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Abstract. We study infinite words over a finite alphabet. In particular, we focus on frequencies
of factors (subwords) of infinite words whose language is reversal closed, i.e. u contains with each
factor also its mirror image. Crucial is the notion of Rauzy graphs associated with the infinite
word. Investigation of symmetries of the reduced Rauzy graph I',,, n € N, allows us to determine
a good and eagily calculable upper bound on the number of different factor frequencies.

Abstrakt. Studujeme nekone¢nd slova nad konecnou abecedou. Specialné se zaméfujeme na
frekvence faktoru nekone¢nych slov, jejichz jazyk je uzavien na reverzi, tj. s kazdym slovem
obsahuje také slovo, které ziskdme, kdyz prec¢teme dané slovo pozpatku. Klicovym pojmem je
Rauzyho graf pfifazeny nekoneénému slovu. Zkoumaéani symetrii redukovaného Rauzyho grafu
Iy, n € N, ndm umozni nalézt dobry a snadno vypocitatelny horni odhad na podéet ruznych
frekvenci faktoru nekone¢ného slova.

1 Introduction

Everybody who is about to study a foreign language is interested in word frequencies of
this language. The reason is simple. If you start, there is no point in beginning with
low-frequency words provided your aim is to manage everyday communication. Word
frequencies are in focus of designers of internet search engines, but also of the one who
wants to raise the visit rate of his web page. There exist so-called “stoplists" which
provide frequencies of most often used words. For instance, just three words I, and,
the account for ten percent of all words in printed English. This is “easy” to calculate.
Prepare a sheet of paper, go through all printed matters in English, for each word you
read, put a black tally on the sheet, and each time you see I or and or the, put a red
tally on the sheet. At the end, divide the number of red tallies by the number of black
tallies and you should obtain approximately 0,1. In the Czech language, similar role is
played by words a, v, se, na, je, Ze, o which take about 9 percent of a written text. In
this paper, our point of view will not be linguistic (statistic), we will instead move to
the domain of Combinatorics on Words and Graph Theory. We will turn our attention
to factor frequencies in infinite words, so the number of occurrences of a factor will be
possibly infinite and the definition of factor frequency will have to be generalized. We
will show how to find a good upper bound on the number of different factor frequencies in
infinite words which contain with every factor also its mirror image. Let us also mention
that we have studied factor frequencies in several classes of infinite words (to be found
in the thesis) and the results confirm accuracy of the obtained upper bound.



Having introduced notation and basic definitions, we will first recall well-known re-
lations holding for frequencies of edges and vertices in Rauzy graphs (Kirchhoff’s law).
Afterwards, we will introduce a useful tool- reduced Rauzy graph. With this in hand, one
can easily deduce the upper bound derived by Boshernitzan (Theorem 1). Knowing that
for any infinite reversal closed word wu, the mirror map does not change factor frequencies
will allow us to improve essentially the upper bound in case of words whose language is
reversal closed (Theorem 2).

2  Preliminaries

First, let us recall our “vocabulary” which will be used throughout this paper. An alphabet
A is a finite set of symbols called letters. A concatenation of letters is a word. Length of
a word w is the number of letters contained in w and is denoted |w|. We will also deal
with right-sided infinite words u = ugujus.... A finite word w is called a factor of the word
u (finite or infinite) if there exist a finite word w™® and a word w® (finite or infinite)
such that v = wMww®. An infinite word u is said to be recurrent if each of its factors
occur infinitely many times in v and u is uniformly recurrent if for any n € N there exists
an R(n) € N such that any factor of u of length R(n) contains all factors of length n. An
infinite word w is said to be eventually periodic if there exist finite words v, w such that
u = vw*, where w* means that w is repeated infinitely many times. A word which is not
eventually periodic is called aperiodic. Language L£(u) of an infinite word w is the set of
all factors of u. A language L(u) is reversal closed, if for every factor w = wow; ... wy,
where w; € A, i € {0,...,n}, also its mirror image w = w, ... wywy belongs to L(u).
We denote by L, (u) the set of factors of length n of the infinite word w. Then, we can
define complezity function (or complexity) C, : N — N which associates to every n the
number of different factors of length n of the infinite word wu, i.e.

Cu(n) = #Lp(u).

Let us mention that if there exists n € N such that C,(n) < n, then the infinite word
u is eventually periodic. In other words, aperiodic words has complexity C(n) > n + 1
for all n € N. Aperiodic words with the lowest possible complexity are called Sturmian.
Similarly, let us denote by Pal,(u) the set of palindromes of length n contained in u and
let us define palindromic complexity P, : N — N which associates to every n the number
of different palindromes of length n of the infinite word u. We recall that palindrome is
a word which is equal to its mirror image. We say that a € A is right extension of a factor
w € L(u) if wa is also a factor of u. We denote by Rext(w) the set of all right extensions
of win u, i.e. Rext(w) = {a € A | wa € L(u)}. If #Rext(w) > 2, then the factor w is
called right special (RS for short). Analogously, we define left extensions, Lext(w), left
special factor (LS for short). Moreover, we say that a factor w is bispecial (BS for short)
if w is LS and RS. With this in hand, we can give a formula for the first difference of
complezity ACy(n) = Cy(n+ 1) — C,(n). We leave the proof as an easy exercise.

AC,(n) = Z (#Rext(w) — 1) = Z (#Lext(w) — 1), neN. (1)

wEEn(u) wEEn(u)



To have everything prepared for the deduction of an improved upper bound on the number
of different frequencies, it remains to define Rauzy graph, and, of course, factor frequency.

Definition 1. Rauzy graph T',, of an infinite word u (of order n) is a directed graph whose
set of vertices is L, (u) and set of edges is L y1(u). Let wg,wy, . .., w, be letters in A and
let e = wowy ... wy_1w, be an edge of I, then e starts in the vertex w = wow; ... wy,_1
and ends in the vertex v = wy ... Wp_1W,.

Definition 2. Let w be a factor of an infinite word u over a finite alphabet A, then
(factor) frequency of w (in u) is defined as

#{occurrences of w in v}

w) =
p( ) |v|—o0,veL(u) |”U’

iof the limit exists.

3 Upper bound on the number of factor frequencies

In the sequel, let us suppose that frequencies of all factors of L£(u) exist. It is not
difficult to see that the frequency of a vertex w in I',, is equal to the sum of frequencies
of the edges starting in w, or, by symmetry, the sum of frequencies of the edges ending
in w. Let us formalize this observation and leave its proof as a simple exercise.

Lemma 1 (Kirchhoff’s law). Let w be a factor of u, then

pw)= > plaw)= Y p(wa).

a€Lext(w) a€ Rext(w)

Consequently, if a factor w € L(u) is neither LS nor RS, then both the frequency of
the unique edge starting in w and the frequency of the unique edge ending in w is equal
to p(w). Formally rewritten, this observation has the following reading.

Corollary 1. Let w be a factor of u which is neither LS nor RS. Let us denote by a the
only left extension of w and by b its only right extension. Then, p(w) = p(aw) = p(wb).

We can label every edge e in the Rauzy graph I',, of u by p(e). Then the number
of different frequencies of factors in £, 1(u) corresponds to the number of different edge
labels in I',,. For a factor w € £,,(u) which is neither LS nor RS, it is thus evident that
the unique edge ending in w has the same label p(w) as the unique edge starting in w.
Consequently, if we are interested in the number of different edge labels, we can remove
the vertex w from the graph and replace the incoming and outgoing edge with a new edge
keeping the label p(w). Repeating this procedure, we obtain the so-called reduced Rauzy
graph, which has obviously the same set of edge labels. Let us give precise definitions.

Definition 3. Let I',, be the Rauzy graph of order n of an infinite word u. A directed path
wOw® w™ in T, such that its initial vertex w® is LS or RS, its final vertex w™
s also LS or RS, and the other vertices are neither LS nor RS factors is called simple.
We define label of the simple path as the label of any edge of this path.



Definition 4. Reduced Rauzy graph T, of u (of order n) is a directed graph whose set
of vertices is formed by LS and RS factors of L,(u) and whose set of edges is given in
the following way. Vertices w and v are connected with an edge e if there exists in I',
a simple path starting in w and ending in v. We assign to such an edge e the label of the
corresponding simple path.

The number of different edge labels in the reduced Rauzy graph T, is clearly less or
equal to the number of edges in I',. Let us thus calculate the number of edges in I,
in order to get an upper bound on the number of frequencies of factors in £, 1(u). For
every RS factor w € L, (u), it holds that # Rext(w) edges begin in w, and for every LS
factor v € L, (u) which is not RS, only one edge begins in v, thus we get the following
relation

#{e| e edgein I} = Z #Rext(w) + Z 1. (2)

w RS v LS not RS

Using Equation 1, we deduce that

#{e| e edge in T',,} = AC(n) + Z 1+ Z 1. (3)

v RS v LS not RS
The following result initially proved by Boshernitzan in [3| follows immediately.

Theorem 1 (Boshernitzan). Let u be an infinite word such that for every factor w €
L(u), the frequency p(w) exists. Then for every n € N, it holds

#{ple) | e € Lo (u)} < BAC(n).

This upper bound can be lowered for an infinite word u whose language £(u) is reversal
closed. In this case, each factor of u has the same frequency as its mirror image.

Lemma 2. Let u be an infinite word whose language L(u) is reversal closed and such
that for each factor w € L(u), the frequency p(w) exists. Then p(w) = p(w) holds for
each factor w of L(u).

Proof. Take an arbitrary factor w € £(u) and let (v(™)2, be any sequence of a strictly
growing length in L£(u). Since the frequency of w exists, we can write

#{occurrences of w in v™}

p(w) = lim

As L(u) is reversal closed, we get

#{occurrences of w in v} = #{occurrences of w in v(™}.

Using |[v™| = |[v(|, we can then rewrite p(w) as follows
. #{occurrences of W in v(™} -
p(w) = lim ] — p(W).
n—oo e

The last equality holds thanks to the assumption that frequencies of all factors exist. [J



We have now everything prepared for an improvement of the upper bound on the
number of edge labels in T',,, or, equivalently, on the number of different factor frequencies
of £,+1(u) of an infinite word u whose language is reversal closed. The following lemma
will play an essential role in this improvement.

Lemma 3. Let u be an infinite word whose language L(u) is reversal closed and such
that for each factor w € L(u), the frequency p(w) exists. Then for every n € N, we have

#{p(e)|e€£n+1}§%(P(n) + P(n+1) + AC(n Zl — Zl )—l— Zl.

w BSin L, w BS in Paly, w RS in Ln

Proof. Let I',, be the Rauzy graph of u of order n. Let us define a mapping f which to
every vertex w € L, (u) associates the vertex w, to every edge e € L,,1(u) associates the
edge €, and to every path w@w® .. w(™ in I, associates the path w .. . w® w0,
Then, clearly, f2 = Id and thanks to the closeness of £(u) under reversal, f maps the
Rauzy graph I'), onto itself, in fact, f is an automorphism of I',,. Let us replace the Rauzy
graph I, by the reduced Rauzy graph I',. We know already that the set of edge labels
of I, is equal to the set of edge labels of I',. Let us denote by A the number of edges e
in T, such that e is mapped by f onto itself and by B the number of edges e in I, such
that e is not mapped by f onto itself, then clearly, #{e| e edge in T } = A+ B. To be
more precise, if e is an edge in L, corresponding to the simple path w®w® .. w(™ in
T, then f(e) is the edge in T, corresponding to the simple path f(w@w® .. w(™) =
w™ . w® w®, Consequently, if e is mapped by f onto itself, then the corresponding
simple path w©@w® .. w™ satisfies that its central vertex w(%) is a palindrome (for m
even) or its central edge going from w("z") to w(™37) is a palindrome (for m odd). On
the other hand, every palindrome of length n + 1 forms the central edge of a simple path
in I',, which is mapped by f onto itself and every palindrome of length n forms either the
central vertex of a simple path which is mapped by f on itself or is BS and thus a vertex
in I',,. Therefore,

A=Pn)+Pn+1)—#{w € L,|w BS in Pal,}. (4)

We subtract the number of palindromic BS factors of £,,(u) since they form vertices, not
edges in [',. Now, let us turn our attention to edges e which are not mapped by f onto
themselves. If e is an edge in T, going from a vertex w to v, where f(e) # e, then there
exists an edge € in ', going from T to W with ¢ # f(€'), namely € = f(e). However, e
and ¢’ have the same label. (If e corresponds to the simple path w@w® .. w™) in T,

then €’ corresponds to the simple path w(™ ... w® w© in T',. Lemma 2 implies that
the label of these simple paths is the same.) These considerations lead to the following
estimate

#(p(e)] ¢ € Lows(w)} S A+ SB= A+ (A+B) (5)

Rewriting Equation (3), we obtain

A+B=ACm)+2 ) 1- > 1

w RS in Ln w BSin Ln

The statement follows then using Equation (4). O



Theorem 2. Let u be an infinite word whose language L(u) is reversal closed and such
that for every factor w € L(u), the frequency p(w) exists. Then for every n € N, we have

#{ple)le € Loy} < 2AC(n)+1—%< oo+ ) 1) < 2AC(n)+1.

w BS in Paly w BS in Ly,

The equality #{p(e)le € L,11(u)} = 2AC(n) + 1 holds for all sufficiently large n if and
only if u is periodic.

Remark 1. 7o approve that the estimate from Theorem 2 cannot be easily lowered keeping
its general validity, let us demonstrate that it is reached for all lengths n € N in the case
of Sturmian words. Thanks to [4], we know that every Sturmian word is reversal closed
and all BS factors are palindromes. Moreover, since AC(n) =1 for all n € N, the upper
bound on the number of different frequencies can be simplified as follows

#{ple)le € Lop(w)} < 3 - Y 1L

w BS in L,

To see that the upper bound is reached, it suffices to recall the result of Berthé in [2]

2 if n s the length of a BS factor,
3 otherwise.

#{p(e)le € Lpsi(u)} = {

Proof of Theorem 2. It has been shown in [1] that
P(n)+ P(n+1) <AC(n)+2 for every n € N. (6)

The term ), pqin . 1 can be bounded by > pein o (#Rext(w) — 1) = AC(n). Ap-
plying these bounds on the result of Lemma 3, we obtain

#{ple)le € L11} <2AC(n)+1— % ( Z 1+ Z 1) :

w BS in Paly w BSin L,

Let us turn our attention to eventually periodic words. Since L(u) is reversal closed, it
follows immediately that w is recurrent. If u is eventually periodic and recurrent, then
u is known to be periodic. Thus, there exists a minimal period K such that u = 2*,
where |z| = K. Then, C(n) = K for every n > K and every factor of length n occurs
with frequency +. Thus, #{p(e)| e edge in T',} = 2AC(n) +1 = 1 for n > K. If
u is aperiodic, then AC(n) > 1 together with the fact that every LS factor is prefix
of a BS factor implies that for every N € N, there exists a BS factor in £(u) of length
n > N, hence #{p(e)| eedge inT',} <2AC(n)+1—3 (X, psin par, L+ Dow Bsin 2, 1) <
2AC(n) + 1. O

For completeness’ sake, let us mention another proof which will not use Equation (6),
nevertheless, similar ideas as those ones occurring in |1] will be present. Going through
this second version of the proof, it can be in particular noticed that Theorem 2 does not



require uniform recurrence of the infinite word u. We will keep notation from Proof of
Lemma 3 and we will make use of a partial result rewritten in a different way this time:

1 1
#{ple)le € Lny1(u)} <A+ §B =(A+B) - EB' (7)
We want to find a lower bound on B, i.e. on the number of edges in I, which are not
mapped by f on themselves. I',, contains the following disjoint subgraphs (whose union
comprises all vertices of I';,) of three types:

1. subgraphs containing two vertices w and w, where w is RS not LS, and all edges
connecting them mutually

2. subgraphs containing two vertices w and w, where w is non-palindromic BS, and
all edges connecting them mutually (attention! number of subgraphs of this type
is just 2#{w € £,(u) | w non-palindromic BS})

3. subgraphs containing one vertex w, where w is a palindromic BS, and eventually
edges-loops starting and ending in w

Clearly, all edges in T,, which are mapped by f on themselves are contained in the above
subgraphs. Since (reduced) Rauzy graphs of infinite words are connected, each subgraph
is connected with an edge to the union of the remaining subgraphs. Moreover, since
the language L£(u) is reversal closed, if an edge e starts in a subgraph I' and ends in
a subgraph I, then the edge f(e) starts in I” and ends in T'. Tt follows that B is greater
or equal to 2x the minimal number of edges which can ensure connection of the disjoint
subgraphs of the graph:

B > 2 x number of subgraphs — 2 =2 Z 1+ Z 1— Z 1—-2. (8)

w RS in L, w BS in Paly w BSin Ly

Implanting in Equation (7) the just deduced lower bound on B together with the expres-
sion of A+ B derived in Proof of Lemma 3

A+B=ACM)+2 > 1- Y 1,

w RS in L, w BSin Ly

and with the fact that ), pq;, . 1 can be bounded by > pein . (#Rext(w) — 1) =
AC(n), we have proved the upper bound from Theorem 2

#{p(e)| e edge in Fn}§2AC’(n)+1—% ( Z 1+ Z 1) :

w BS in Paly, w BSin Ln

To conclude, let us throw in that we have studied frequencies of infinite words as-
sociated with (-integers for 3 being a quadratic non-simple Parry number, thus defined
over a two-letter alphabet, and we have learned that the upper bound from Theorem 2
is either reached (for most of the lengths) or is only by 1 greater than the real number
of factor frequencies of a given length. Another example of an infinite word, even over
a k letter alphabet, where the upper bound is reached for all lengths, is the k-interval
exchange word. (Description of frequencies has been recently given by Ferenczi [5].)
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