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Abstract. We study in�nite words over a �nite alphabet. In particular, we focus on frequencies
of factors (subwords) of in�nite words whose language is reversal closed, i.e. u contains with each
factor also its mirror image. Crucial is the notion of Rauzy graphs associated with the in�nite
word. Investigation of symmetries of the reduced Rauzy graph Γn, n ∈ N, allows us to determine
a good and easily calculable upper bound on the number of di�erent factor frequencies.
Abstrakt. Studujeme nekone£ná slova nad kone£nou abecedou. Speciáln¥ se zam¥°ujeme na
frekvence faktor �u nekone£ných slov, jejichº jazyk je uzav°en na reverzi, tj. s kaºdým slovem
obsahuje také slovo, které získáme, kdyº p°e£teme dané slovo pozpátku. Klí£ovým pojmem je
Rauzyho graf p°i°azený nekone£nému slovu. Zkoumání symetrií redukovaného Rauzyho grafu
Γn, n ∈ N, nám umoºní nalézt dobrý a snadno vypo£itatelný horní odhad na po£et r �uzných
frekvencí faktor �u nekone£ného slova.

1 Introduction
Everybody who is about to study a foreign language is interested in word frequencies of
this language. The reason is simple. If you start, there is no point in beginning with
low-frequency words provided your aim is to manage everyday communication. Word
frequencies are in focus of designers of internet search engines, but also of the one who
wants to raise the visit rate of his web page. There exist so-called �stoplists" which
provide frequencies of most often used words. For instance, just three words I, and,
the account for ten percent of all words in printed English. This is �easy� to calculate.
Prepare a sheet of paper, go through all printed matters in English, for each word you
read, put a black tally on the sheet, and each time you see I or and or the, put a red
tally on the sheet. At the end, divide the number of red tallies by the number of black
tallies and you should obtain approximately 0, 1. In the Czech language, similar role is
played by words a, v, se, na, je, ºe, o which take about 9 percent of a written text. In
this paper, our point of view will not be linguistic (statistic), we will instead move to
the domain of Combinatorics on Words and Graph Theory. We will turn our attention
to factor frequencies in in�nite words, so the number of occurrences of a factor will be
possibly in�nite and the de�nition of factor frequency will have to be generalized. We
will show how to �nd a good upper bound on the number of di�erent factor frequencies in
in�nite words which contain with every factor also its mirror image. Let us also mention
that we have studied factor frequencies in several classes of in�nite words (to be found
in the thesis) and the results con�rm accuracy of the obtained upper bound.
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Having introduced notation and basic de�nitions, we will �rst recall well-known re-
lations holding for frequencies of edges and vertices in Rauzy graphs (Kirchho�'s law).
Afterwards, we will introduce a useful tool- reduced Rauzy graph. With this in hand, one
can easily deduce the upper bound derived by Boshernitzan (Theorem 1). Knowing that
for any in�nite reversal closed word u, the mirror map does not change factor frequencies
will allow us to improve essentially the upper bound in case of words whose language is
reversal closed (Theorem 2).

2 Preliminaries
First, let us recall our �vocabulary� which will be used throughout this paper. An alphabet
A is a �nite set of symbols called letters. A concatenation of letters is a word. Length of
a word w is the number of letters contained in w and is denoted |w|. We will also deal
with right-sided in�nite words u = u0u1u2.... A �nite word w is called a factor of the word
u (�nite or in�nite) if there exist a �nite word w(1) and a word w(2) (�nite or in�nite)
such that u = w(1)ww(2). An in�nite word u is said to be recurrent if each of its factors
occur in�nitely many times in u and u is uniformly recurrent if for any n ∈ N there exists
an R(n) ∈ N such that any factor of u of length R(n) contains all factors of length n. An
in�nite word u is said to be eventually periodic if there exist �nite words v, w such that
u = vwω, where wω means that w is repeated in�nitely many times. A word which is not
eventually periodic is called aperiodic. Language L(u) of an in�nite word u is the set of
all factors of u. A language L(u) is reversal closed, if for every factor w = w0w1 . . . wn,
where wi ∈ A, i ∈ {0, . . . , n}, also its mirror image w = wn . . . w1w0 belongs to L(u).
We denote by Ln(u) the set of factors of length n of the in�nite word u. Then, we can
de�ne complexity function (or complexity) Cu : N → N which associates to every n the
number of di�erent factors of length n of the in�nite word u, i.e.

Cu(n) = #Ln(u).

Let us mention that if there exists n ∈ N such that Cu(n) ≤ n, then the in�nite word
u is eventually periodic. In other words, aperiodic words has complexity C(n) ≥ n + 1
for all n ∈ N. Aperiodic words with the lowest possible complexity are called Sturmian.
Similarly, let us denote by Paln(u) the set of palindromes of length n contained in u and
let us de�ne palindromic complexity Pu : N→ N which associates to every n the number
of di�erent palindromes of length n of the in�nite word u. We recall that palindrome is
a word which is equal to its mirror image. We say that a ∈ A is right extension of a factor
w ∈ L(u) if wa is also a factor of u. We denote by Rext(w) the set of all right extensions
of w in u, i.e. Rext(w) = {a ∈ A

∣∣ wa ∈ L(u)}. If #Rext(w) ≥ 2, then the factor w is
called right special (RS for short). Analogously, we de�ne left extensions, Lext(w), left
special factor (LS for short). Moreover, we say that a factor w is bispecial (BS for short)
if w is LS and RS. With this in hand, we can give a formula for the �rst di�erence of
complexity ∆Cu(n) = Cu(n + 1)− Cu(n). We leave the proof as an easy exercise.

∆Cu(n) =
∑

w∈Ln(u)

(
#Rext(w)− 1

)
=

∑

w∈Ln(u)

(
#Lext(w)− 1

)
, n ∈ N. (1)
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To have everything prepared for the deduction of an improved upper bound on the number
of di�erent frequencies, it remains to de�ne Rauzy graph, and, of course, factor frequency.

De�nition 1. Rauzy graph Γn of an in�nite word u (of order n) is a directed graph whose
set of vertices is Ln(u) and set of edges is Ln+1(u). Let w0, w1, . . . , wn be letters in A and
let e = w0w1 . . . wn−1wn be an edge of Γn, then e starts in the vertex w = w0w1 . . . wn−1

and ends in the vertex v = w1 . . . wn−1wn.

De�nition 2. Let w be a factor of an in�nite word u over a �nite alphabet A, then
(factor) frequency of w (in u) is de�ned as

ρ(w) = lim
|v|→∞,v∈L(u)

#{occurrences of w in v}
|v|

if the limit exists.

3 Upper bound on the number of factor frequencies
In the sequel, let us suppose that frequencies of all factors of L(u) exist. It is not
di�cult to see that the frequency of a vertex w in Γn is equal to the sum of frequencies
of the edges starting in w, or, by symmetry, the sum of frequencies of the edges ending
in w. Let us formalize this observation and leave its proof as a simple exercise.

Lemma 1 (Kirchho�'s law). Let w be a factor of u, then

ρ(w) =
∑

a∈Lext(w)

ρ(aw) =
∑

a∈Rext(w)

ρ(wa).

Consequently, if a factor w ∈ L(u) is neither LS nor RS, then both the frequency of
the unique edge starting in w and the frequency of the unique edge ending in w is equal
to ρ(w). Formally rewritten, this observation has the following reading.

Corollary 1. Let w be a factor of u which is neither LS nor RS. Let us denote by a the
only left extension of w and by b its only right extension. Then, ρ(w) = ρ(aw) = ρ(wb).

We can label every edge e in the Rauzy graph Γn of u by ρ(e). Then the number
of di�erent frequencies of factors in Ln+1(u) corresponds to the number of di�erent edge
labels in Γn. For a factor w ∈ Ln(u) which is neither LS nor RS, it is thus evident that
the unique edge ending in w has the same label ρ(w) as the unique edge starting in w.
Consequently, if we are interested in the number of di�erent edge labels, we can remove
the vertex w from the graph and replace the incoming and outgoing edge with a new edge
keeping the label ρ(w). Repeating this procedure, we obtain the so-called reduced Rauzy
graph, which has obviously the same set of edge labels. Let us give precise de�nitions.

De�nition 3. Let Γn be the Rauzy graph of order n of an in�nite word u. A directed path
w(0)w(1) . . . w(m) in Γn such that its initial vertex w(0) is LS or RS, its �nal vertex w(m)

is also LS or RS, and the other vertices are neither LS nor RS factors is called simple.
We de�ne label of the simple path as the label of any edge of this path.
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De�nition 4. Reduced Rauzy graph Γ̃n of u (of order n) is a directed graph whose set
of vertices is formed by LS and RS factors of Ln(u) and whose set of edges is given in
the following way. Vertices w and v are connected with an edge e if there exists in Γn

a simple path starting in w and ending in v. We assign to such an edge e the label of the
corresponding simple path.

The number of di�erent edge labels in the reduced Rauzy graph Γ̃n is clearly less or
equal to the number of edges in Γ̃n. Let us thus calculate the number of edges in Γ̃n

in order to get an upper bound on the number of frequencies of factors in Ln+1(u). For
every RS factor w ∈ Ln(u), it holds that #Rext(w) edges begin in w, and for every LS
factor v ∈ Ln(u) which is not RS, only one edge begins in v, thus we get the following
relation

#{e| e edge in Γ̃n} =
∑

w RS
#Rext(w) +

∑

v LS not RS
1. (2)

Using Equation 1, we deduce that

#{e| e edge in Γ̃n} = ∆C(n) +
∑

v RS
1 +

∑

v LS not RS
1. (3)

The following result initially proved by Boshernitzan in [3] follows immediately.

Theorem 1 (Boshernitzan). Let u be an in�nite word such that for every factor w ∈
L(u), the frequency ρ(w) exists. Then for every n ∈ N, it holds

#{ρ(e)
∣∣ e ∈ Ln+1(u)} ≤ 3∆C(n).

This upper bound can be lowered for an in�nite word u whose language L(u) is reversal
closed. In this case, each factor of u has the same frequency as its mirror image.

Lemma 2. Let u be an in�nite word whose language L(u) is reversal closed and such
that for each factor w ∈ L(u), the frequency ρ(w) exists. Then ρ(w) = ρ(w) holds for
each factor w of L(u).

Proof. Take an arbitrary factor w ∈ L(u) and let (v(n))∞n=1 be any sequence of a strictly
growing length in L(u). Since the frequency of w exists, we can write

ρ(w) = lim
n→∞

#{occurrences of w in v(n)}
|v(n)| .

As L(u) is reversal closed, we get

#{occurrences of w in v(n)} = #{occurrences of w in v(n)}.

Using |v(n)| = |v(n)|, we can then rewrite ρ(w) as follows

ρ(w) = lim
n→∞

#{occurrences of w in v(n)}
|v(n)|

= ρ(w).

The last equality holds thanks to the assumption that frequencies of all factors exist.
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We have now everything prepared for an improvement of the upper bound on the
number of edge labels in Γ̃n, or, equivalently, on the number of di�erent factor frequencies
of Ln+1(u) of an in�nite word u whose language is reversal closed. The following lemma
will play an essential role in this improvement.
Lemma 3. Let u be an in�nite word whose language L(u) is reversal closed and such
that for each factor w ∈ L(u), the frequency ρ(w) exists. Then for every n ∈ N, we have

#{ρ(e)|e ∈ Ln+1} ≤ 1

2

(
P (n) + P (n + 1) + ∆C(n) −

∑

w BS in Ln

1 −
∑

w BS in Paln

1

)
+

∑

w RS in Ln

1.

Proof. Let Γn be the Rauzy graph of u of order n. Let us de�ne a mapping f which to
every vertex w ∈ Ln(u) associates the vertex w, to every edge e ∈ Ln+1(u) associates the
edge e, and to every path w(0)w(1) . . . w(m) in Γn associates the path w(m) . . . w(1) w(0).
Then, clearly, f 2 = Id and thanks to the closeness of L(u) under reversal, f maps the
Rauzy graph Γn onto itself, in fact, f is an automorphism of Γn. Let us replace the Rauzy
graph Γn by the reduced Rauzy graph Γ̃n. We know already that the set of edge labels
of Γ̃n is equal to the set of edge labels of Γn. Let us denote by A the number of edges e
in Γ̃n such that e is mapped by f onto itself and by B the number of edges e in Γ̃n such
that e is not mapped by f onto itself, then clearly, #{e| e edge in Γ̃n} = A + B. To be
more precise, if e is an edge in Γ̃n corresponding to the simple path w(0)w(1) . . . w(m) in
Γn, then f(e) is the edge in Γ̃n corresponding to the simple path f(w(0)w(1) . . . w(m)) =

w(m) . . . w(1) w(0). Consequently, if e is mapped by f onto itself, then the corresponding
simple path w(0)w(1) . . . w(m) satis�es that its central vertex w(m

2
) is a palindrome (for m

even) or its central edge going from w(m−1
2

) to w(m+1
2

) is a palindrome (for m odd). On
the other hand, every palindrome of length n + 1 forms the central edge of a simple path
in Γn which is mapped by f onto itself and every palindrome of length n forms either the
central vertex of a simple path which is mapped by f on itself or is BS and thus a vertex
in Γn. Therefore,

A = P (n) + P (n + 1)−#{w ∈ Ln|w BS in Paln}. (4)

We subtract the number of palindromic BS factors of Ln(u) since they form vertices, not
edges in Γ̃n. Now, let us turn our attention to edges e which are not mapped by f onto
themselves. If e is an edge in Γ̃n going from a vertex w to v, where f(e) 6= e, then there
exists an edge e′ in Γ̃n going from v to w with e′ 6= f(e′), namely e′ = f(e). However, e
and e′ have the same label. (If e corresponds to the simple path w(0)w(1) . . . w(m) in Γn,
then e′ corresponds to the simple path w(m) . . . w(1) w(0) in Γn. Lemma 2 implies that
the label of these simple paths is the same.) These considerations lead to the following
estimate

#{ρ(e)| e ∈ Ln+1(u)} ≤ A +
1

2
B =

1

2
A +

1

2
(A + B) (5)

Rewriting Equation (3), we obtain

A + B = ∆C(n) + 2
∑

w RS in Ln

1−
∑

w BS in Ln

1.

The statement follows then using Equation (4).



6

Theorem 2. Let u be an in�nite word whose language L(u) is reversal closed and such
that for every factor w ∈ L(u), the frequency ρ(w) exists. Then for every n ∈ N, we have

#{ρ(e)|e ∈ Ln+1} ≤ 2∆C(n) + 1− 1

2

( ∑

w BS in Paln

1 +
∑

w BS in Ln

1

)
≤ 2∆C(n) + 1.

The equality #{ρ(e)|e ∈ Ln+1(u)} = 2∆C(n) + 1 holds for all su�ciently large n if and
only if u is periodic.

Remark 1. To approve that the estimate from Theorem 2 cannot be easily lowered keeping
its general validity, let us demonstrate that it is reached for all lengths n ∈ N in the case
of Sturmian words. Thanks to [4], we know that every Sturmian word is reversal closed
and all BS factors are palindromes. Moreover, since ∆C(n) = 1 for all n ∈ N, the upper
bound on the number of di�erent frequencies can be simpli�ed as follows

#{ρ(e)|e ∈ Ln+1(u)} ≤ 3 −
∑

w BS in Ln

1.

To see that the upper bound is reached, it su�ces to recall the result of Berthé in [2]

#{ρ(e)|e ∈ Ln+1(u)} =

{
2 if n is the length of a BS factor,
3 otherwise.

Proof of Theorem 2. It has been shown in [1] that

P (n) + P (n + 1) ≤ ∆C(n) + 2 for every n ∈ N. (6)

The term
∑

w RS in Ln
1 can be bounded by

∑
w RS in Ln

(#Rext(w) − 1) = ∆C(n). Ap-
plying these bounds on the result of Lemma 3, we obtain

#{ρ(e)|e ∈ Ln+1} ≤ 2∆C(n) + 1− 1

2

( ∑

w BS in Paln

1 +
∑

w BS in Ln

1

)
.

Let us turn our attention to eventually periodic words. Since L(u) is reversal closed, it
follows immediately that u is recurrent. If u is eventually periodic and recurrent, then
u is known to be periodic. Thus, there exists a minimal period K such that u = zω,
where |z| = K. Then, C(n) = K for every n ≥ K and every factor of length n occurs
with frequency 1

K
. Thus, #{ρ(e)| e edge in Γn} = 2∆C(n) + 1 = 1 for n ≥ K. If

u is aperiodic, then ∆C(n) ≥ 1 together with the fact that every LS factor is pre�x
of a BS factor implies that for every N ∈ N, there exists a BS factor in L(u) of length
n ≥ N , hence #{ρ(e)| e edge in Γn} ≤ 2∆C(n)+1− 1

2

(∑
w BS in Paln

1 +
∑

w BS in Ln
1
)

<
2∆C(n) + 1.

For completeness' sake, let us mention another proof which will not use Equation (6),
nevertheless, similar ideas as those ones occurring in [1] will be present. Going through
this second version of the proof, it can be in particular noticed that Theorem 2 does not
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require uniform recurrence of the in�nite word u. We will keep notation from Proof of
Lemma 3 and we will make use of a partial result rewritten in a di�erent way this time:

#{ρ(e)|e ∈ Ln+1(u)} ≤ A +
1

2
B = (A + B)− 1

2
B. (7)

We want to �nd a lower bound on B, i.e. on the number of edges in Γ̃n which are not
mapped by f on themselves. Γ̃n contains the following disjoint subgraphs (whose union
comprises all vertices of Γ̃n) of three types:

1. subgraphs containing two vertices w and w, where w is RS not LS, and all edges
connecting them mutually

2. subgraphs containing two vertices w and w, where w is non-palindromic BS, and
all edges connecting them mutually (attention! number of subgraphs of this type
is just 1

2
#{w ∈ Ln(u)

∣∣ w non-palindromic BS})
3. subgraphs containing one vertex w, where w is a palindromic BS, and eventually

edges-loops starting and ending in w

Clearly, all edges in Γ̃n which are mapped by f on themselves are contained in the above
subgraphs. Since (reduced) Rauzy graphs of in�nite words are connected, each subgraph
is connected with an edge to the union of the remaining subgraphs. Moreover, since
the language L(u) is reversal closed, if an edge e starts in a subgraph Γ and ends in
a subgraph Γ′, then the edge f(e) starts in Γ′ and ends in Γ. It follows that B is greater
or equal to 2× the minimal number of edges which can ensure connection of the disjoint
subgraphs of the graph:

B ≥ 2× number of subgraphs− 2 = 2
∑

w RS in Ln

1 +
∑

w BS in Paln

1−
∑

w BS in Ln

1− 2. (8)

Implanting in Equation (7) the just deduced lower bound on B together with the expres-
sion of A + B derived in Proof of Lemma 3

A + B = ∆C(n) + 2
∑

w RS in Ln

1−
∑

w BS in Ln

1,

and with the fact that
∑

w RS in Ln
1 can be bounded by

∑
w RS in Ln

(#Rext(w) − 1) =
∆C(n), we have proved the upper bound from Theorem 2

#{ρ(e)| e edge in Γn} ≤ 2∆C(n) + 1− 1

2

( ∑

w BS in Paln

1 +
∑

w BS in Ln

1

)
.

To conclude, let us throw in that we have studied frequencies of in�nite words as-
sociated with β-integers for β being a quadratic non-simple Parry number, thus de�ned
over a two-letter alphabet, and we have learned that the upper bound from Theorem 2
is either reached (for most of the lengths) or is only by 1 greater than the real number
of factor frequencies of a given length. Another example of an in�nite word, even over
a k letter alphabet, where the upper bound is reached for all lengths, is the k-interval
exchange word. (Description of frequencies has been recently given by Ferenczi [5].)
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