformulation of the theorem:

Let u be a Sturmian word on {0, 1}, for any natural numberm and any factor
w of u let us denote i0, i1, . . . the occurrences of w in u. Then{(

ij , |u0u1 · · ·uij−1|1
)

mod m | j ∈ N
}

= {0, 1, ...,m− 1}2.

That is, we will control the number of 1’s and the length instead the number
of 0’s.

Since a Sturmian word can be defined via rotations by an irrational angle
on a unit circle, without loss of generality we may assume that u = sα,ρ for
some 0 < α < 1, 0 ≤ ρ < 1, α irrational (see Definition 3.2). Equivalently, we
can consider m copies of the circle connected into one circle of length m with
m intervals Ii1 = [i−α, i) of length α corresponding to 1. The Sturmian word is
obtained by rotation by α on this circle of length m (see Fig. 2).

Namely, we define the rotation Rα,m as the mapping from [0,m) (identified
with the circle of length m) to itself defined by Rα,m(x) = {x + α}m, where
{x}m = x − bx/mcm and for m = 1 coincides with the fractional part of x. A
partition of [0,m) into 2m intervals Ii0 = [i, i + 1 − α), Ii1 = [i + 1 − α, i + 1),
i = 0, . . . ,m− 1 defines the Sturmian word u = sα,ρ:

sα,ρ(n) =

{
0, if Rnα,m(ρ) = {ρ+ nα} ∈ Ii0 for some i = 0, . . . ,m− 1,

1, if Rnα,m(ρ) = {ρ+ nα} ∈ Ii1 for some i = 0, . . . ,m− 1.

It is well known that any factor w = w0 · · ·wk−1 of u corresponds to an
interval Iw in [0, 1), so that whenever you start rotating from the interval Iw, you
obtain w. Namely, x ∈ Iw if and only if x ∈ Iw0

, Rα(x) ∈ Iw1
, . . . , R

|w|−1
α (x) ∈

Iw|w|−1
.
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Fig. 2. Illustration to the proof of Theorem 3.3: the example for m = 5.

Similarly, we can define m intervals corresponding to w in [0,m) (circle of
length m), so that if Iw = [x1, x2), then Iiw = [x1 + i, x2 + i), i = 0, . . . ,m− 1.

Fix a factor w of u, take arbitrary (j, i) ∈ {0, 1, . . . ,m − 1}2. Now we will
organize (j, i) among the occurrences of w, i.e., find l such that ul . . . ul+|w|−1 =
w, l mod m = j and |Pref lu|1 mod m = i.

Consider rotation Rmα,m(x) by mα instead of rotation by α, and start m-
rotating from jα + ρ. Formally, Rmα,m(x) = {x + mα}m, where, as above,
{x}m = x − [x/m]m. This rotation will put us to positions mk + j, k ∈ N in
the Sturmian word: for a ∈ {0, 1} one has sα,ρ(mk+ j) = a if Rkmα,m(jα+ ρ) =

{jα+ ρ+ kmα}m ∈ Iia for some i = 0, . . . ,m− 1.
Remark that the points in the orbit of an m-rotation of a point on the m-

circle are dense, and hence the rotation comes infinitely often to each interval.
So pick k when jα+mkα+ρ ∈ Iiw ⊂ [i, i+ 1) (and actually there exist infinitely
many such k). Then the length l of the corresponding prefix is equal to km+ j,
and the number of 1’s in it is i+mp, where p is the number of complete circles
you made, i.e., p = [(jα+mkα+ ρ)/m]. ut

Remark 3.4. In the next section we will show that Arnoux-Rauzy words [1],
which are natural extensions of Sturmian words to larger alphabets, also satisfy
the WDO property. Note that the proof above cannot be generalized to Arnoux-
Rauzy words, because it is based on the geometric interpretation of Sturmian
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words via rotations, while this interpretation does not extend to Arnoux-Rauzy
words.

4 Arnoux-Rauzy Words

4.1 Basic Definitions

Definition 4.1. Let A be a finite alphabet. The reversal operator is the operator
∼: A∗ 7→ A∗ defined by recurrence in the following way:

ε̃ = ε, ṽa = aṽ

for all v ∈ A∗ and a ∈ A. The fixed points of the reversal operator are called
palindromes.

Definition 4.2. Let u ∈ A∗ be a finite word over the alphabet A. We define
the right palindromic closure of u, and we denote it by u(+) as the shortest
palindrome that has u as a prefix. It is readily verified that if p is the longest
palindromic suffix of u = vp, then u(+) = vpṽ.

Definition 4.3. We call the iterated (right) palindromic closure operator the
operator ψ recurrently defined by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ A∗ and a ∈ A. The definition of ψ may be extended to infinite
words u over A as ψ(u) = limn ψ(Prefn u), i.e., ψ(u) is the infinite word having
ψ(Prefn u) as its prefix for every n ∈ N.

Definition 4.4. Let ∆ be an infinite word on the alphabet A such that every
letter occurs infinitely often in ∆. The word c = ψ(∆) is then called a charac-
teristic (or standard) Arnoux-Rauzy word and ∆ is called the directive sequence
of c. An infinite word u is called an Arnoux-Rauzy word if it has the same set
of factors as a (unique) characteristic Arnoux-Rauzy word, which is called the
characteristic word of u. The directive sequence of an Arnoux-Rauzy word is the
directive sequence of its characteristic word.

Let us also recall the following well-known characterization:

Theorem 4.5. Let u be an aperiodic infinite word over the alphabet A. Then u
is a standard Arnoux-Rauzy word if and only if the following hold:

1. Fact(u) is closed under reversal (that is, if v is a factor of u so is ṽ).
2. Every left special factor of u is also a prefix.
3. If v is a right special factor of u then va is a factor of u for every a ∈ A.
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From the preceding theorem, it can be easily verified that the bispecial factors
of a standard Arnoux-Rauzy correspond to its palindromic prefixes (including
the empty word), and hence to the iterated palindromic closure of the prefixes
of its directive sequence. That is, if

ε = b0, b1, b2, . . .

is the sequence, ordered by length, of bispecial factors of the standard Arnoux-
Rauzy word u, ∆ = ∆0∆1 · · · its directive sequence (with ∆i ∈ A for every i),
we have bi+1 = (bi∆i)

(+).
A direct consequence of this, together with the preceding definitions, is the

following statement, which will be used in the sequel.

Lemma 4.6. Let u be a characteristic Arnoux-Rauzy word and let ∆ and (bi)i≥0
be defined as above. If ∆i does not occur in bi, then bi+1 = bi∆ibi. Otherwise let
j < i be the largest integer such that ∆j = ∆i. Then bi+1 = bib

−1
j bi.

4.2 Parikh Vectors and Arnoux-Rauzy Factors

Where no confusion arises, given an Arnoux-Rauzy word u, we will denote by

ε = b0, b1, . . . , bn, . . .

the sequence of bispecial factors of u ordered by length and we will set for any
i ∈ N, Bi as the Parikh vector of bi.

Remark 4.7. By the pigeonhole principle, it is clear that for every m ∈ N there
exists an integer N ∈ N such that, for every i ≥ N , the set {j > i | Bj ≡m Bi}
is infinite. Where no confusion arises and with a slight abuse of notation, fixed
m, we will always denote by N the smallest of such integers.

Lemma 4.8. Let u be a characteristic Arnoux-Rauzy word and let m ∈ N. Let

α1Bj1 + · · ·+ αkBjk ≡m v̄ ∈ Zdm

be a linear combination of Parikh vectors such that
∑k
i=1 αi = 0, with ji ≥ N

and αi ∈ Z for all i ∈ {1, . . . k}. Then, for any ` ∈ N, there exists a prefix v of
u such that the Parikh vector of v is congruent to v̄ modulo m and vb` is also a
prefix of u.

Proof. Without loss of generality, we can assume α1 ≥ α2 ≥ · · · ≥ αk, hence
there exists k′ such that

α1 ≥ αk′ ≥ 0 ≥ αk′+1 ≥ αk.

We will prove the result by induction on β =
∑k′

j=1 αj . If β = 0, trivially, we can
take v = ε and the statement is clearly verified. Let us assume the statement
true for all 0 ≤ β < M and let us prove it for β = M . By the remark preceding
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this lemma, for every ` we can choose i′ > j′ > ` such that Bj1 ≡m Bi′ and
Bjk ≡m Bj′ . Since every bispecial factor is a prefix and suffix of all the bigger
ones, in particular we have that bj′ is a suffix of bi′ , and b` is a prefix of bj′ ;
this implies that bi′b−1j′ b` is actually a prefix of bi′ . By assumption, the Parikh
vector of bi′b−1j′ is clearly Bi′−Bj′ ≡m Bj1−Bjk . Since α1 ≥ 1 implies αk ≤ −1,
we have, by induction hypothesis, that there exists a prefix v of u such that the
Parikh vector of v is congruent modulo m to

(α1 − 1)Bj1 + · · ·+ (αk + 1)Bjk

and vbi′ is a prefix of u. Hence vbi′b−1j′ b` is also a prefix of u and, by simple
computation, the Parikh vector of vbi′b−1j′ is congruent modulo m to v̄. ut

Definition 4.9. Let n ∈ Z. We will say that an integer linear combination of
integer vectors is a n-combination if the sum of all the coefficients equals n.

Lemma 4.10. Let u be a characteristic Arnoux-Rauzy word and let n ∈ N.
Every n-combination of Parikh vectors of bispecial factors can be expressed as a
n-combination of Parikh vectors of arbitrarily large bispecials. In particular, for
every K,M ∈ N, it is possible to find a finite number of integers α1, . . . , αk such
that BK = α1Bj1 + · · ·+ αkBjk with ji > M for every i and α1 + · · ·+ αk = 1.

Proof. A direct consequence of Lemma 4.6 is that for every i such that ∆i

appears in bi, we have Bi+1 = 2Bi − Bj , where j < i is the largest such that
∆j = ∆i. This in turn (since every letter in ∆ appears infinitely many times
from the definition of Arnoux-Rauzy word) implies that for every non-negative
integer j, there exists a positive k such that Bj = 2Bj+k − Bj+k+1, that is, we
can substitute each Parikh vector of a bispecial with a 1-combination of Parikh
vectors of strictly larger bispecials. Simply iterating the process, we obtain the
statement. ut

In the following we will assume the set A to be a finite alphabet of cardinality
d. For every set X ⊆ A∗ of finite words, we will denote by PV(X) ⊆ Zd the set
of Parikh vectors of elements of X and for every m ∈ N we will denote by
PVm(X) ⊆ Zdm the set of elements of PV(X) reduced modulo m.

Let u be an infinite word over A and let v be a factor of u. We denote by
Sv(u) the set of all prefixes of u followed by an occurrence of v. In other words,

Sv(u) = {p ∈ Pref(u) | pv ∈ Pref(u)}.

Definition 4.11. For any set of finite words X ⊆ A∗, we will say that u has
the property PX (or, for short, that u has PX) if, for every m ∈ N and for every
v ∈ X we have that

PVm(Sv(u)) = Zdm.

That is to say, for every vector v ∈ Zdm there exists a word w ∈ Sv(u) such that
the Parikh vector of w is congruent to v modulo m.
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With this notation, an infinite word u has the WDO property if and only if it
has property PFact(u).

Proposition 4.12. Let u be a characteristic Arnoux-Rauzy word over the d-
letter alphabet A. Then u has the property PPref(u).

Proof. Let us fix an arbitrary m ∈ N. We want to show that, for every v ∈
Pref(u), PVm(Sv(u)) = Zdm. Let then v̄ ∈ Zd and ` be the smallest number
such that v is a prefix of b`. Let i1 < i2 < · · · < id be such that ∆ij does not
appear in bij , where ∆ is the directive word of u. Without loss of generality,
we can rearrange the letters so that each ∆ij is lexicographically smaller than
∆ij+1 . With this assumption if, for every j, we set v̄j as the Parikh vector
of bij+1, which, by the first part of Lemma 4.6, equals bij∆ij bij , we can find
j − 1 positive integers µ1, . . . , µj−1 such that v̄j = (µ1, µ2, . . . , µj−1, 1, 0, . . . , 0).
It is easy to show, then, that the set V = {v̄1, . . . , v̄d} generates Zd, hence
there exists an integer n such that v̄ can be expressed as an n-combination of
elements of V (which are Parikh vectors of bispecial factors of u). Trivially, then,
v̄ = v̄ − n0̄ = v̄ − nB0; thus, it is possible to express v̄ as a 0-combination of
Parikh vectors of (by the previous Lemma 4.10) arbitrarily large bispecial factors
of u. By Lemma 4.8, then there exists a prefix p of u with Parikh vector p̄ such
that p̄ ≡m v̄ and pb` is a prefix of u. Since we picked ` such that v is a prefix of
b`, we have that p ∈ Sv(u). From the arbitrariness of v, v̄ and m, we obtain the
statement. ut

As a corollary of Proposition 4.12, we obtain the main result of this section.

Theorem 4.13. Let u be an Arnoux-Rauzy word over the d-letter alphabet A.
Then u has the property PFact(u).

Proof. Let m be a positive integer and let c be the characteristic word of u. Let
v be a factor of u and xvy be the smallest bispecial containing v. By Proposition
4.12, we have that PVm(Sxv(c)) = Zdm and, since the set is finite, we can find a
prefix p of c such that PVm(Sxv(p)) = Zdm. Let w be a prefix of u such that wp
is a prefix of u. If x̄ and w̄ are the Parikh vectors of, respectively, x and w, it is
easy to see that

w̄ + x̄ + PV(Sxv(p)) ⊆ w̄ + PV(Sv(p)) ⊆ PV(Sv(u))

Since we have chosen p such that PVm(Sxv(p)) = Zdm, we clearly obtain that
PVm(Sv(u)) = Zdm and hence, by the arbitrariness of v and m, the statement.

ut

Remark 4.14. Actually, Theorem 4.13 implies Theorem 3.3.

Remark 4.15. Note the following simple method of obtaining words satisfying
the WDO property. Take a word u with the WDO property over an alphabet
{0, 1, . . . , d−1}, d > 2, apply a morphism ϕ : d−1 7→ 0, i 7→ i for i = 0, . . . , d−2, i.
e., ϕ joins two letters into one. It is straightforward that ϕ(u) has WDO property.
So, taking Arnoux-Rauzy words and joining some letters, we obtain other words
than Sturmian and Arnoux-Rauzy satisfying the WDO property.
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